refactor and add tests, v0.2.0
This commit is contained in:
3
src/embeddingbuddy/__init__.py
Normal file
3
src/embeddingbuddy/__init__.py
Normal file
@@ -0,0 +1,3 @@
|
||||
"""EmbeddingBuddy - Interactive exploration and visualization of embedding vectors."""
|
||||
|
||||
__version__ = "0.1.0"
|
39
src/embeddingbuddy/app.py
Normal file
39
src/embeddingbuddy/app.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import dash
|
||||
import dash_bootstrap_components as dbc
|
||||
from .config.settings import AppSettings
|
||||
from .ui.layout import AppLayout
|
||||
from .ui.callbacks.data_processing import DataProcessingCallbacks
|
||||
from .ui.callbacks.visualization import VisualizationCallbacks
|
||||
from .ui.callbacks.interactions import InteractionCallbacks
|
||||
|
||||
|
||||
def create_app():
|
||||
app = dash.Dash(
|
||||
__name__,
|
||||
external_stylesheets=[dbc.themes.BOOTSTRAP]
|
||||
)
|
||||
|
||||
layout_manager = AppLayout()
|
||||
app.layout = layout_manager.create_layout()
|
||||
|
||||
DataProcessingCallbacks()
|
||||
VisualizationCallbacks()
|
||||
InteractionCallbacks()
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def run_app(app=None, debug=None, host=None, port=None):
|
||||
if app is None:
|
||||
app = create_app()
|
||||
|
||||
app.run(
|
||||
debug=debug if debug is not None else AppSettings.DEBUG,
|
||||
host=host if host is not None else AppSettings.HOST,
|
||||
port=port if port is not None else AppSettings.PORT
|
||||
)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
app = create_app()
|
||||
run_app(app)
|
0
src/embeddingbuddy/config/__init__.py
Normal file
0
src/embeddingbuddy/config/__init__.py
Normal file
107
src/embeddingbuddy/config/settings.py
Normal file
107
src/embeddingbuddy/config/settings.py
Normal file
@@ -0,0 +1,107 @@
|
||||
from typing import Dict, Any
|
||||
import os
|
||||
|
||||
|
||||
class AppSettings:
|
||||
|
||||
# UI Configuration
|
||||
UPLOAD_STYLE = {
|
||||
'width': '100%',
|
||||
'height': '60px',
|
||||
'lineHeight': '60px',
|
||||
'borderWidth': '1px',
|
||||
'borderStyle': 'dashed',
|
||||
'borderRadius': '5px',
|
||||
'textAlign': 'center',
|
||||
'margin-bottom': '20px'
|
||||
}
|
||||
|
||||
PROMPTS_UPLOAD_STYLE = {
|
||||
**UPLOAD_STYLE,
|
||||
'borderColor': '#28a745'
|
||||
}
|
||||
|
||||
PLOT_CONFIG = {
|
||||
'responsive': True,
|
||||
'displayModeBar': True
|
||||
}
|
||||
|
||||
PLOT_STYLE = {
|
||||
'height': '85vh',
|
||||
'width': '100%'
|
||||
}
|
||||
|
||||
PLOT_LAYOUT_CONFIG = {
|
||||
'height': None,
|
||||
'autosize': True,
|
||||
'margin': dict(l=0, r=0, t=50, b=0)
|
||||
}
|
||||
|
||||
# Dimensionality Reduction Settings
|
||||
DEFAULT_N_COMPONENTS_3D = 3
|
||||
DEFAULT_N_COMPONENTS_2D = 2
|
||||
DEFAULT_RANDOM_STATE = 42
|
||||
|
||||
# Available Methods
|
||||
REDUCTION_METHODS = [
|
||||
{'label': 'PCA', 'value': 'pca'},
|
||||
{'label': 't-SNE', 'value': 'tsne'},
|
||||
{'label': 'UMAP', 'value': 'umap'}
|
||||
]
|
||||
|
||||
COLOR_OPTIONS = [
|
||||
{'label': 'Category', 'value': 'category'},
|
||||
{'label': 'Subcategory', 'value': 'subcategory'},
|
||||
{'label': 'Tags', 'value': 'tags'}
|
||||
]
|
||||
|
||||
DIMENSION_OPTIONS = [
|
||||
{'label': '2D', 'value': '2d'},
|
||||
{'label': '3D', 'value': '3d'}
|
||||
]
|
||||
|
||||
# Default Values
|
||||
DEFAULT_METHOD = 'pca'
|
||||
DEFAULT_COLOR_BY = 'category'
|
||||
DEFAULT_DIMENSIONS = '3d'
|
||||
DEFAULT_SHOW_PROMPTS = ['show']
|
||||
|
||||
# Plot Marker Settings
|
||||
DOCUMENT_MARKER_SIZE_2D = 8
|
||||
DOCUMENT_MARKER_SIZE_3D = 5
|
||||
PROMPT_MARKER_SIZE_2D = 10
|
||||
PROMPT_MARKER_SIZE_3D = 6
|
||||
|
||||
DOCUMENT_MARKER_SYMBOL = 'circle'
|
||||
PROMPT_MARKER_SYMBOL = 'diamond'
|
||||
|
||||
DOCUMENT_OPACITY = 1.0
|
||||
PROMPT_OPACITY = 0.8
|
||||
|
||||
# Text Processing
|
||||
TEXT_PREVIEW_LENGTH = 100
|
||||
|
||||
# App Configuration
|
||||
DEBUG = os.getenv('EMBEDDINGBUDDY_DEBUG', 'True').lower() == 'true'
|
||||
HOST = os.getenv('EMBEDDINGBUDDY_HOST', '127.0.0.1')
|
||||
PORT = int(os.getenv('EMBEDDINGBUDDY_PORT', '8050'))
|
||||
|
||||
# Bootstrap Theme
|
||||
EXTERNAL_STYLESHEETS = ['https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css']
|
||||
|
||||
@classmethod
|
||||
def get_plot_marker_config(cls, dimensions: str, is_prompt: bool = False) -> Dict[str, Any]:
|
||||
if is_prompt:
|
||||
size = cls.PROMPT_MARKER_SIZE_3D if dimensions == '3d' else cls.PROMPT_MARKER_SIZE_2D
|
||||
symbol = cls.PROMPT_MARKER_SYMBOL
|
||||
opacity = cls.PROMPT_OPACITY
|
||||
else:
|
||||
size = cls.DOCUMENT_MARKER_SIZE_3D if dimensions == '3d' else cls.DOCUMENT_MARKER_SIZE_2D
|
||||
symbol = cls.DOCUMENT_MARKER_SYMBOL
|
||||
opacity = cls.DOCUMENT_OPACITY
|
||||
|
||||
return {
|
||||
'size': size,
|
||||
'symbol': symbol,
|
||||
'opacity': opacity
|
||||
}
|
0
src/embeddingbuddy/data/__init__.py
Normal file
0
src/embeddingbuddy/data/__init__.py
Normal file
39
src/embeddingbuddy/data/parser.py
Normal file
39
src/embeddingbuddy/data/parser.py
Normal file
@@ -0,0 +1,39 @@
|
||||
import json
|
||||
import uuid
|
||||
import base64
|
||||
from typing import List, Union
|
||||
from ..models.schemas import Document, ProcessedData
|
||||
|
||||
|
||||
class NDJSONParser:
|
||||
|
||||
@staticmethod
|
||||
def parse_upload_contents(contents: str) -> List[Document]:
|
||||
content_type, content_string = contents.split(',')
|
||||
decoded = base64.b64decode(content_string)
|
||||
text_content = decoded.decode('utf-8')
|
||||
return NDJSONParser.parse_text(text_content)
|
||||
|
||||
@staticmethod
|
||||
def parse_text(text_content: str) -> List[Document]:
|
||||
documents = []
|
||||
for line in text_content.strip().split('\n'):
|
||||
if line.strip():
|
||||
doc_dict = json.loads(line)
|
||||
doc = NDJSONParser._dict_to_document(doc_dict)
|
||||
documents.append(doc)
|
||||
return documents
|
||||
|
||||
@staticmethod
|
||||
def _dict_to_document(doc_dict: dict) -> Document:
|
||||
if 'id' not in doc_dict:
|
||||
doc_dict['id'] = str(uuid.uuid4())
|
||||
|
||||
return Document(
|
||||
id=doc_dict['id'],
|
||||
text=doc_dict['text'],
|
||||
embedding=doc_dict['embedding'],
|
||||
category=doc_dict.get('category'),
|
||||
subcategory=doc_dict.get('subcategory'),
|
||||
tags=doc_dict.get('tags')
|
||||
)
|
54
src/embeddingbuddy/data/processor.py
Normal file
54
src/embeddingbuddy/data/processor.py
Normal file
@@ -0,0 +1,54 @@
|
||||
import numpy as np
|
||||
from typing import List, Optional, Tuple
|
||||
from ..models.schemas import Document, ProcessedData
|
||||
from .parser import NDJSONParser
|
||||
|
||||
|
||||
class DataProcessor:
|
||||
|
||||
def __init__(self):
|
||||
self.parser = NDJSONParser()
|
||||
|
||||
def process_upload(self, contents: str, filename: Optional[str] = None) -> ProcessedData:
|
||||
try:
|
||||
documents = self.parser.parse_upload_contents(contents)
|
||||
embeddings = self._extract_embeddings(documents)
|
||||
return ProcessedData(documents=documents, embeddings=embeddings)
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
def process_text(self, text_content: str) -> ProcessedData:
|
||||
try:
|
||||
documents = self.parser.parse_text(text_content)
|
||||
embeddings = self._extract_embeddings(documents)
|
||||
return ProcessedData(documents=documents, embeddings=embeddings)
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
def _extract_embeddings(self, documents: List[Document]) -> np.ndarray:
|
||||
if not documents:
|
||||
return np.array([])
|
||||
return np.array([doc.embedding for doc in documents])
|
||||
|
||||
def combine_data(self, doc_data: ProcessedData, prompt_data: Optional[ProcessedData] = None) -> Tuple[np.ndarray, List[Document], Optional[List[Document]]]:
|
||||
if not doc_data or doc_data.error:
|
||||
raise ValueError("Invalid document data")
|
||||
|
||||
all_embeddings = doc_data.embeddings
|
||||
documents = doc_data.documents
|
||||
prompts = None
|
||||
|
||||
if prompt_data and not prompt_data.error and prompt_data.documents:
|
||||
all_embeddings = np.vstack([doc_data.embeddings, prompt_data.embeddings])
|
||||
prompts = prompt_data.documents
|
||||
|
||||
return all_embeddings, documents, prompts
|
||||
|
||||
def split_reduced_data(self, reduced_embeddings: np.ndarray, n_documents: int, n_prompts: int = 0) -> Tuple[np.ndarray, Optional[np.ndarray]]:
|
||||
doc_reduced = reduced_embeddings[:n_documents]
|
||||
prompt_reduced = None
|
||||
|
||||
if n_prompts > 0:
|
||||
prompt_reduced = reduced_embeddings[n_documents:n_documents + n_prompts]
|
||||
|
||||
return doc_reduced, prompt_reduced
|
0
src/embeddingbuddy/models/__init__.py
Normal file
0
src/embeddingbuddy/models/__init__.py
Normal file
95
src/embeddingbuddy/models/reducers.py
Normal file
95
src/embeddingbuddy/models/reducers.py
Normal file
@@ -0,0 +1,95 @@
|
||||
from abc import ABC, abstractmethod
|
||||
import numpy as np
|
||||
from typing import Optional, Tuple
|
||||
from sklearn.decomposition import PCA
|
||||
import umap
|
||||
from openTSNE import TSNE
|
||||
from .schemas import ReducedData
|
||||
|
||||
|
||||
class DimensionalityReducer(ABC):
|
||||
|
||||
def __init__(self, n_components: int = 3, random_state: int = 42):
|
||||
self.n_components = n_components
|
||||
self.random_state = random_state
|
||||
self._reducer = None
|
||||
|
||||
@abstractmethod
|
||||
def fit_transform(self, embeddings: np.ndarray) -> ReducedData:
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def get_method_name(self) -> str:
|
||||
pass
|
||||
|
||||
|
||||
class PCAReducer(DimensionalityReducer):
|
||||
|
||||
def fit_transform(self, embeddings: np.ndarray) -> ReducedData:
|
||||
self._reducer = PCA(n_components=self.n_components)
|
||||
reduced = self._reducer.fit_transform(embeddings)
|
||||
variance_explained = self._reducer.explained_variance_ratio_
|
||||
|
||||
return ReducedData(
|
||||
reduced_embeddings=reduced,
|
||||
variance_explained=variance_explained,
|
||||
method=self.get_method_name(),
|
||||
n_components=self.n_components
|
||||
)
|
||||
|
||||
def get_method_name(self) -> str:
|
||||
return "PCA"
|
||||
|
||||
|
||||
class TSNEReducer(DimensionalityReducer):
|
||||
|
||||
def fit_transform(self, embeddings: np.ndarray) -> ReducedData:
|
||||
self._reducer = TSNE(n_components=self.n_components, random_state=self.random_state)
|
||||
reduced = self._reducer.fit(embeddings)
|
||||
|
||||
return ReducedData(
|
||||
reduced_embeddings=reduced,
|
||||
variance_explained=None,
|
||||
method=self.get_method_name(),
|
||||
n_components=self.n_components
|
||||
)
|
||||
|
||||
def get_method_name(self) -> str:
|
||||
return "t-SNE"
|
||||
|
||||
|
||||
class UMAPReducer(DimensionalityReducer):
|
||||
|
||||
def fit_transform(self, embeddings: np.ndarray) -> ReducedData:
|
||||
self._reducer = umap.UMAP(n_components=self.n_components, random_state=self.random_state)
|
||||
reduced = self._reducer.fit_transform(embeddings)
|
||||
|
||||
return ReducedData(
|
||||
reduced_embeddings=reduced,
|
||||
variance_explained=None,
|
||||
method=self.get_method_name(),
|
||||
n_components=self.n_components
|
||||
)
|
||||
|
||||
def get_method_name(self) -> str:
|
||||
return "UMAP"
|
||||
|
||||
|
||||
class ReducerFactory:
|
||||
|
||||
@staticmethod
|
||||
def create_reducer(method: str, n_components: int = 3, random_state: int = 42) -> DimensionalityReducer:
|
||||
method_lower = method.lower()
|
||||
|
||||
if method_lower == 'pca':
|
||||
return PCAReducer(n_components=n_components, random_state=random_state)
|
||||
elif method_lower == 'tsne':
|
||||
return TSNEReducer(n_components=n_components, random_state=random_state)
|
||||
elif method_lower == 'umap':
|
||||
return UMAPReducer(n_components=n_components, random_state=random_state)
|
||||
else:
|
||||
raise ValueError(f"Unknown reduction method: {method}")
|
||||
|
||||
@staticmethod
|
||||
def get_available_methods() -> list:
|
||||
return ['pca', 'tsne', 'umap']
|
58
src/embeddingbuddy/models/schemas.py
Normal file
58
src/embeddingbuddy/models/schemas.py
Normal file
@@ -0,0 +1,58 @@
|
||||
from typing import List, Optional, Any, Dict
|
||||
from dataclasses import dataclass
|
||||
import numpy as np
|
||||
|
||||
|
||||
@dataclass
|
||||
class Document:
|
||||
id: str
|
||||
text: str
|
||||
embedding: List[float]
|
||||
category: Optional[str] = None
|
||||
subcategory: Optional[str] = None
|
||||
tags: Optional[List[str]] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.tags is None:
|
||||
self.tags = []
|
||||
if self.category is None:
|
||||
self.category = "Unknown"
|
||||
if self.subcategory is None:
|
||||
self.subcategory = "Unknown"
|
||||
|
||||
|
||||
@dataclass
|
||||
class ProcessedData:
|
||||
documents: List[Document]
|
||||
embeddings: np.ndarray
|
||||
error: Optional[str] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if self.embeddings is not None and not isinstance(self.embeddings, np.ndarray):
|
||||
self.embeddings = np.array(self.embeddings)
|
||||
|
||||
|
||||
@dataclass
|
||||
class ReducedData:
|
||||
reduced_embeddings: np.ndarray
|
||||
variance_explained: Optional[np.ndarray] = None
|
||||
method: str = "unknown"
|
||||
n_components: int = 2
|
||||
|
||||
def __post_init__(self):
|
||||
if not isinstance(self.reduced_embeddings, np.ndarray):
|
||||
self.reduced_embeddings = np.array(self.reduced_embeddings)
|
||||
|
||||
|
||||
@dataclass
|
||||
class PlotData:
|
||||
documents: List[Document]
|
||||
coordinates: np.ndarray
|
||||
prompts: Optional[List[Document]] = None
|
||||
prompt_coordinates: Optional[np.ndarray] = None
|
||||
|
||||
def __post_init__(self):
|
||||
if not isinstance(self.coordinates, np.ndarray):
|
||||
self.coordinates = np.array(self.coordinates)
|
||||
if self.prompt_coordinates is not None and not isinstance(self.prompt_coordinates, np.ndarray):
|
||||
self.prompt_coordinates = np.array(self.prompt_coordinates)
|
0
src/embeddingbuddy/ui/__init__.py
Normal file
0
src/embeddingbuddy/ui/__init__.py
Normal file
0
src/embeddingbuddy/ui/callbacks/__init__.py
Normal file
0
src/embeddingbuddy/ui/callbacks/__init__.py
Normal file
61
src/embeddingbuddy/ui/callbacks/data_processing.py
Normal file
61
src/embeddingbuddy/ui/callbacks/data_processing.py
Normal file
@@ -0,0 +1,61 @@
|
||||
import numpy as np
|
||||
from dash import callback, Input, Output, State
|
||||
from ...data.processor import DataProcessor
|
||||
|
||||
|
||||
class DataProcessingCallbacks:
|
||||
|
||||
def __init__(self):
|
||||
self.processor = DataProcessor()
|
||||
self._register_callbacks()
|
||||
|
||||
def _register_callbacks(self):
|
||||
|
||||
@callback(
|
||||
Output('processed-data', 'data'),
|
||||
Input('upload-data', 'contents'),
|
||||
State('upload-data', 'filename')
|
||||
)
|
||||
def process_uploaded_file(contents, filename):
|
||||
if contents is None:
|
||||
return None
|
||||
|
||||
processed_data = self.processor.process_upload(contents, filename)
|
||||
|
||||
if processed_data.error:
|
||||
return {'error': processed_data.error}
|
||||
|
||||
return {
|
||||
'documents': [self._document_to_dict(doc) for doc in processed_data.documents],
|
||||
'embeddings': processed_data.embeddings.tolist()
|
||||
}
|
||||
|
||||
@callback(
|
||||
Output('processed-prompts', 'data'),
|
||||
Input('upload-prompts', 'contents'),
|
||||
State('upload-prompts', 'filename')
|
||||
)
|
||||
def process_uploaded_prompts(contents, filename):
|
||||
if contents is None:
|
||||
return None
|
||||
|
||||
processed_data = self.processor.process_upload(contents, filename)
|
||||
|
||||
if processed_data.error:
|
||||
return {'error': processed_data.error}
|
||||
|
||||
return {
|
||||
'prompts': [self._document_to_dict(doc) for doc in processed_data.documents],
|
||||
'embeddings': processed_data.embeddings.tolist()
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _document_to_dict(doc):
|
||||
return {
|
||||
'id': doc.id,
|
||||
'text': doc.text,
|
||||
'embedding': doc.embedding,
|
||||
'category': doc.category,
|
||||
'subcategory': doc.subcategory,
|
||||
'tags': doc.tags
|
||||
}
|
66
src/embeddingbuddy/ui/callbacks/interactions.py
Normal file
66
src/embeddingbuddy/ui/callbacks/interactions.py
Normal file
@@ -0,0 +1,66 @@
|
||||
import dash
|
||||
from dash import callback, Input, Output, State, html
|
||||
import dash_bootstrap_components as dbc
|
||||
|
||||
|
||||
class InteractionCallbacks:
|
||||
|
||||
def __init__(self):
|
||||
self._register_callbacks()
|
||||
|
||||
def _register_callbacks(self):
|
||||
|
||||
@callback(
|
||||
Output('point-details', 'children'),
|
||||
Input('embedding-plot', 'clickData'),
|
||||
[State('processed-data', 'data'),
|
||||
State('processed-prompts', 'data')]
|
||||
)
|
||||
def display_click_data(clickData, data, prompts_data):
|
||||
if not clickData or not data:
|
||||
return "Click on a point to see details"
|
||||
|
||||
point_data = clickData['points'][0]
|
||||
trace_name = point_data.get('fullData', {}).get('name', 'Documents')
|
||||
|
||||
if 'pointIndex' in point_data:
|
||||
point_index = point_data['pointIndex']
|
||||
elif 'pointNumber' in point_data:
|
||||
point_index = point_data['pointNumber']
|
||||
else:
|
||||
return "Could not identify clicked point"
|
||||
|
||||
if trace_name.startswith('Prompts') and prompts_data and 'prompts' in prompts_data:
|
||||
item = prompts_data['prompts'][point_index]
|
||||
item_type = 'Prompt'
|
||||
else:
|
||||
item = data['documents'][point_index]
|
||||
item_type = 'Document'
|
||||
|
||||
return self._create_detail_card(item, item_type)
|
||||
|
||||
@callback(
|
||||
[Output('processed-data', 'data', allow_duplicate=True),
|
||||
Output('processed-prompts', 'data', allow_duplicate=True),
|
||||
Output('point-details', 'children', allow_duplicate=True)],
|
||||
Input('reset-button', 'n_clicks'),
|
||||
prevent_initial_call=True
|
||||
)
|
||||
def reset_data(n_clicks):
|
||||
if n_clicks is None or n_clicks == 0:
|
||||
return dash.no_update, dash.no_update, dash.no_update
|
||||
|
||||
return None, None, "Click on a point to see details"
|
||||
|
||||
@staticmethod
|
||||
def _create_detail_card(item, item_type):
|
||||
return dbc.Card([
|
||||
dbc.CardBody([
|
||||
html.H5(f"{item_type}: {item['id']}", className="card-title"),
|
||||
html.P(f"Text: {item['text']}", className="card-text"),
|
||||
html.P(f"Category: {item.get('category', 'Unknown')}", className="card-text"),
|
||||
html.P(f"Subcategory: {item.get('subcategory', 'Unknown')}", className="card-text"),
|
||||
html.P(f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}", className="card-text"),
|
||||
html.P(f"Type: {item_type}", className="card-text text-muted")
|
||||
])
|
||||
])
|
87
src/embeddingbuddy/ui/callbacks/visualization.py
Normal file
87
src/embeddingbuddy/ui/callbacks/visualization.py
Normal file
@@ -0,0 +1,87 @@
|
||||
import numpy as np
|
||||
from dash import callback, Input, Output
|
||||
import plotly.graph_objects as go
|
||||
from ...models.reducers import ReducerFactory
|
||||
from ...models.schemas import Document, PlotData
|
||||
from ...visualization.plots import PlotFactory
|
||||
|
||||
|
||||
class VisualizationCallbacks:
|
||||
|
||||
def __init__(self):
|
||||
self.plot_factory = PlotFactory()
|
||||
self._register_callbacks()
|
||||
|
||||
def _register_callbacks(self):
|
||||
|
||||
@callback(
|
||||
Output('embedding-plot', 'figure'),
|
||||
[Input('processed-data', 'data'),
|
||||
Input('processed-prompts', 'data'),
|
||||
Input('method-dropdown', 'value'),
|
||||
Input('color-dropdown', 'value'),
|
||||
Input('dimension-toggle', 'value'),
|
||||
Input('show-prompts-toggle', 'value')]
|
||||
)
|
||||
def update_plot(data, prompts_data, method, color_by, dimensions, show_prompts):
|
||||
if not data or 'error' in data:
|
||||
return go.Figure().add_annotation(
|
||||
text="Upload a valid NDJSON file to see visualization",
|
||||
xref="paper", yref="paper",
|
||||
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
||||
showarrow=False, font=dict(size=16)
|
||||
)
|
||||
|
||||
try:
|
||||
doc_embeddings = np.array(data['embeddings'])
|
||||
all_embeddings = doc_embeddings
|
||||
has_prompts = prompts_data and 'error' not in prompts_data and prompts_data.get('prompts')
|
||||
|
||||
if has_prompts:
|
||||
prompt_embeddings = np.array(prompts_data['embeddings'])
|
||||
all_embeddings = np.vstack([doc_embeddings, prompt_embeddings])
|
||||
|
||||
n_components = 3 if dimensions == '3d' else 2
|
||||
|
||||
reducer = ReducerFactory.create_reducer(method, n_components=n_components)
|
||||
reduced_data = reducer.fit_transform(all_embeddings)
|
||||
|
||||
doc_reduced = reduced_data.reduced_embeddings[:len(doc_embeddings)]
|
||||
prompt_reduced = None
|
||||
if has_prompts:
|
||||
prompt_reduced = reduced_data.reduced_embeddings[len(doc_embeddings):]
|
||||
|
||||
documents = [self._dict_to_document(doc) for doc in data['documents']]
|
||||
prompts = None
|
||||
if has_prompts:
|
||||
prompts = [self._dict_to_document(prompt) for prompt in prompts_data['prompts']]
|
||||
|
||||
plot_data = PlotData(
|
||||
documents=documents,
|
||||
coordinates=doc_reduced,
|
||||
prompts=prompts,
|
||||
prompt_coordinates=prompt_reduced
|
||||
)
|
||||
|
||||
return self.plot_factory.create_plot(
|
||||
plot_data, dimensions, color_by, reduced_data.method, show_prompts
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
return go.Figure().add_annotation(
|
||||
text=f"Error creating visualization: {str(e)}",
|
||||
xref="paper", yref="paper",
|
||||
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
||||
showarrow=False, font=dict(size=16)
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _dict_to_document(doc_dict):
|
||||
return Document(
|
||||
id=doc_dict['id'],
|
||||
text=doc_dict['text'],
|
||||
embedding=doc_dict['embedding'],
|
||||
category=doc_dict.get('category'),
|
||||
subcategory=doc_dict.get('subcategory'),
|
||||
tags=doc_dict.get('tags', [])
|
||||
)
|
0
src/embeddingbuddy/ui/components/__init__.py
Normal file
0
src/embeddingbuddy/ui/components/__init__.py
Normal file
82
src/embeddingbuddy/ui/components/sidebar.py
Normal file
82
src/embeddingbuddy/ui/components/sidebar.py
Normal file
@@ -0,0 +1,82 @@
|
||||
from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .upload import UploadComponent
|
||||
|
||||
|
||||
class SidebarComponent:
|
||||
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
|
||||
def create_layout(self):
|
||||
return dbc.Col([
|
||||
html.H5("Upload Data", className="mb-3"),
|
||||
self.upload_component.create_data_upload(),
|
||||
self.upload_component.create_prompts_upload(),
|
||||
self.upload_component.create_reset_button(),
|
||||
|
||||
html.H5("Visualization Controls", className="mb-3"),
|
||||
self._create_method_dropdown(),
|
||||
self._create_color_dropdown(),
|
||||
self._create_dimension_toggle(),
|
||||
self._create_prompts_toggle(),
|
||||
|
||||
html.H5("Point Details", className="mb-3"),
|
||||
html.Div(id='point-details', children="Click on a point to see details")
|
||||
|
||||
], width=3, style={'padding-right': '20px'})
|
||||
|
||||
def _create_method_dropdown(self):
|
||||
return [
|
||||
dbc.Label("Method:"),
|
||||
dcc.Dropdown(
|
||||
id='method-dropdown',
|
||||
options=[
|
||||
{'label': 'PCA', 'value': 'pca'},
|
||||
{'label': 't-SNE', 'value': 'tsne'},
|
||||
{'label': 'UMAP', 'value': 'umap'}
|
||||
],
|
||||
value='pca',
|
||||
style={'margin-bottom': '15px'}
|
||||
)
|
||||
]
|
||||
|
||||
def _create_color_dropdown(self):
|
||||
return [
|
||||
dbc.Label("Color by:"),
|
||||
dcc.Dropdown(
|
||||
id='color-dropdown',
|
||||
options=[
|
||||
{'label': 'Category', 'value': 'category'},
|
||||
{'label': 'Subcategory', 'value': 'subcategory'},
|
||||
{'label': 'Tags', 'value': 'tags'}
|
||||
],
|
||||
value='category',
|
||||
style={'margin-bottom': '15px'}
|
||||
)
|
||||
]
|
||||
|
||||
def _create_dimension_toggle(self):
|
||||
return [
|
||||
dbc.Label("Dimensions:"),
|
||||
dcc.RadioItems(
|
||||
id='dimension-toggle',
|
||||
options=[
|
||||
{'label': '2D', 'value': '2d'},
|
||||
{'label': '3D', 'value': '3d'}
|
||||
],
|
||||
value='3d',
|
||||
style={'margin-bottom': '20px'}
|
||||
)
|
||||
]
|
||||
|
||||
def _create_prompts_toggle(self):
|
||||
return [
|
||||
dbc.Label("Show Prompts:"),
|
||||
dcc.Checklist(
|
||||
id='show-prompts-toggle',
|
||||
options=[{'label': 'Show prompts on plot', 'value': 'show'}],
|
||||
value=['show'],
|
||||
style={'margin-bottom': '20px'}
|
||||
)
|
||||
]
|
60
src/embeddingbuddy/ui/components/upload.py
Normal file
60
src/embeddingbuddy/ui/components/upload.py
Normal file
@@ -0,0 +1,60 @@
|
||||
from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
|
||||
|
||||
class UploadComponent:
|
||||
|
||||
@staticmethod
|
||||
def create_data_upload():
|
||||
return dcc.Upload(
|
||||
id='upload-data',
|
||||
children=html.Div([
|
||||
'Drag and Drop or ',
|
||||
html.A('Select Files')
|
||||
]),
|
||||
style={
|
||||
'width': '100%',
|
||||
'height': '60px',
|
||||
'lineHeight': '60px',
|
||||
'borderWidth': '1px',
|
||||
'borderStyle': 'dashed',
|
||||
'borderRadius': '5px',
|
||||
'textAlign': 'center',
|
||||
'margin-bottom': '20px'
|
||||
},
|
||||
multiple=False
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def create_prompts_upload():
|
||||
return dcc.Upload(
|
||||
id='upload-prompts',
|
||||
children=html.Div([
|
||||
'Drag and Drop Prompts or ',
|
||||
html.A('Select Files')
|
||||
]),
|
||||
style={
|
||||
'width': '100%',
|
||||
'height': '60px',
|
||||
'lineHeight': '60px',
|
||||
'borderWidth': '1px',
|
||||
'borderStyle': 'dashed',
|
||||
'borderRadius': '5px',
|
||||
'textAlign': 'center',
|
||||
'margin-bottom': '20px',
|
||||
'borderColor': '#28a745'
|
||||
},
|
||||
multiple=False
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def create_reset_button():
|
||||
return dbc.Button(
|
||||
"Reset All Data",
|
||||
id='reset-button',
|
||||
color='danger',
|
||||
outline=True,
|
||||
size='sm',
|
||||
className='mb-3',
|
||||
style={'width': '100%'}
|
||||
)
|
44
src/embeddingbuddy/ui/layout.py
Normal file
44
src/embeddingbuddy/ui/layout.py
Normal file
@@ -0,0 +1,44 @@
|
||||
from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .components.sidebar import SidebarComponent
|
||||
|
||||
|
||||
class AppLayout:
|
||||
|
||||
def __init__(self):
|
||||
self.sidebar = SidebarComponent()
|
||||
|
||||
def create_layout(self):
|
||||
return dbc.Container([
|
||||
self._create_header(),
|
||||
self._create_main_content(),
|
||||
self._create_stores()
|
||||
], fluid=True)
|
||||
|
||||
def _create_header(self):
|
||||
return dbc.Row([
|
||||
dbc.Col([
|
||||
html.H1("EmbeddingBuddy", className="text-center mb-4"),
|
||||
], width=12)
|
||||
])
|
||||
|
||||
def _create_main_content(self):
|
||||
return dbc.Row([
|
||||
self.sidebar.create_layout(),
|
||||
self._create_visualization_area()
|
||||
])
|
||||
|
||||
def _create_visualization_area(self):
|
||||
return dbc.Col([
|
||||
dcc.Graph(
|
||||
id='embedding-plot',
|
||||
style={'height': '85vh', 'width': '100%'},
|
||||
config={'responsive': True, 'displayModeBar': True}
|
||||
)
|
||||
], width=9)
|
||||
|
||||
def _create_stores(self):
|
||||
return [
|
||||
dcc.Store(id='processed-data'),
|
||||
dcc.Store(id='processed-prompts')
|
||||
]
|
0
src/embeddingbuddy/utils/__init__.py
Normal file
0
src/embeddingbuddy/utils/__init__.py
Normal file
0
src/embeddingbuddy/visualization/__init__.py
Normal file
0
src/embeddingbuddy/visualization/__init__.py
Normal file
33
src/embeddingbuddy/visualization/colors.py
Normal file
33
src/embeddingbuddy/visualization/colors.py
Normal file
@@ -0,0 +1,33 @@
|
||||
from typing import List, Dict, Any
|
||||
import plotly.colors as pc
|
||||
from ..models.schemas import Document
|
||||
|
||||
|
||||
class ColorMapper:
|
||||
|
||||
@staticmethod
|
||||
def create_color_mapping(documents: List[Document], color_by: str) -> List[str]:
|
||||
if color_by == 'category':
|
||||
return [doc.category for doc in documents]
|
||||
elif color_by == 'subcategory':
|
||||
return [doc.subcategory for doc in documents]
|
||||
elif color_by == 'tags':
|
||||
return [', '.join(doc.tags) if doc.tags else 'No tags' for doc in documents]
|
||||
else:
|
||||
return ['All'] * len(documents)
|
||||
|
||||
@staticmethod
|
||||
def to_grayscale_hex(color_str: str) -> str:
|
||||
try:
|
||||
if color_str.startswith('#'):
|
||||
rgb = tuple(int(color_str[i:i+2], 16) for i in (1, 3, 5))
|
||||
else:
|
||||
rgb = pc.hex_to_rgb(pc.convert_colors_to_same_type([color_str], colortype='hex')[0][0])
|
||||
|
||||
gray_value = int(0.299 * rgb[0] + 0.587 * rgb[1] + 0.114 * rgb[2])
|
||||
gray_rgb = (gray_value * 0.7 + rgb[0] * 0.3,
|
||||
gray_value * 0.7 + rgb[1] * 0.3,
|
||||
gray_value * 0.7 + rgb[2] * 0.3)
|
||||
return f'rgb({int(gray_rgb[0])},{int(gray_rgb[1])},{int(gray_rgb[2])})'
|
||||
except:
|
||||
return 'rgb(128,128,128)'
|
145
src/embeddingbuddy/visualization/plots.py
Normal file
145
src/embeddingbuddy/visualization/plots.py
Normal file
@@ -0,0 +1,145 @@
|
||||
import pandas as pd
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
from typing import List, Optional
|
||||
from ..models.schemas import Document, PlotData
|
||||
from .colors import ColorMapper
|
||||
|
||||
|
||||
class PlotFactory:
|
||||
|
||||
def __init__(self):
|
||||
self.color_mapper = ColorMapper()
|
||||
|
||||
def create_plot(self, plot_data: PlotData, dimensions: str = '3d',
|
||||
color_by: str = 'category', method: str = 'PCA',
|
||||
show_prompts: Optional[List[str]] = None) -> go.Figure:
|
||||
|
||||
if plot_data.prompts and show_prompts and 'show' in show_prompts:
|
||||
return self._create_dual_plot(plot_data, dimensions, color_by, method)
|
||||
else:
|
||||
return self._create_single_plot(plot_data, dimensions, color_by, method)
|
||||
|
||||
def _create_single_plot(self, plot_data: PlotData, dimensions: str,
|
||||
color_by: str, method: str) -> go.Figure:
|
||||
df = self._prepare_dataframe(plot_data.documents, plot_data.coordinates, dimensions)
|
||||
color_values = self.color_mapper.create_color_mapping(plot_data.documents, color_by)
|
||||
|
||||
hover_fields = ['id', 'text_preview', 'category', 'subcategory', 'tags_str']
|
||||
|
||||
if dimensions == '3d':
|
||||
fig = px.scatter_3d(
|
||||
df, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f'3D Embedding Visualization - {method} (colored by {color_by})'
|
||||
)
|
||||
fig.update_traces(marker=dict(size=5))
|
||||
else:
|
||||
fig = px.scatter(
|
||||
df, x='dim_1', y='dim_2',
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f'2D Embedding Visualization - {method} (colored by {color_by})'
|
||||
)
|
||||
fig.update_traces(marker=dict(size=8))
|
||||
|
||||
fig.update_layout(
|
||||
height=None,
|
||||
autosize=True,
|
||||
margin=dict(l=0, r=0, t=50, b=0)
|
||||
)
|
||||
return fig
|
||||
|
||||
def _create_dual_plot(self, plot_data: PlotData, dimensions: str,
|
||||
color_by: str, method: str) -> go.Figure:
|
||||
fig = go.Figure()
|
||||
|
||||
doc_df = self._prepare_dataframe(plot_data.documents, plot_data.coordinates, dimensions)
|
||||
doc_color_values = self.color_mapper.create_color_mapping(plot_data.documents, color_by)
|
||||
|
||||
hover_fields = ['id', 'text_preview', 'category', 'subcategory', 'tags_str']
|
||||
|
||||
if dimensions == '3d':
|
||||
doc_fig = px.scatter_3d(
|
||||
doc_df, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
else:
|
||||
doc_fig = px.scatter(
|
||||
doc_df, x='dim_1', y='dim_2',
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
|
||||
for trace in doc_fig.data:
|
||||
trace.name = f'Documents - {trace.name}'
|
||||
if dimensions == '3d':
|
||||
trace.marker.size = 5
|
||||
trace.marker.symbol = 'circle'
|
||||
else:
|
||||
trace.marker.size = 8
|
||||
trace.marker.symbol = 'circle'
|
||||
trace.marker.opacity = 1.0
|
||||
fig.add_trace(trace)
|
||||
|
||||
if plot_data.prompts and plot_data.prompt_coordinates is not None:
|
||||
prompt_df = self._prepare_dataframe(plot_data.prompts, plot_data.prompt_coordinates, dimensions)
|
||||
prompt_color_values = self.color_mapper.create_color_mapping(plot_data.prompts, color_by)
|
||||
|
||||
if dimensions == '3d':
|
||||
prompt_fig = px.scatter_3d(
|
||||
prompt_df, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
else:
|
||||
prompt_fig = px.scatter(
|
||||
prompt_df, x='dim_1', y='dim_2',
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
|
||||
for trace in prompt_fig.data:
|
||||
if hasattr(trace.marker, 'color') and isinstance(trace.marker.color, str):
|
||||
trace.marker.color = self.color_mapper.to_grayscale_hex(trace.marker.color)
|
||||
|
||||
trace.name = f'Prompts - {trace.name}'
|
||||
if dimensions == '3d':
|
||||
trace.marker.size = 6
|
||||
trace.marker.symbol = 'diamond'
|
||||
else:
|
||||
trace.marker.size = 10
|
||||
trace.marker.symbol = 'diamond'
|
||||
trace.marker.opacity = 0.8
|
||||
fig.add_trace(trace)
|
||||
|
||||
title = f'{dimensions.upper()} Embedding Visualization - {method} (colored by {color_by})'
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=None,
|
||||
autosize=True,
|
||||
margin=dict(l=0, r=0, t=50, b=0)
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
def _prepare_dataframe(self, documents: List[Document], coordinates, dimensions: str) -> pd.DataFrame:
|
||||
df_data = []
|
||||
for i, doc in enumerate(documents):
|
||||
row = {
|
||||
'id': doc.id,
|
||||
'text': doc.text,
|
||||
'text_preview': doc.text[:100] + "..." if len(doc.text) > 100 else doc.text,
|
||||
'category': doc.category,
|
||||
'subcategory': doc.subcategory,
|
||||
'tags_str': ', '.join(doc.tags) if doc.tags else 'None',
|
||||
'dim_1': coordinates[i, 0],
|
||||
'dim_2': coordinates[i, 1],
|
||||
}
|
||||
if dimensions == '3d':
|
||||
row['dim_3'] = coordinates[i, 2]
|
||||
df_data.append(row)
|
||||
|
||||
return pd.DataFrame(df_data)
|
Reference in New Issue
Block a user