add prompts
This commit is contained in:
		
							
								
								
									
										72
									
								
								CLAUDE.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										72
									
								
								CLAUDE.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,72 @@
 | 
			
		||||
# CLAUDE.md
 | 
			
		||||
 | 
			
		||||
This file provides guidance to Claude Code (claude.ai/code) when working with
 | 
			
		||||
code in this repository.
 | 
			
		||||
 | 
			
		||||
## Project Overview
 | 
			
		||||
 | 
			
		||||
EmbeddingBuddy is a Python Dash web application for interactive exploration and
 | 
			
		||||
visualization of embedding vectors through dimensionality reduction techniques
 | 
			
		||||
(PCA, t-SNE, UMAP). The app provides a drag-and-drop interface for uploading
 | 
			
		||||
NDJSON files containing embeddings and visualizes them in 2D/3D plots.
 | 
			
		||||
 | 
			
		||||
## Development Commands
 | 
			
		||||
 | 
			
		||||
**Install dependencies:**
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
uv sync
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
**Run the application:**
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
uv run python app.py
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
The app will be available at http://127.0.0.1:8050
 | 
			
		||||
 | 
			
		||||
**Test with sample data:**
 | 
			
		||||
Use the included `sample_data.ndjson` file for testing the application functionality.
 | 
			
		||||
 | 
			
		||||
## Architecture
 | 
			
		||||
 | 
			
		||||
### Core Files
 | 
			
		||||
 | 
			
		||||
- `app.py` - Main Dash application with complete web interface, data processing,
 | 
			
		||||
   and visualization logic
 | 
			
		||||
- `main.py` - Simple entry point (currently minimal)
 | 
			
		||||
- `pyproject.toml` - Project configuration and dependencies using uv package manager
 | 
			
		||||
 | 
			
		||||
### Key Components
 | 
			
		||||
 | 
			
		||||
- **Data Processing**: NDJSON parser that handles embedding documents with
 | 
			
		||||
  required fields (`embedding`, `text`) and optional metadata (`id`, `category`, `subcategory`, `tags`)
 | 
			
		||||
- **Dimensionality Reduction**: Supports PCA, t-SNE (openTSNE), and UMAP algorithms
 | 
			
		||||
- **Visualization**: Plotly-based 2D/3D scatter plots with interactive features
 | 
			
		||||
- **UI Layout**: Bootstrap-styled sidebar with controls and large visualization area
 | 
			
		||||
- **State Management**: Dash callbacks for reactive updates between upload,
 | 
			
		||||
  method selection, and plot rendering
 | 
			
		||||
 | 
			
		||||
### Data Format
 | 
			
		||||
 | 
			
		||||
The application expects NDJSON files where each line contains:
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, ...], "text": "Sample text", "category": "news", "subcategory": "politics", "tags": ["election"]}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Callback Architecture
 | 
			
		||||
 | 
			
		||||
- File upload → Data processing and storage in dcc.Store
 | 
			
		||||
- Method/parameter changes → Dimensionality reduction and plot update
 | 
			
		||||
- Point clicks → Detail display in sidebar
 | 
			
		||||
 | 
			
		||||
## Dependencies
 | 
			
		||||
 | 
			
		||||
Uses modern Python stack with uv for dependency management:
 | 
			
		||||
 | 
			
		||||
- Dash + Plotly for web interface and visualization
 | 
			
		||||
- scikit-learn (PCA), openTSNE, umap-learn for dimensionality reduction
 | 
			
		||||
- pandas/numpy for data manipulation
 | 
			
		||||
- dash-bootstrap-components for styling
 | 
			
		||||
							
								
								
									
										275
									
								
								app.py
									
									
									
									
									
								
							
							
						
						
									
										275
									
								
								app.py
									
									
									
									
									
								
							@@ -101,6 +101,117 @@ def create_plot(df, dimensions='3d', color_by='category', method='PCA'):
 | 
			
		||||
    )
 | 
			
		||||
    return fig
 | 
			
		||||
 | 
			
		||||
def create_dual_plot(doc_df, prompt_df, dimensions='3d', color_by='category', method='PCA', show_prompts=None):
 | 
			
		||||
    """Create plotly scatter plot with separate traces for documents and prompts."""
 | 
			
		||||
    
 | 
			
		||||
    # Create the base figure
 | 
			
		||||
    fig = go.Figure()
 | 
			
		||||
    
 | 
			
		||||
    # Helper function to convert colors to grayscale
 | 
			
		||||
    def to_grayscale_hex(color_str):
 | 
			
		||||
        """Convert a color to grayscale while maintaining some distinction."""
 | 
			
		||||
        import plotly.colors as pc
 | 
			
		||||
        # Try to get RGB values from the color
 | 
			
		||||
        try:
 | 
			
		||||
            if color_str.startswith('#'):
 | 
			
		||||
                # Hex color
 | 
			
		||||
                rgb = tuple(int(color_str[i:i+2], 16) for i in (1, 3, 5))
 | 
			
		||||
            else:
 | 
			
		||||
                # Named color or other format - convert through plotly
 | 
			
		||||
                rgb = pc.hex_to_rgb(pc.convert_colors_to_same_type([color_str], colortype='hex')[0][0])
 | 
			
		||||
            
 | 
			
		||||
            # Convert to grayscale using luminance formula, but keep some color
 | 
			
		||||
            gray_value = int(0.299 * rgb[0] + 0.587 * rgb[1] + 0.114 * rgb[2])
 | 
			
		||||
            # Make it a bit more gray but not completely
 | 
			
		||||
            gray_rgb = (gray_value * 0.7 + rgb[0] * 0.3, 
 | 
			
		||||
                       gray_value * 0.7 + rgb[1] * 0.3, 
 | 
			
		||||
                       gray_value * 0.7 + rgb[2] * 0.3)
 | 
			
		||||
            return f'rgb({int(gray_rgb[0])},{int(gray_rgb[1])},{int(gray_rgb[2])})'
 | 
			
		||||
        except:
 | 
			
		||||
            return 'rgb(128,128,128)'  # fallback gray
 | 
			
		||||
    
 | 
			
		||||
    # Create document plot using plotly express for consistent colors
 | 
			
		||||
    doc_color_values = create_color_mapping(doc_df.to_dict('records'), color_by)
 | 
			
		||||
    doc_df_display = doc_df.copy()
 | 
			
		||||
    doc_df_display['text_preview'] = doc_df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
 | 
			
		||||
    doc_df_display['tags_str'] = doc_df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
 | 
			
		||||
    
 | 
			
		||||
    hover_fields = ['id', 'text_preview', 'category', 'subcategory', 'tags_str']
 | 
			
		||||
    
 | 
			
		||||
    # Create documents plot to get the color mapping
 | 
			
		||||
    if dimensions == '3d':
 | 
			
		||||
        doc_fig = px.scatter_3d(
 | 
			
		||||
            doc_df_display, x='dim_1', y='dim_2', z='dim_3',
 | 
			
		||||
            color=doc_color_values,
 | 
			
		||||
            hover_data=hover_fields
 | 
			
		||||
        )
 | 
			
		||||
    else:
 | 
			
		||||
        doc_fig = px.scatter(
 | 
			
		||||
            doc_df_display, x='dim_1', y='dim_2',
 | 
			
		||||
            color=doc_color_values,
 | 
			
		||||
            hover_data=hover_fields
 | 
			
		||||
        )
 | 
			
		||||
    
 | 
			
		||||
    # Add document traces to main figure
 | 
			
		||||
    for trace in doc_fig.data:
 | 
			
		||||
        trace.name = f'Documents - {trace.name}'
 | 
			
		||||
        if dimensions == '3d':
 | 
			
		||||
            trace.marker.size = 5
 | 
			
		||||
            trace.marker.symbol = 'circle'
 | 
			
		||||
        else:
 | 
			
		||||
            trace.marker.size = 8
 | 
			
		||||
            trace.marker.symbol = 'circle'
 | 
			
		||||
        trace.marker.opacity = 1.0
 | 
			
		||||
        fig.add_trace(trace)
 | 
			
		||||
    
 | 
			
		||||
    # Add prompt traces if they exist
 | 
			
		||||
    if prompt_df is not None and show_prompts and 'show' in show_prompts:
 | 
			
		||||
        prompt_color_values = create_color_mapping(prompt_df.to_dict('records'), color_by)
 | 
			
		||||
        prompt_df_display = prompt_df.copy()
 | 
			
		||||
        prompt_df_display['text_preview'] = prompt_df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
 | 
			
		||||
        prompt_df_display['tags_str'] = prompt_df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
 | 
			
		||||
        
 | 
			
		||||
        # Create prompts plot to get consistent color grouping
 | 
			
		||||
        if dimensions == '3d':
 | 
			
		||||
            prompt_fig = px.scatter_3d(
 | 
			
		||||
                prompt_df_display, x='dim_1', y='dim_2', z='dim_3',
 | 
			
		||||
                color=prompt_color_values,
 | 
			
		||||
                hover_data=hover_fields
 | 
			
		||||
            )
 | 
			
		||||
        else:
 | 
			
		||||
            prompt_fig = px.scatter(
 | 
			
		||||
                prompt_df_display, x='dim_1', y='dim_2',
 | 
			
		||||
                color=prompt_color_values,
 | 
			
		||||
                hover_data=hover_fields
 | 
			
		||||
            )
 | 
			
		||||
        
 | 
			
		||||
        # Add prompt traces with grayed colors
 | 
			
		||||
        for trace in prompt_fig.data:
 | 
			
		||||
            # Convert the color to grayscale
 | 
			
		||||
            original_color = trace.marker.color
 | 
			
		||||
            if hasattr(trace.marker, 'color') and isinstance(trace.marker.color, str):
 | 
			
		||||
                trace.marker.color = to_grayscale_hex(trace.marker.color)
 | 
			
		||||
            
 | 
			
		||||
            trace.name = f'Prompts - {trace.name}'
 | 
			
		||||
            if dimensions == '3d':
 | 
			
		||||
                trace.marker.size = 6
 | 
			
		||||
                trace.marker.symbol = 'diamond'
 | 
			
		||||
            else:
 | 
			
		||||
                trace.marker.size = 10
 | 
			
		||||
                trace.marker.symbol = 'diamond'
 | 
			
		||||
            trace.marker.opacity = 0.8
 | 
			
		||||
            fig.add_trace(trace)
 | 
			
		||||
    
 | 
			
		||||
    title = f'{dimensions.upper()} Embedding Visualization - {method} (colored by {color_by})'
 | 
			
		||||
    fig.update_layout(
 | 
			
		||||
        title=title,
 | 
			
		||||
        height=None,
 | 
			
		||||
        autosize=True,
 | 
			
		||||
        margin=dict(l=0, r=0, t=50, b=0)
 | 
			
		||||
    )
 | 
			
		||||
    
 | 
			
		||||
    return fig
 | 
			
		||||
 | 
			
		||||
# Layout
 | 
			
		||||
app.layout = dbc.Container([
 | 
			
		||||
    dbc.Row([
 | 
			
		||||
@@ -132,6 +243,36 @@ app.layout = dbc.Container([
 | 
			
		||||
                multiple=False
 | 
			
		||||
            ),
 | 
			
		||||
            
 | 
			
		||||
            dcc.Upload(
 | 
			
		||||
                id='upload-prompts',
 | 
			
		||||
                children=html.Div([
 | 
			
		||||
                    'Drag and Drop Prompts or ',
 | 
			
		||||
                    html.A('Select Files')
 | 
			
		||||
                ]),
 | 
			
		||||
                style={
 | 
			
		||||
                    'width': '100%',
 | 
			
		||||
                    'height': '60px',
 | 
			
		||||
                    'lineHeight': '60px',
 | 
			
		||||
                    'borderWidth': '1px',
 | 
			
		||||
                    'borderStyle': 'dashed',
 | 
			
		||||
                    'borderRadius': '5px',
 | 
			
		||||
                    'textAlign': 'center',
 | 
			
		||||
                    'margin-bottom': '20px',
 | 
			
		||||
                    'borderColor': '#28a745'
 | 
			
		||||
                },
 | 
			
		||||
                multiple=False
 | 
			
		||||
            ),
 | 
			
		||||
            
 | 
			
		||||
            dbc.Button(
 | 
			
		||||
                "Reset All Data",
 | 
			
		||||
                id='reset-button',
 | 
			
		||||
                color='danger',
 | 
			
		||||
                outline=True,
 | 
			
		||||
                size='sm',
 | 
			
		||||
                className='mb-3',
 | 
			
		||||
                style={'width': '100%'}
 | 
			
		||||
            ),
 | 
			
		||||
            
 | 
			
		||||
            html.H5("Visualization Controls", className="mb-3"),
 | 
			
		||||
            
 | 
			
		||||
            dbc.Label("Method:"),
 | 
			
		||||
@@ -169,6 +310,14 @@ app.layout = dbc.Container([
 | 
			
		||||
                style={'margin-bottom': '20px'}
 | 
			
		||||
            ),
 | 
			
		||||
            
 | 
			
		||||
            dbc.Label("Show Prompts:"),
 | 
			
		||||
            dcc.Checklist(
 | 
			
		||||
                id='show-prompts-toggle',
 | 
			
		||||
                options=[{'label': 'Show prompts on plot', 'value': 'show'}],
 | 
			
		||||
                value=['show'],
 | 
			
		||||
                style={'margin-bottom': '20px'}
 | 
			
		||||
            ),
 | 
			
		||||
            
 | 
			
		||||
            html.H5("Point Details", className="mb-3"),
 | 
			
		||||
            html.Div(id='point-details', children="Click on a point to see details")
 | 
			
		||||
            
 | 
			
		||||
@@ -184,7 +333,8 @@ app.layout = dbc.Container([
 | 
			
		||||
        ], width=9)
 | 
			
		||||
    ]),
 | 
			
		||||
    
 | 
			
		||||
    dcc.Store(id='processed-data')
 | 
			
		||||
    dcc.Store(id='processed-data'),
 | 
			
		||||
    dcc.Store(id='processed-prompts')
 | 
			
		||||
], fluid=True)
 | 
			
		||||
 | 
			
		||||
@callback(
 | 
			
		||||
@@ -208,14 +358,37 @@ def process_uploaded_file(contents, filename):
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        return {'error': str(e)}
 | 
			
		||||
 | 
			
		||||
@callback(
 | 
			
		||||
    Output('processed-prompts', 'data'),
 | 
			
		||||
    Input('upload-prompts', 'contents'),
 | 
			
		||||
    State('upload-prompts', 'filename')
 | 
			
		||||
)
 | 
			
		||||
def process_uploaded_prompts(contents, filename):
 | 
			
		||||
    if contents is None:
 | 
			
		||||
        return None
 | 
			
		||||
    
 | 
			
		||||
    try:
 | 
			
		||||
        prompts = parse_ndjson(contents)
 | 
			
		||||
        embeddings = np.array([prompt['embedding'] for prompt in prompts])
 | 
			
		||||
        
 | 
			
		||||
        # Store original embeddings and prompts
 | 
			
		||||
        return {
 | 
			
		||||
            'prompts': prompts,
 | 
			
		||||
            'embeddings': embeddings.tolist()
 | 
			
		||||
        }
 | 
			
		||||
    except Exception as e:
 | 
			
		||||
        return {'error': str(e)}
 | 
			
		||||
 | 
			
		||||
@callback(
 | 
			
		||||
    Output('embedding-plot', 'figure'),
 | 
			
		||||
    [Input('processed-data', 'data'),
 | 
			
		||||
     Input('processed-prompts', 'data'),
 | 
			
		||||
     Input('method-dropdown', 'value'),
 | 
			
		||||
     Input('color-dropdown', 'value'),
 | 
			
		||||
     Input('dimension-toggle', 'value')]
 | 
			
		||||
     Input('dimension-toggle', 'value'),
 | 
			
		||||
     Input('show-prompts-toggle', 'value')]
 | 
			
		||||
)
 | 
			
		||||
def update_plot(data, method, color_by, dimensions):
 | 
			
		||||
def update_plot(data, prompts_data, method, color_by, dimensions, show_prompts):
 | 
			
		||||
    if not data or 'error' in data:
 | 
			
		||||
        return go.Figure().add_annotation(
 | 
			
		||||
            text="Upload a valid NDJSON file to see visualization",
 | 
			
		||||
@@ -224,16 +397,28 @@ def update_plot(data, method, color_by, dimensions):
 | 
			
		||||
            showarrow=False, font=dict(size=16)
 | 
			
		||||
        )
 | 
			
		||||
    
 | 
			
		||||
    # Get embeddings and apply selected method
 | 
			
		||||
    embeddings = np.array(data['embeddings'])
 | 
			
		||||
    # Prepare embeddings for dimensionality reduction
 | 
			
		||||
    doc_embeddings = np.array(data['embeddings'])
 | 
			
		||||
    all_embeddings = doc_embeddings
 | 
			
		||||
    has_prompts = prompts_data and 'error' not in prompts_data and prompts_data.get('prompts')
 | 
			
		||||
    
 | 
			
		||||
    if has_prompts:
 | 
			
		||||
        prompt_embeddings = np.array(prompts_data['embeddings'])
 | 
			
		||||
        all_embeddings = np.vstack([doc_embeddings, prompt_embeddings])
 | 
			
		||||
    
 | 
			
		||||
    n_components = 3 if dimensions == '3d' else 2
 | 
			
		||||
    
 | 
			
		||||
    # Apply dimensionality reduction to combined data
 | 
			
		||||
    reduced, variance_explained = apply_dimensionality_reduction(
 | 
			
		||||
        embeddings, method=method, n_components=n_components
 | 
			
		||||
        all_embeddings, method=method, n_components=n_components
 | 
			
		||||
    )
 | 
			
		||||
    
 | 
			
		||||
    # Create dataframe with reduced dimensions
 | 
			
		||||
    df_data = []
 | 
			
		||||
    # Split reduced embeddings back
 | 
			
		||||
    doc_reduced = reduced[:len(doc_embeddings)]
 | 
			
		||||
    prompt_reduced = reduced[len(doc_embeddings):] if has_prompts else None
 | 
			
		||||
    
 | 
			
		||||
    # Create dataframes
 | 
			
		||||
    doc_df_data = []
 | 
			
		||||
    for i, doc in enumerate(data['documents']):
 | 
			
		||||
        row = {
 | 
			
		||||
            'id': doc['id'],
 | 
			
		||||
@@ -241,28 +426,52 @@ def update_plot(data, method, color_by, dimensions):
 | 
			
		||||
            'category': doc.get('category', 'Unknown'),
 | 
			
		||||
            'subcategory': doc.get('subcategory', 'Unknown'),
 | 
			
		||||
            'tags': doc.get('tags', []),
 | 
			
		||||
            'dim_1': reduced[i, 0],
 | 
			
		||||
            'dim_2': reduced[i, 1]
 | 
			
		||||
            'dim_1': doc_reduced[i, 0],
 | 
			
		||||
            'dim_2': doc_reduced[i, 1],
 | 
			
		||||
            'type': 'document'
 | 
			
		||||
        }
 | 
			
		||||
        if dimensions == '3d':
 | 
			
		||||
            row['dim_3'] = reduced[i, 2]
 | 
			
		||||
        df_data.append(row)
 | 
			
		||||
            row['dim_3'] = doc_reduced[i, 2]
 | 
			
		||||
        doc_df_data.append(row)
 | 
			
		||||
    
 | 
			
		||||
    df = pd.DataFrame(df_data)
 | 
			
		||||
    doc_df = pd.DataFrame(doc_df_data)
 | 
			
		||||
    
 | 
			
		||||
    return create_plot(df, dimensions, color_by, method.upper())
 | 
			
		||||
    prompt_df = None
 | 
			
		||||
    if has_prompts and prompt_reduced is not None:
 | 
			
		||||
        prompt_df_data = []
 | 
			
		||||
        for i, prompt in enumerate(prompts_data['prompts']):
 | 
			
		||||
            row = {
 | 
			
		||||
                'id': prompt['id'],
 | 
			
		||||
                'text': prompt['text'],
 | 
			
		||||
                'category': prompt.get('category', 'Unknown'),
 | 
			
		||||
                'subcategory': prompt.get('subcategory', 'Unknown'),
 | 
			
		||||
                'tags': prompt.get('tags', []),
 | 
			
		||||
                'dim_1': prompt_reduced[i, 0],
 | 
			
		||||
                'dim_2': prompt_reduced[i, 1],
 | 
			
		||||
                'type': 'prompt'
 | 
			
		||||
            }
 | 
			
		||||
            if dimensions == '3d':
 | 
			
		||||
                row['dim_3'] = prompt_reduced[i, 2]
 | 
			
		||||
            prompt_df_data.append(row)
 | 
			
		||||
        
 | 
			
		||||
        prompt_df = pd.DataFrame(prompt_df_data)
 | 
			
		||||
    
 | 
			
		||||
    return create_dual_plot(doc_df, prompt_df, dimensions, color_by, method.upper(), show_prompts)
 | 
			
		||||
 | 
			
		||||
@callback(
 | 
			
		||||
    Output('point-details', 'children'),
 | 
			
		||||
    Input('embedding-plot', 'clickData'),
 | 
			
		||||
    State('processed-data', 'data')
 | 
			
		||||
    [State('processed-data', 'data'),
 | 
			
		||||
     State('processed-prompts', 'data')]
 | 
			
		||||
)
 | 
			
		||||
def display_click_data(clickData, data):
 | 
			
		||||
def display_click_data(clickData, data, prompts_data):
 | 
			
		||||
    if not clickData or not data:
 | 
			
		||||
        return "Click on a point to see details"
 | 
			
		||||
    
 | 
			
		||||
    # Get point index - try different possible keys
 | 
			
		||||
    # Get point info from click
 | 
			
		||||
    point_data = clickData['points'][0]
 | 
			
		||||
    trace_name = point_data.get('fullData', {}).get('name', 'Documents')
 | 
			
		||||
    
 | 
			
		||||
    if 'pointIndex' in point_data:
 | 
			
		||||
        point_index = point_data['pointIndex']
 | 
			
		||||
    elif 'pointNumber' in point_data:
 | 
			
		||||
@@ -270,17 +479,37 @@ def display_click_data(clickData, data):
 | 
			
		||||
    else:
 | 
			
		||||
        return "Could not identify clicked point"
 | 
			
		||||
    
 | 
			
		||||
    doc = data['documents'][point_index]
 | 
			
		||||
    # Determine which dataset this point belongs to
 | 
			
		||||
    if trace_name == 'Prompts' and prompts_data and 'prompts' in prompts_data:
 | 
			
		||||
        item = prompts_data['prompts'][point_index]
 | 
			
		||||
        item_type = 'Prompt'
 | 
			
		||||
    else:
 | 
			
		||||
        item = data['documents'][point_index]
 | 
			
		||||
        item_type = 'Document'
 | 
			
		||||
    
 | 
			
		||||
    return dbc.Card([
 | 
			
		||||
        dbc.CardBody([
 | 
			
		||||
            html.H5(f"Document: {doc['id']}", className="card-title"),
 | 
			
		||||
            html.P(f"Text: {doc['text']}", className="card-text"),
 | 
			
		||||
            html.P(f"Category: {doc.get('category', 'Unknown')}", className="card-text"),
 | 
			
		||||
            html.P(f"Subcategory: {doc.get('subcategory', 'Unknown')}", className="card-text"),
 | 
			
		||||
            html.P(f"Tags: {', '.join(doc.get('tags', [])) if doc.get('tags') else 'None'}", className="card-text")
 | 
			
		||||
            html.H5(f"{item_type}: {item['id']}", className="card-title"),
 | 
			
		||||
            html.P(f"Text: {item['text']}", className="card-text"),
 | 
			
		||||
            html.P(f"Category: {item.get('category', 'Unknown')}", className="card-text"),
 | 
			
		||||
            html.P(f"Subcategory: {item.get('subcategory', 'Unknown')}", className="card-text"),
 | 
			
		||||
            html.P(f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}", className="card-text"),
 | 
			
		||||
            html.P(f"Type: {item_type}", className="card-text text-muted")
 | 
			
		||||
        ])
 | 
			
		||||
    ])
 | 
			
		||||
 | 
			
		||||
@callback(
 | 
			
		||||
    [Output('processed-data', 'data', allow_duplicate=True),
 | 
			
		||||
     Output('processed-prompts', 'data', allow_duplicate=True),
 | 
			
		||||
     Output('point-details', 'children', allow_duplicate=True)],
 | 
			
		||||
    Input('reset-button', 'n_clicks'),
 | 
			
		||||
    prevent_initial_call=True
 | 
			
		||||
)
 | 
			
		||||
def reset_data(n_clicks):
 | 
			
		||||
    if n_clicks is None or n_clicks == 0:
 | 
			
		||||
        return dash.no_update, dash.no_update, dash.no_update
 | 
			
		||||
    
 | 
			
		||||
    return None, None, "Click on a point to see details"
 | 
			
		||||
 | 
			
		||||
if __name__ == '__main__':
 | 
			
		||||
    app.run(debug=True)
 | 
			
		||||
							
								
								
									
										10
									
								
								sample_prompts.ndjson
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										10
									
								
								sample_prompts.ndjson
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,10 @@
 | 
			
		||||
{"id": "prompt_001", "embedding": [0.15, -0.28, 0.65, 0.42, -0.11, 0.33, 0.78, -0.52], "text": "Find articles about machine learning applications", "category": "search", "subcategory": "technology", "tags": ["AI", "research"]}
 | 
			
		||||
{"id": "prompt_002", "embedding": [0.72, 0.18, -0.35, 0.51, 0.09, -0.44, 0.27, 0.63], "text": "Show me product reviews for smartphones", "category": "search", "subcategory": "product", "tags": ["mobile", "reviews"]}
 | 
			
		||||
{"id": "prompt_003", "embedding": [-0.21, 0.59, 0.34, -0.67, 0.45, 0.12, -0.38, 0.76], "text": "What are the latest political developments?", "category": "search", "subcategory": "news", "tags": ["politics", "current events"]}
 | 
			
		||||
{"id": "prompt_004", "embedding": [0.48, -0.15, 0.72, 0.31, -0.58, 0.24, 0.67, -0.39], "text": "Summarize recent tech industry trends", "category": "analysis", "subcategory": "technology", "tags": ["tech", "trends", "summary"]}
 | 
			
		||||
{"id": "prompt_005", "embedding": [-0.33, 0.47, -0.62, 0.28, 0.71, -0.18, 0.54, 0.35], "text": "Compare different smartphone models", "category": "analysis", "subcategory": "product", "tags": ["comparison", "mobile", "evaluation"]}
 | 
			
		||||
{"id": "prompt_006", "embedding": [0.64, 0.21, 0.39, -0.45, 0.13, 0.58, -0.27, 0.74], "text": "Analyze voter sentiment on recent policies", "category": "analysis", "subcategory": "politics", "tags": ["sentiment", "politics", "analysis"]}
 | 
			
		||||
{"id": "prompt_007", "embedding": [0.29, -0.43, 0.56, 0.68, -0.22, 0.37, 0.14, -0.61], "text": "Generate a summary of machine learning research", "category": "generation", "subcategory": "technology", "tags": ["AI", "research", "summary"]}
 | 
			
		||||
{"id": "prompt_008", "embedding": [-0.17, 0.52, -0.48, 0.36, 0.74, -0.29, 0.61, 0.18], "text": "Create a product recommendation report", "category": "generation", "subcategory": "product", "tags": ["recommendation", "report", "analysis"]}
 | 
			
		||||
{"id": "prompt_009", "embedding": [0.55, 0.08, 0.41, -0.37, 0.26, 0.69, -0.14, 0.58], "text": "Write a news brief on election updates", "category": "generation", "subcategory": "news", "tags": ["election", "news", "brief"]}
 | 
			
		||||
{"id": "prompt_010", "embedding": [0.23, -0.59, 0.47, 0.61, -0.35, 0.18, 0.72, -0.26], "text": "Explain how neural networks work", "category": "explanation", "subcategory": "technology", "tags": ["AI", "education", "neural networks"]}
 | 
			
		||||
		Reference in New Issue
	
	Block a user