Functions
get_failures¶
- Description: Detail on failed financial institutions
- Return:
dict
orpandas.DataFrame
- Arguments
Argument | Description | Type | Default | Required | Options |
---|---|---|---|---|---|
filters | Filter(s) for the bank search | str |
None |
optional | See filtering |
fields | Comma delimited list of fields to retrieve | str |
All fields included by default | optional | |
sort_by | Field name by which to sort returned data | str |
FAILDATE |
optional | See meta_dict |
sort_order | Indicator if ascending or descending | str |
DESC |
optional | ASC DESC |
limit | Number of records to return | int |
10000 |
optional | 0 to 10,000 |
offset | Offset of page to return | int |
0 |
optional | |
output | Format of data to return | str |
json |
optional | json pandas |
limit | Number of records to return | int |
10000 |
optional | 0 to 10,000 |
friendly_fields | Replace keys / column names with friendlier title | bool |
False |
optional | True False |
import bankfind as bf
data = bf.get_failures()
data['data'][0]
{
'data': {
'QBFDEP': 139526,
'PSTALP': 'WV',
'FIN': '10536',
'FAILDATE': '04/03/2020',
'RESTYPE': 'FAILURE',
'CITYST': 'BARBOURSVILLE, WV',
'SAVR': 'DIF',
'RESTYPE1': 'PA',
'CHCLASS1': 'NM',
'NAME': 'THE FIRST STATE BANK',
'COST': None,
'QBFASSET': 152400,
'CERT': 14361,
'FAILYR': '2020',
'ID': '4102'
},
'score': 1
}
get_history¶
- Description: Detail on structure change events
- Return:
dict
orpandas.DataFrame
- Arguments
Argument | Description | Type | Default | Required | Options |
---|---|---|---|---|---|
filters | Filter(s) for the bank search | str |
None |
optional | See filtering |
search | Flexible text search against institution records (fuzzy name matching) | str |
None |
optional | See search |
fields | Comma delimited list of fields to retrieve | str |
All fields included by default | optional | |
sort_by | Field name by which to sort returned data | str |
FAILDATE |
optional | See meta_dict |
sort_order | Indicator if ascending or descending | str |
DESC |
optional | ASC DESC |
limit | Number of records to return | int |
10000 |
optional | 0 to 10,000 |
offset | Offset of page to return | int |
0 |
optional | |
output | Format of data to return | str |
json |
optional | json pandas |
limit | Number of records to return | int |
10000 |
optional | 0 to 10,000 |
friendly_fields | Replace keys / column names with friendlier title | bool |
False |
optional | True False |
import bankfind as bf
data = bf.get_history()
data['data'][0]
{
'data': {
'REPORT_TYPE': 711,
'INSAGENT1': 'DIF',
'INSAGENT2': '',
'OFF_PCITY': 'Colorado Springs',
'EFFDATE': '2020-07-27T00:00:00',
'CHARTAGENT': 'STATE',
'PSTALP': 'NE',
'CLASS': 'NM',
'FRM_OFF_SERVTYPE': 0,
'OFF_LONGITUDE': -104.87635200138965,
'OFF_PSTATE': 'COLORADO',
'BANK_INSURED': 'Y',
'CNTYNUM': 157,
'INSTNAME': 'First State Bank',
'OFF_PADDR': '3216 W Colorado AVE',
'FRM_CLCODE': 0,
'OFF_SERVTYPE_DESC': 'FULL SERVICE - BRICK AND MORTAR',
'TRANSNUM': 202012234,
'MZIPREST': '0000',
'FDICREGION_DESC': 'KANSAS CITY',
'FRM_OFF_CLCODE': 0,
'PZIP5': '69361',
'OFF_PZIPREST': '1906',
'OFF_NAME': 'First State Bank Colorado Springs West Branch',
'CERT': 15586,
'OFF_PSTALP': 'CO',
'PCITY': 'SCOTTSBLUFF',
'LATITUDE': 0,
'PROCDATE': '2020-08-05T00:00:00',
'ACQDATE': '9999-12-31T00:00:00',
'CHANGECODE': 711,
'PADDR': '2002 BROADWAY',
'MZIP5': '69361',
'FI_UNINUM': 9873,
'LONGITUDE': 0,
'FRM_LATITUDE': 0,
'STATE': 'NEBRASKA',
'MSTALP': 'NE',
'CNTYNAME': 'SCOTTS BLUFF',
'ACQ_UNINUM': 0,
'OFF_CNTYNUM': 41,
'FI_EFFDATE': '2019-06-10T00:00:00',
'FDICREGION': 11,
'MSTATE': 'NEBRASKA',
'FRM_LONGITUDE': 0,
'OFF_CNTYNAME': 'EL PASO',
'CHANGECODE_DESC': 'BRANCH OPENING',
'MCITY': 'SCOTTSBLUFF',
'MADDR': 'P.O. BOX 1267',
'OFF_PZIP5': '80904',
'OUT_UNINUM': 0,
'PZIPREST': '0000',
'ORG_STAT_FLG': 'Y',
'FRM_OFF_LONGITUDE': 0,
'ENDDATE': '9999-12-31T00:00:00',
'UNINUM': 625952,
'OFF_NUM': 6,
'CLCODE': 21,
'OFF_SERVTYPE': 11,
'FRM_OFF_CNTYNUM': 0,
'ORG_ROLE_CDE': 'BR',
'REGAGENT': 'FDIC',
'OFF_LATITUDE': 38.85583298227556,
'ESTDATE': '2020-07-27T00:00:00',
'FRM_OFF_LATITUDE': 0,
'TRUST': 'Full',
'ID': '20eb98a36c7c77cf6bc019ce391ba7c9'
},
'score': 1
}
get_institutions¶
- Description: List of financial institutions
- Return:
dict
orpandas.DataFrame
- Arguments
Argument | Description | Type | Default | Required | Options |
---|---|---|---|---|---|
filters | Filter(s) for the bank search | str |
None |
optional | See filtering |
search | Flexible text search against institution records (fuzzy name matching) | str |
None |
optional | See [search](#filtering.md#search |
fields | Comma delimited list of fields to retrieve | str |
All fields included by default | optional | |
sort_by | Field name by which to sort returned data | str |
FAILDATE |
optional | See meta_dict |
sort_order | Indicator if ascending or descending | str |
DESC |
optional | ASC DESC |
limit | Number of records to return | int |
10000 |
optional | 0 to 10,000 |
offset | Offset of page to return | int |
0 |
optional | |
output | Format of data to return | str |
json |
optional | json pandas |
limit | Number of records to return | int |
10000 |
optional | 0 to 10,000 |
friendly_fields | Replace keys / column names with friendlier title | bool |
False |
optional | True False |
import bankfind as bf
data = bf.get_institutions()
data['data'][0]
{
'data': {
'ZIP': '31087',
'SASSER': 0,
'CHRTAGNT': 'STATE',
'CONSERVE': 'N',
'REGAGENT2': '',
'STNAME': 'Georgia',
'ROAQ': 0.65,
'INSDATE': '01/01/1934',
'TE06N528': '',
'TE06N529': '',
'OFFOA': 0,
'FDICDBS': '05',
'NAMEHCR': '',
'OCCDIST': '5',
'CMSA': '',
'DEPDOM': 59267,
'CBSA_METRO_FLG': '0',
'TE10N528': '',
'NETINC': 124,
'CBSA_DIV_NO': '',
'MUTUAL': '0',
'MSA_NO': '0',
'OFFFOR': 0,
'INSSAVE': 0,
'CHARTER': '0',
'RSSDHCR': '',
'TE04N528': '',
'TE04N529': '',
'CERT': '10057',
'STALP': 'GA',
'SPECGRP': 7,
'CFPBENDDTE': '31-Dec-9999',
'TE09N528': '',
'IBA': 0,
'INSBIF': 0,
'INSFDIC': 1,
'ENDEFYMD': '12/31/9999',
'MSA': '',
'TE02N528': '',
'CB': '1',
'TE02N529': '',
'TE07N528': '',
'FDICSUPV': 'Atlanta',
'FED': '6',
'REGAGNT': 'FDIC',
'NEWCERT': 0,
'ASSET': 76416,
'CBSA_MICRO_FLG': '1',
'OFFICES': 1,
'STCNTY': '13141',
'CSA_FLG': '0',
'CITY': 'Sparta',
'CLCODE': '21',
'INACTIVE': 0,
'CMSA_NO': '0',
'STALPHCR': '',
'INSAGNT1': 'DIF',
'BKCLASS': 'NM',
'EFFDATE': '08/31/2009',
'SUPRV_FD': '05',
'DATEUPDT': '09/02/2009',
'INSAGNT2': '',
'TE05N528': '',
'TE05N529': '',
'ROEQ': 2.96,
'FDICREGN': 'Atlanta',
'FLDOFF': 'Savannah',
'WEBADDR': 'http://www.bankofhancock.com',
'QBPRCOML': '2',
'COUNTY': 'Hancock',
'DOCKET': '0',
'ULTCERT': '10057',
'OTSDIST': '2',
'LAW_SASSER_FLG': 'N',
'PARCERT': '0',
'ROA': 0.65,
'CFPBFLAG': 0,
'RISDATE': '12/31/2019',
'ROE': 2.96,
'INSCOML': 1,
'OTSREGNM': 'Southeast',
'EQ': '17026',
'RUNDATE': '08/08/2020',
'TE03N528': '',
'TE03N529': '',
'NAME': 'Bank of Hancock County',
'HCTMULT': '',
'CBSA_DIV': '',
'ADDRESS': '12855 Broad Street',
'OFFDOM': 1,
'SUBCHAPS': '0',
'PROCDATE': '09/02/2009',
'INSSAIF': 0,
'DENOVO': '0',
'CBSA_NO': '33300',
'ACTIVE': 1,
'CFPBEFFDTE': '31-Dec-9999',
'STCHRTR': 1,
'REPDTE': '03/31/2020',
'FORM31': '0',
'CSA': '',
'INSDIF': 1,
'TE01N529': '',
'ROAPTX': 0.65,
'STNUM': '13',
'OAKAR': 0,
'SPECGRPN': 'Other Specialized Under 1 Billion',
'ROAPTXQ': 0.65,
'FED_RSSD': '37',
'CSA_NO': '',
'CBSA_METRO': 0,
'INSTCRCD': 0,
'DEP': 59267,
'UNINUM': '6429',
'INSTAG': '0',
'TE01N528': '',
'CITYHCR': '',
'TRACT': '0',
'CBSA': 'Milledgeville, GA',
'CBSA_DIV_FLG': '0',
'TE08N528': '',
'NETINCQ': 124,
'CHANGEC1': 520,
'CERTCONS': '0',
'ESTYMD': '09/01/1904',
'FEDCHRTR': 0,
'TRUST': '0',
'ID': '10057'
},
'score': 1
}
get_locations¶
- Description: Detail on failed financial institutions
- Return:
dict
orpandas.DataFrame
- Arguments
Argument | Description | Type | Default | Required | Options |
---|---|---|---|---|---|
filters | Filter(s) for the bank search | str |
None |
optional | See filtering |
fields | Comma delimited list of fields to retrieve | str |
All fields included by default | optional | |
sort_by | Field name by which to sort returned data | str |
FAILDATE |
optional | See meta_dict |
sort_order | Indicator if ascending or descending | str |
DESC |
optional | ASC DESC |
limit | Number of records to return | int |
10000 |
optional | 0 to 10,000 |
offset | Offset of page to return | int |
0 |
optional | |
output | Format of data to return | str |
json |
optional | json pandas |
limit | Number of records to return | int |
10000 |
optional | 0 to 10,000 |
friendly_fields | Replace keys / column names with friendlier title | bool |
False |
optional | True False |
import bankfind as bf
data = bf.get_locations()
data['data'][0]
{
'data': {
'ZIP': '21613',
'CBSA_NO': '15700',
'BKCLASS': 'SM',
'FI_UNINUM': 3221,
'STNAME': 'Maryland',
'CSA': 'Salisbury-Cambridge, MD-DE',
'COUNTY': 'Dorchester',
'MAINOFF': 0,
'OFFNAME': 'WOODS ROAD BRANCH',
'CBSA_METRO_FLG': '0',
'CBSA_MICRO_FLG': '1',
'CSA_NO': '480',
'CBSA_METRO': 0,
'CBSA_DIV_NO': '',
'RUNDATE': '08/07/2020',
'NAME': '1880 Bank',
'UNINUM': 204568,
'SERVTYPE': 11,
'CSA_FLG': '1',
'STCNTY': '24019',
'CBSA': 'Cambridge, MD',
'CBSA_DIV': '',
'CBSA_DIV_FLG': '0',
'CITY': 'Cambridge',
'ADDRESS': '803 Woods Road',
'CERT': '4829',
'STALP': 'MD',
'OFFNUM': 1,
'ESTYMD': '12/23/1968',
'ID': '204568'
},
'score': 1
}
get_summary¶
- Description: Detail on failed financial institutions
- Return:
dict
orpandas.DataFrame
- Arguments
Argument | Description | Type | Default | Required | Options |
---|---|---|---|---|---|
filters | Filter(s) for the bank search | str |
None |
optional | See filtering |
fields | Comma delimited list of fields to retrieve | str |
All fields included by default | optional | |
sort_by | Field name by which to sort returned data | str |
FAILDATE |
optional | See meta_dict |
sort_order | Indicator if ascending or descending | str |
DESC |
optional | ASC DESC |
limit | Number of records to return | int |
10000 |
optional | 0 to 10,000 |
offset | Offset of page to return | int |
0 |
optional | |
output | Format of data to return | str |
json |
optional | json pandas |
limit | Number of records to return | int |
10000 |
optional | 0 to 10,000 |
friendly_fields | Replace keys / column names with friendlier title | bool |
False |
optional | True False |
import bankfind as bf
data = bf.get_failures()
data['data'][0]
{
'data': {
'INTINC2': 51722726,
'EXTRA': 1316,
'LNATRES': 9769341,
'chrtrest': 0,
'STNAME': 'United States and Other Areas',
'ILNS': 39718788,
'LNAG': 3306388,
'EINTEXP2': 10348941,
'EPREMAGG': 2063405,
'YEAR': '2019',
'BKPREM': 8315925,
'INTAN': 12025281,
'LNRE': 444072342,
'chartoth': 1,
'IGLSEC': 482482,
'OT_BIF': 0,
'EAMINTAN': 456598,
'newcount': 0,
'DEPI': 840535976,
'EFHLBADV': None,
'tofail': 1,
'SCMTGBK': 292023664,
'NTRTMLG': 118177154,
'OEA': 1483578,
'EFREPP': 90846,
'LNLSGR': 655127513,
'NETINC': 15194171,
'TOT_OTS': 334,
'CONS': 0,
'OTHNBORR': 91479748,
'LNREMULT': 68529412,
'P9LNLS': 7463014,
'COUNT': 659,
'LNRERES': 253541537,
'EQCS': 790384,
'SCAGE': 304050945,
'LNRECONS': 23453492,
'TOT_FDIC': 325,
'EINTEXP': 10348941,
'TPD': 13656751,
'LNCI': 43378018,
'EQNM': 125002942,
'INTBLIB': 1007906756,
'liqasstd': 0,
'SC': 385021771,
'INTBAST': 1096557030,
'EDEPDOM': 8287049,
'ILNDOM': 39718603,
'NCLNLS': 11414221,
'UNINC': 133264,
'ISC': 10339424,
'LIABEQ': 1153906385,
'tochrt': 7,
'IFEE': 865589,
'TOT_SAVE': 659,
'LNRESRE': None,
'alsonew': 0,
'NUMEMP': 121746,
'ASSET': 1153906405,
'TINTINC': 11723463,
'NALNLS': 3951207,
'EOTHNINT': 14513593,
'TRADES': 0,
'ESAL': 12889946,
'ILNLS': 39999263,
'LIAB': 1028873691,
'LNDEP': 417597,
'OTHBFHLB': 75972627,
'ITAX': 4361954,
'EQCDIVP': 12402,
'SCRES': None,
'TRADE': 356945,
'MISSADJ': -1,
'FD_BIF': 0,
'CRLNLS': 1422110,
'LS': 5575099,
'tomerg': 11,
'ELNATR': 5247975,
'LNCRCD': 99551689,
'INTINC': 51722726,
'EQUPTOT': 70024149,
'CHBALI': 64693509,
'EQPP': 282890,
'PTXNOINC': 19078526,
'OINTINC': 11723463,
'tortc': 0,
'ILS': 280475,
'FD_SAIF': 0,
'EQNWCERT': None,
'OINTBOR': 85304294,
'SCUST': 12170713,
'combos': 12,
'P3LNLS': 6193737,
'OTLNCNTA': None,
'OTHLIAB': 16342193,
'IFREPO': 18439,
'LNLSNET': 645358172,
'LNCONOT1': None,
'EQCDIVC': 13089203,
'SCUSA': 316221658,
'DRLNLS': 7211296,
'OTHBORR': 1685904,
'EQCDIV': 13101605,
'EDEP': 8287065,
'BRWDMONY': 1685904,
'comboass': 0,
'FREPO': 1126633,
'CHBAL': 73009001,
'ALLOTHER': 14950385,
'FREPP': 6067807,
'IRAKEOGH': 123424709,
'OT_SAIF': 0,
'ORE': 302690,
'SCMUNI': 10308292,
'ESUBND': 278,
'SCUS': 316221658,
'ITRADE': 0,
'OINTEXP': 1777028,
'liqunass': 1,
'DDT': 58550380,
'EDEPFOR': 16,
'LNALLOTH': 42378773,
'SCEQ': 258574,
'ITAXR': 19078526,
'ILNFOR': 185,
'ICHBAL': 1365600,
'LNRELOC': 21179492,
'STNUM': '0',
'SUBLLPF': 26052,
'OONONII': 11554071,
'CORPBNDS': 55721897,
'NONIX': 29466944,
'NCHGREC': 5789186,
'OTHASST': 28389467,
'DEP': 921025698,
'NIM': 41373785,
'LNCON': 141930462,
'EQSUR': 53905519,
'SAVINGS': 659,
'ORET': 302690,
'CB_SI': 'SI',
'TOINTEXP': 2061876,
'LNMUNI': 1630491,
'LNRENRES': 98547901,
'NONII': 12419660,
'BRO': 104643398,
'ID': 'SI_2019_0'
},
'score': 1
}