Add configurable OpenSearch feature and UI improvements
All checks were successful
Security Scan / security (pull_request) Successful in 49s
Security Scan / dependency-check (pull_request) Successful in 51s
Test Suite / lint (pull_request) Successful in 41s
Test Suite / test (3.11) (pull_request) Successful in 1m43s
Test Suite / build (pull_request) Successful in 37s
All checks were successful
Security Scan / security (pull_request) Successful in 49s
Security Scan / dependency-check (pull_request) Successful in 51s
Test Suite / lint (pull_request) Successful in 41s
Test Suite / test (3.11) (pull_request) Successful in 1m43s
Test Suite / build (pull_request) Successful in 37s
- Add MIT license with Austin Godber copyright - Implement optional OpenSearch feature toggle via EMBEDDINGBUDDY_OPENSEARCH_ENABLED - Disable OpenSearch by default in production for security - Add development environment flag to test OpenSearch disable state - Update about modal to open by default with improved content - Reorganize text input component: move model selection below text input - Conditionally show/hide OpenSearch tab and callbacks based on configuration - Update tooltips to reflect OpenSearch availability status
This commit is contained in:
@@ -5,9 +5,31 @@ import dash_bootstrap_components as dbc
|
||||
class AboutComponent:
|
||||
def _get_about_content(self):
|
||||
return """
|
||||
# 🔍 Interactive Embedding Visualization
|
||||
# 🔍 Interactive Embedding Vector Visualization
|
||||
|
||||
EmbeddingBuddy is a web application for interactive exploration and
|
||||
visualization of embedding vectors through dimensionality reduction techniques
|
||||
(PCA, t-SNE, UMAP).
|
||||
|
||||
You have two ways to get started:
|
||||
|
||||
1. Generate embeddings directly in the browser if it supports WebGPU.
|
||||
2. Upload your NDJSON file containing embedding vectors and metadata.
|
||||
|
||||
## Generating Embeddings in Browser
|
||||
|
||||
1. Expand the "Generate Embeddings" section.
|
||||
2. Input your text data (one entry per line).
|
||||
1. Optionally you can use the built in sample data by clicking "Load Sample Data" button.
|
||||
3. Click "Generate Embeddings" to create vectors using a pre-trained model.
|
||||
|
||||
## NDJSON File Format
|
||||
|
||||
```json
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, ...], "text": "Sample text content", "category": "news", "subcategory": "politics", "tags": ["election", "politics"]}
|
||||
{"id": "doc_002", "embedding": [0.2, -0.1, 0.9, ...], "text": "Another example", "category": "review", "subcategory": "product", "tags": ["tech", "gadget"]}
|
||||
```
|
||||
|
||||
EmbeddingBuddy is a modular Python Dash web application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques (PCA, t-SNE, UMAP).
|
||||
|
||||
## ✨ Features
|
||||
|
||||
@@ -35,7 +57,7 @@ EmbeddingBuddy is a modular Python Dash web application for interactive explorat
|
||||
return dbc.Modal(
|
||||
[
|
||||
dbc.ModalHeader(
|
||||
dbc.ModalTitle("About EmbeddingBuddy"),
|
||||
dbc.ModalTitle("Welcome to EmbeddingBuddy"),
|
||||
close_button=True,
|
||||
),
|
||||
dbc.ModalBody(
|
||||
@@ -53,7 +75,7 @@ EmbeddingBuddy is a modular Python Dash web application for interactive explorat
|
||||
),
|
||||
],
|
||||
id="about-modal",
|
||||
is_open=False,
|
||||
is_open=True,
|
||||
size="lg",
|
||||
)
|
||||
|
||||
|
Reference in New Issue
Block a user