initial implementation works.
This commit is contained in:
74
README.md
Normal file
74
README.md
Normal file
@@ -0,0 +1,74 @@
|
||||
# EmbeddingBuddy
|
||||
|
||||
A Python Dash application for interactive exploration and visualization of
|
||||
embedding vectors through dimensionality reduction techniques.
|
||||
|
||||
## Overview
|
||||
|
||||
EmbeddingBuddy provides an intuitive web interface for analyzing high-dimensional
|
||||
embedding vectors by applying various dimensionality reduction algorithms and
|
||||
visualizing the results in interactive 2D and 3D plots.
|
||||
|
||||
## Features
|
||||
|
||||
- **Dimensionality Reduction**: Support for PCA, t-SNE, and UMAP algorithms
|
||||
- **Interactive Visualizations**: 2D and 3D plots using Plotly
|
||||
- **Web Interface**: Built with Python Dash for easy accessibility
|
||||
- **Vector Analysis**: Tools for exploring embedding vector relationships and
|
||||
patterns
|
||||
|
||||
## Data Format
|
||||
|
||||
EmbeddingBuddy accepts newline-delimited JSON (NDJSON) files where each line contains an embedding document with the following structure:
|
||||
|
||||
```json
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, ...], "text": "Sample text content", "category": "news", "subcategory": "politics", "tags": ["election", "politics"]}
|
||||
{"id": "doc_002", "embedding": [0.2, -0.1, 0.9, ...], "text": "Another example", "category": "review", "subcategory": "product", "tags": ["tech", "gadget"]}
|
||||
```
|
||||
|
||||
**Required Fields:**
|
||||
|
||||
- `embedding`: Array of floating-point numbers representing the vector
|
||||
- `text`: String content associated with the embedding
|
||||
|
||||
**Optional Fields:**
|
||||
|
||||
- `id`: Unique identifier (auto-generated if missing)
|
||||
- `category`: Primary classification
|
||||
- `subcategory`: Secondary classification
|
||||
- `tags`: Array of string tags for flexible labeling
|
||||
|
||||
## Features (Initial Version)
|
||||
|
||||
- **Drag-and-drop file upload** for NDJSON embedding datasets
|
||||
- **PCA dimensionality reduction** (automatically applied)
|
||||
- **Interactive 2D/3D visualizations** with toggle between views
|
||||
- **Color coding options** by category, subcategory, or tags
|
||||
- **Point inspection** - click points to view full document content
|
||||
- **Real-time visualization** optimized for small to medium datasets
|
||||
|
||||
## Installation & Usage
|
||||
|
||||
This project uses [uv](https://docs.astral.sh/uv/) for dependency management.
|
||||
|
||||
1. **Install dependencies:**
|
||||
```bash
|
||||
uv sync
|
||||
```
|
||||
|
||||
2. **Run the application:**
|
||||
```bash
|
||||
uv run python app.py
|
||||
```
|
||||
|
||||
3. **Open your browser** to http://127.0.0.1:8050
|
||||
|
||||
4. **Test with sample data** by dragging and dropping the included `sample_data.ndjson` file
|
||||
|
||||
## Tech Stack
|
||||
|
||||
- **Python Dash**: Web application framework
|
||||
- **Plotly**: Interactive plotting and visualization
|
||||
- **scikit-learn**: PCA implementation
|
||||
- **NumPy/Pandas**: Data manipulation and analysis
|
||||
- **uv**: Modern Python package and project manager
|
Reference in New Issue
Block a user