this will load data from Opensearch.

it doesn't have prompts as well
This commit is contained in:
2025-08-14 13:49:46 -07:00
parent a2adc8b958
commit 9cf2f0e6fa
16 changed files with 1694 additions and 7 deletions

View File

@@ -9,6 +9,9 @@ from .ui.callbacks.interactions import InteractionCallbacks
def create_app():
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# Allow callbacks to components that are dynamically created in tabs
app.config.suppress_callback_exceptions = True
layout_manager = AppLayout()
app.layout = layout_manager.create_layout()

View File

@@ -73,6 +73,12 @@ class AppSettings:
HOST = os.getenv("EMBEDDINGBUDDY_HOST", "127.0.0.1")
PORT = int(os.getenv("EMBEDDINGBUDDY_PORT", "8050"))
# OpenSearch Configuration
OPENSEARCH_DEFAULT_SIZE = 100
OPENSEARCH_SAMPLE_SIZE = 5
OPENSEARCH_CONNECTION_TIMEOUT = 30
OPENSEARCH_VERIFY_CERTS = True
# Bootstrap Theme
EXTERNAL_STYLESHEETS = [
"https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"

View File

@@ -1,6 +1,7 @@
import numpy as np
from typing import List, Optional, Tuple
from ..models.schemas import Document, ProcessedData
from ..models.field_mapper import FieldMapper
from .parser import NDJSONParser
@@ -26,6 +27,42 @@ class DataProcessor:
except Exception as e:
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
def process_opensearch_data(
self, raw_documents: List[dict], field_mapping
) -> ProcessedData:
"""Process raw OpenSearch documents using field mapping."""
try:
# Transform documents using field mapping
transformed_docs = FieldMapper.transform_documents(
raw_documents, field_mapping
)
# Parse transformed documents
documents = []
for doc_dict in transformed_docs:
try:
# Ensure required fields are present with defaults if needed
if "id" not in doc_dict or not doc_dict["id"]:
doc_dict["id"] = f"doc_{len(documents)}"
doc = Document(**doc_dict)
documents.append(doc)
except Exception:
continue # Skip invalid documents
if not documents:
return ProcessedData(
documents=[],
embeddings=np.array([]),
error="No valid documents after transformation",
)
embeddings = self._extract_embeddings(documents)
return ProcessedData(documents=documents, embeddings=embeddings)
except Exception as e:
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
def _extract_embeddings(self, documents: List[Document]) -> np.ndarray:
if not documents:
return np.array([])

View File

@@ -0,0 +1,189 @@
from typing import Dict, List, Optional, Any, Tuple
import logging
from opensearchpy import OpenSearch
from opensearchpy.exceptions import OpenSearchException
logger = logging.getLogger(__name__)
class OpenSearchClient:
def __init__(self):
self.client: Optional[OpenSearch] = None
self.connection_info: Optional[Dict[str, Any]] = None
def connect(
self,
url: str,
username: Optional[str] = None,
password: Optional[str] = None,
api_key: Optional[str] = None,
verify_certs: bool = True,
) -> Tuple[bool, str]:
"""
Connect to OpenSearch instance.
Returns:
Tuple of (success: bool, message: str)
"""
try:
# Parse URL to extract host and port
if url.startswith("http://") or url.startswith("https://"):
host = url
else:
host = f"https://{url}"
# Build auth configuration
auth_config = {}
if username and password:
auth_config["http_auth"] = (username, password)
elif api_key:
auth_config["api_key"] = api_key
# Create client
self.client = OpenSearch([host], verify_certs=verify_certs, **auth_config)
# Test connection
info = self.client.info()
self.connection_info = {
"url": host,
"cluster_name": info.get("cluster_name", "Unknown"),
"version": info.get("version", {}).get("number", "Unknown"),
}
return (
True,
f"Connected to {info.get('cluster_name', 'OpenSearch cluster')}",
)
except OpenSearchException as e:
logger.error(f"OpenSearch connection error: {e}")
return False, f"Connection failed: {str(e)}"
except Exception as e:
logger.error(f"Unexpected error connecting to OpenSearch: {e}")
return False, f"Unexpected error: {str(e)}"
def get_index_mapping(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
"""
Get the mapping for a specific index.
Returns:
Tuple of (success: bool, mapping: Dict or None, message: str)
"""
if not self.client:
return False, None, "Not connected to OpenSearch"
try:
mapping = self.client.indices.get_mapping(index=index_name)
return True, mapping, "Mapping retrieved successfully"
except OpenSearchException as e:
logger.error(f"Error getting mapping for index {index_name}: {e}")
return False, None, f"Failed to get mapping: {str(e)}"
def analyze_fields(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
"""
Analyze index fields to detect potential embedding and text fields.
Returns:
Tuple of (success: bool, analysis: Dict or None, message: str)
"""
success, mapping, message = self.get_index_mapping(index_name)
if not success:
return False, None, message
try:
# Extract field information from mapping
index_mapping = mapping[index_name]["mappings"]["properties"]
analysis = {
"vector_fields": [],
"text_fields": [],
"keyword_fields": [],
"numeric_fields": [],
"all_fields": [],
}
for field_name, field_info in index_mapping.items():
field_type = field_info.get("type", "unknown")
analysis["all_fields"].append(field_name)
if field_type == "dense_vector":
analysis["vector_fields"].append(
{
"name": field_name,
"dimension": field_info.get("dimension", "unknown"),
}
)
elif field_type == "text":
analysis["text_fields"].append(field_name)
elif field_type == "keyword":
analysis["keyword_fields"].append(field_name)
elif field_type in ["integer", "long", "float", "double"]:
analysis["numeric_fields"].append(field_name)
return True, analysis, "Field analysis completed"
except Exception as e:
logger.error(f"Error analyzing fields: {e}")
return False, None, f"Field analysis failed: {str(e)}"
def fetch_sample_data(
self, index_name: str, size: int = 5
) -> Tuple[bool, List[Dict], str]:
"""
Fetch sample documents from the index.
Returns:
Tuple of (success: bool, documents: List[Dict], message: str)
"""
if not self.client:
return False, [], "Not connected to OpenSearch"
try:
response = self.client.search(
index=index_name, body={"query": {"match_all": {}}, "size": size}
)
documents = [hit["_source"] for hit in response["hits"]["hits"]]
return True, documents, f"Retrieved {len(documents)} sample documents"
except OpenSearchException as e:
logger.error(f"Error fetching sample data: {e}")
return False, [], f"Failed to fetch sample data: {str(e)}"
def fetch_data(
self, index_name: str, size: int = 100
) -> Tuple[bool, List[Dict], str]:
"""
Fetch documents from the index.
Returns:
Tuple of (success: bool, documents: List[Dict], message: str)
"""
if not self.client:
return False, [], "Not connected to OpenSearch"
try:
response = self.client.search(
index=index_name, body={"query": {"match_all": {}}, "size": size}
)
documents = [hit["_source"] for hit in response["hits"]["hits"]]
total_hits = response["hits"]["total"]["value"]
message = f"Retrieved {len(documents)} documents from {total_hits} total"
return True, documents, message
except OpenSearchException as e:
logger.error(f"Error fetching data: {e}")
return False, [], f"Failed to fetch data: {str(e)}"
def disconnect(self):
"""Disconnect from OpenSearch."""
if self.client:
self.client = None
self.connection_info = None
def is_connected(self) -> bool:
"""Check if connected to OpenSearch."""
return self.client is not None

View File

@@ -0,0 +1,219 @@
from dataclasses import dataclass
from typing import Dict, List, Optional, Any
import logging
logger = logging.getLogger(__name__)
@dataclass
class FieldMapping:
"""Configuration for mapping OpenSearch fields to standard format."""
embedding_field: str
text_field: str
id_field: Optional[str] = None
category_field: Optional[str] = None
subcategory_field: Optional[str] = None
tags_field: Optional[str] = None
class FieldMapper:
"""Handles field mapping and data transformation from OpenSearch to standard format."""
@staticmethod
def suggest_mappings(field_analysis: Dict) -> Dict[str, List[str]]:
"""
Suggest field mappings based on field analysis.
Each dropdown will show ALL available fields, but ordered by relevance
with the most likely candidates first.
Args:
field_analysis: Analysis results from OpenSearchClient.analyze_fields
Returns:
Dictionary with suggested fields for each mapping (ordered by relevance)
"""
all_fields = field_analysis.get("all_fields", [])
vector_fields = [vf["name"] for vf in field_analysis.get("vector_fields", [])]
text_fields = field_analysis.get("text_fields", [])
keyword_fields = field_analysis.get("keyword_fields", [])
numeric_fields = field_analysis.get("numeric_fields", [])
# Helper function to create ordered suggestions
def create_ordered_suggestions(primary_candidates, all_available_fields):
# Start with primary candidates, then add all other fields
ordered = []
# Add primary candidates first
for field in primary_candidates:
if field in all_available_fields and field not in ordered:
ordered.append(field)
# Add remaining fields
for field in all_available_fields:
if field not in ordered:
ordered.append(field)
return ordered
suggestions = {}
# Embedding field suggestions (vector fields first, then all fields)
embedding_candidates = vector_fields.copy()
suggestions["embedding"] = create_ordered_suggestions(embedding_candidates, all_fields)
# Text field suggestions (text fields first, then all fields)
text_candidates = text_fields.copy()
suggestions["text"] = create_ordered_suggestions(text_candidates, all_fields)
# ID field suggestions (ID-like fields first, then all fields)
id_candidates = [f for f in keyword_fields if any(
keyword in f.lower() for keyword in ["id", "_id", "doc", "document"]
)]
id_candidates.append("_id") # _id is always available
suggestions["id"] = create_ordered_suggestions(id_candidates, all_fields)
# Category field suggestions (category-like fields first, then all fields)
category_candidates = [f for f in keyword_fields if any(
keyword in f.lower() for keyword in ["category", "class", "type", "label"]
)]
suggestions["category"] = create_ordered_suggestions(category_candidates, all_fields)
# Subcategory field suggestions (subcategory-like fields first, then all fields)
subcategory_candidates = [f for f in keyword_fields if any(
keyword in f.lower() for keyword in ["subcategory", "subclass", "subtype", "subtopic"]
)]
suggestions["subcategory"] = create_ordered_suggestions(subcategory_candidates, all_fields)
# Tags field suggestions (tag-like fields first, then all fields)
tags_candidates = [f for f in keyword_fields if any(
keyword in f.lower() for keyword in ["tag", "tags", "keyword", "keywords"]
)]
suggestions["tags"] = create_ordered_suggestions(tags_candidates, all_fields)
return suggestions
@staticmethod
def validate_mapping(
mapping: FieldMapping, available_fields: List[str]
) -> List[str]:
"""
Validate that the field mapping is correct.
Returns:
List of validation errors (empty if valid)
"""
errors = []
# Required fields validation
if not mapping.embedding_field:
errors.append("Embedding field is required")
elif mapping.embedding_field not in available_fields:
errors.append(
f"Embedding field '{mapping.embedding_field}' not found in index"
)
if not mapping.text_field:
errors.append("Text field is required")
elif mapping.text_field not in available_fields:
errors.append(f"Text field '{mapping.text_field}' not found in index")
# Optional fields validation
optional_fields = {
"id_field": mapping.id_field,
"category_field": mapping.category_field,
"subcategory_field": mapping.subcategory_field,
"tags_field": mapping.tags_field,
}
for field_name, field_value in optional_fields.items():
if field_value and field_value not in available_fields:
errors.append(
f"Field '{field_value}' for {field_name} not found in index"
)
return errors
@staticmethod
def transform_documents(
documents: List[Dict[str, Any]], mapping: FieldMapping
) -> List[Dict[str, Any]]:
"""
Transform OpenSearch documents to standard format using field mapping.
Args:
documents: Raw documents from OpenSearch
mapping: Field mapping configuration
Returns:
List of transformed documents in standard format
"""
transformed = []
for doc in documents:
try:
# Build standard format document
standard_doc = {}
# Required fields
if mapping.embedding_field in doc:
standard_doc["embedding"] = doc[mapping.embedding_field]
else:
logger.warning(
f"Missing embedding field '{mapping.embedding_field}' in document"
)
continue
if mapping.text_field in doc:
standard_doc["text"] = str(doc[mapping.text_field])
else:
logger.warning(
f"Missing text field '{mapping.text_field}' in document"
)
continue
# Optional fields
if mapping.id_field and mapping.id_field in doc:
standard_doc["id"] = str(doc[mapping.id_field])
if mapping.category_field and mapping.category_field in doc:
standard_doc["category"] = str(doc[mapping.category_field])
if mapping.subcategory_field and mapping.subcategory_field in doc:
standard_doc["subcategory"] = str(doc[mapping.subcategory_field])
if mapping.tags_field and mapping.tags_field in doc:
tags = doc[mapping.tags_field]
# Handle both string and list tags
if isinstance(tags, list):
standard_doc["tags"] = [str(tag) for tag in tags]
else:
standard_doc["tags"] = [str(tags)]
transformed.append(standard_doc)
except Exception as e:
logger.error(f"Error transforming document: {e}")
continue
logger.info(f"Transformed {len(transformed)} documents out of {len(documents)}")
return transformed
@staticmethod
def create_mapping_from_dict(mapping_dict: Dict[str, str]) -> FieldMapping:
"""
Create a FieldMapping from a dictionary.
Args:
mapping_dict: Dictionary with field mappings
Returns:
FieldMapping instance
"""
return FieldMapping(
embedding_field=mapping_dict.get("embedding", ""),
text_field=mapping_dict.get("text", ""),
id_field=mapping_dict.get("id") or None,
category_field=mapping_dict.get("category") or None,
subcategory_field=mapping_dict.get("subcategory") or None,
tags_field=mapping_dict.get("tags") or None,
)

View File

@@ -1,10 +1,14 @@
from dash import callback, Input, Output, State
from dash import callback, Input, Output, State, no_update
from ...data.processor import DataProcessor
from ...data.sources.opensearch import OpenSearchClient
from ...models.field_mapper import FieldMapper
from ...config.settings import AppSettings
class DataProcessingCallbacks:
def __init__(self):
self.processor = DataProcessor()
self.opensearch_client = OpenSearchClient()
self._register_callbacks()
def _register_callbacks(self):
@@ -67,6 +71,283 @@ class DataProcessingCallbacks:
"embeddings": processed_data.embeddings.tolist(),
}
# OpenSearch callbacks
@callback(
[
Output("tab-content", "children"),
],
[Input("data-source-tabs", "active_tab")],
prevent_initial_call=False,
)
def render_tab_content(active_tab):
from ...ui.components.datasource import DataSourceComponent
datasource = DataSourceComponent()
if active_tab == "opensearch-tab":
return [datasource.create_opensearch_tab()]
else:
return [datasource.create_file_upload_tab()]
@callback(
Output("auth-collapse", "is_open"),
[Input("auth-toggle", "n_clicks")],
[State("auth-collapse", "is_open")],
prevent_initial_call=True,
)
def toggle_auth(n_clicks, is_open):
if n_clicks:
return not is_open
return is_open
@callback(
Output("auth-toggle", "children"),
[Input("auth-collapse", "is_open")],
prevent_initial_call=False,
)
def update_auth_button_text(is_open):
return "Hide Authentication" if is_open else "Show Authentication"
@callback(
[
Output("connection-status", "children"),
Output("field-mapping-section", "children"),
Output("field-mapping-section", "style"),
Output("load-data-section", "style"),
Output("load-opensearch-data-btn", "disabled"),
Output("embedding-field-dropdown", "options"),
Output("text-field-dropdown", "options"),
Output("id-field-dropdown", "options"),
Output("category-field-dropdown", "options"),
Output("subcategory-field-dropdown", "options"),
Output("tags-field-dropdown", "options"),
],
[Input("test-connection-btn", "n_clicks")],
[
State("opensearch-url", "value"),
State("opensearch-index", "value"),
State("opensearch-username", "value"),
State("opensearch-password", "value"),
State("opensearch-api-key", "value"),
],
prevent_initial_call=True,
)
def test_opensearch_connection(
n_clicks, url, index_name, username, password, api_key
):
if not n_clicks or not url or not index_name:
return no_update, no_update, no_update, no_update, no_update, no_update, no_update, no_update, no_update, no_update, no_update
# Test connection
success, message = self.opensearch_client.connect(
url=url,
username=username,
password=password,
api_key=api_key,
verify_certs=AppSettings.OPENSEARCH_VERIFY_CERTS,
)
if not success:
return (
self._create_status_alert(f"{message}", "danger"),
[],
{"display": "none"},
{"display": "none"},
True,
[], # empty options for hidden dropdowns
[],
[],
[],
[],
[],
)
# Analyze fields
success, field_analysis, analysis_message = (
self.opensearch_client.analyze_fields(index_name)
)
if not success:
return (
self._create_status_alert(f"{analysis_message}", "danger"),
[],
{"display": "none"},
{"display": "none"},
True,
[], # empty options for hidden dropdowns
[],
[],
[],
[],
[],
)
# Generate field suggestions
field_suggestions = FieldMapper.suggest_mappings(field_analysis)
from ...ui.components.datasource import DataSourceComponent
datasource = DataSourceComponent()
field_mapping_ui = datasource.create_field_mapping_interface(
field_suggestions
)
return (
self._create_status_alert(f"{message}", "success"),
field_mapping_ui,
{"display": "block"},
{"display": "block"},
False,
[{"label": field, "value": field} for field in field_suggestions.get("embedding", [])],
[{"label": field, "value": field} for field in field_suggestions.get("text", [])],
[{"label": field, "value": field} for field in field_suggestions.get("id", [])],
[{"label": field, "value": field} for field in field_suggestions.get("category", [])],
[{"label": field, "value": field} for field in field_suggestions.get("subcategory", [])],
[{"label": field, "value": field} for field in field_suggestions.get("tags", [])],
)
@callback(
[
Output("processed-data", "data", allow_duplicate=True),
Output("opensearch-success-alert", "children", allow_duplicate=True),
Output("opensearch-success-alert", "is_open", allow_duplicate=True),
Output("opensearch-error-alert", "children", allow_duplicate=True),
Output("opensearch-error-alert", "is_open", allow_duplicate=True),
],
[Input("load-opensearch-data-btn", "n_clicks")],
[
State("opensearch-index", "value"),
State("embedding-field-dropdown", "value"),
State("text-field-dropdown", "value"),
State("id-field-dropdown", "value"),
State("category-field-dropdown", "value"),
State("subcategory-field-dropdown", "value"),
State("tags-field-dropdown", "value"),
],
prevent_initial_call=True,
)
def load_opensearch_data(
n_clicks,
index_name,
embedding_field,
text_field,
id_field,
category_field,
subcategory_field,
tags_field,
):
if not n_clicks or not index_name or not embedding_field or not text_field:
return no_update, no_update, no_update, no_update, no_update
try:
# Create field mapping
field_mapping = FieldMapper.create_mapping_from_dict(
{
"embedding": embedding_field,
"text": text_field,
"id": id_field,
"category": category_field,
"subcategory": subcategory_field,
"tags": tags_field,
}
)
# Fetch data from OpenSearch
success, raw_documents, message = self.opensearch_client.fetch_data(
index_name, size=AppSettings.OPENSEARCH_DEFAULT_SIZE
)
if not success:
return (
no_update,
"",
False,
f"❌ Failed to fetch data: {message}",
True,
)
# Process the data
processed_data = self.processor.process_opensearch_data(
raw_documents, field_mapping
)
if processed_data.error:
return (
{"error": processed_data.error},
"",
False,
f"❌ Data processing error: {processed_data.error}",
True,
)
success_message = f"✅ Successfully loaded {len(processed_data.documents)} documents from OpenSearch"
return (
{
"documents": [
self._document_to_dict(doc)
for doc in processed_data.documents
],
"embeddings": processed_data.embeddings.tolist(),
},
success_message,
True,
"",
False,
)
except Exception as e:
return (no_update, "", False, f"❌ Unexpected error: {str(e)}", True)
# Sync callbacks to update hidden dropdowns from UI dropdowns
@callback(
Output("embedding-field-dropdown", "value"),
Input("embedding-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_embedding_dropdown(value):
return value
@callback(
Output("text-field-dropdown", "value"),
Input("text-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_text_dropdown(value):
return value
@callback(
Output("id-field-dropdown", "value"),
Input("id-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_id_dropdown(value):
return value
@callback(
Output("category-field-dropdown", "value"),
Input("category-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_category_dropdown(value):
return value
@callback(
Output("subcategory-field-dropdown", "value"),
Input("subcategory-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_subcategory_dropdown(value):
return value
@callback(
Output("tags-field-dropdown", "value"),
Input("tags-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_tags_dropdown(value):
return value
@staticmethod
def _document_to_dict(doc):
return {
@@ -118,3 +399,10 @@ class DataProcessingCallbacks:
f"❌ Error processing file{file_part}: {error}. "
"Please check that your file is valid NDJSON with required 'text' and 'embedding' fields."
)
@staticmethod
def _create_status_alert(message: str, color: str):
"""Create a status alert component."""
import dash_bootstrap_components as dbc
return dbc.Alert(message, color=color, className="mb-2")

View File

@@ -0,0 +1,320 @@
from dash import dcc, html
import dash_bootstrap_components as dbc
from .upload import UploadComponent
class DataSourceComponent:
def __init__(self):
self.upload_component = UploadComponent()
def create_tabbed_interface(self):
"""Create tabbed interface for different data sources."""
return dbc.Card(
[
dbc.CardHeader(
[
dbc.Tabs(
[
dbc.Tab(label="File Upload", tab_id="file-tab"),
dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
],
id="data-source-tabs",
active_tab="file-tab",
)
]
),
dbc.CardBody([html.Div(id="tab-content")]),
]
)
def create_file_upload_tab(self):
"""Create file upload tab content."""
return html.Div(
[
self.upload_component.create_error_alert(),
self.upload_component.create_data_upload(),
self.upload_component.create_prompts_upload(),
self.upload_component.create_reset_button(),
]
)
def create_opensearch_tab(self):
"""Create OpenSearch tab content."""
return html.Div(
[
# Connection section
html.H6("Connection", className="mb-2"),
dbc.Row(
[
dbc.Col(
[
dbc.Label("OpenSearch URL:"),
dbc.Input(
id="opensearch-url",
type="text",
placeholder="https://opensearch.example.com:9200",
className="mb-2",
),
],
width=12,
),
]
),
dbc.Row(
[
dbc.Col(
[
dbc.Label("Index Name:"),
dbc.Input(
id="opensearch-index",
type="text",
placeholder="my-embeddings-index",
className="mb-2",
),
],
width=6,
),
dbc.Col(
[
dbc.Button(
"Test Connection",
id="test-connection-btn",
color="primary",
size="sm",
className="mt-4",
),
],
width=6,
className="d-flex align-items-end",
),
]
),
# Authentication section (collapsible)
dbc.Collapse(
[
html.Hr(),
html.H6("Authentication (Optional)", className="mb-2"),
dbc.Row(
[
dbc.Col(
[
dbc.Label("Username:"),
dbc.Input(
id="opensearch-username",
type="text",
className="mb-2",
),
],
width=6,
),
dbc.Col(
[
dbc.Label("Password:"),
dbc.Input(
id="opensearch-password",
type="password",
className="mb-2",
),
],
width=6,
),
]
),
dbc.Label("OR"),
dbc.Input(
id="opensearch-api-key",
type="text",
placeholder="API Key",
className="mb-2",
),
],
id="auth-collapse",
is_open=False,
),
dbc.Button(
"Show Authentication",
id="auth-toggle",
color="link",
size="sm",
className="p-0 mb-3",
),
# Connection status
html.Div(id="connection-status", className="mb-3"),
# Field mapping section (hidden initially)
html.Div(id="field-mapping-section", style={"display": "none"}),
# Hidden dropdowns to prevent callback errors
html.Div([
dcc.Dropdown(id="embedding-field-dropdown", style={"display": "none"}),
dcc.Dropdown(id="text-field-dropdown", style={"display": "none"}),
dcc.Dropdown(id="id-field-dropdown", style={"display": "none"}),
dcc.Dropdown(id="category-field-dropdown", style={"display": "none"}),
dcc.Dropdown(id="subcategory-field-dropdown", style={"display": "none"}),
dcc.Dropdown(id="tags-field-dropdown", style={"display": "none"}),
], style={"display": "none"}),
# Load data button (hidden initially)
html.Div(
[
dbc.Button(
"Load Data",
id="load-opensearch-data-btn",
color="success",
className="mb-2",
disabled=True,
),
],
id="load-data-section",
style={"display": "none"},
),
# OpenSearch status/results
html.Div(id="opensearch-status", className="mb-3"),
]
)
def create_field_mapping_interface(self, field_suggestions):
"""Create field mapping interface based on detected fields."""
return html.Div(
[
html.Hr(),
html.H6("Field Mapping", className="mb-2"),
html.P(
"Map your OpenSearch fields to the required format:",
className="text-muted small",
),
# Required fields
dbc.Row(
[
dbc.Col(
[
dbc.Label(
"Embedding Field (required):", className="fw-bold"
),
dcc.Dropdown(
id="embedding-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get("embedding", [])
],
value=field_suggestions.get("embedding", [None])[0], # Default to first suggestion
placeholder="Select embedding field...",
className="mb-2",
),
],
width=6,
),
dbc.Col(
[
dbc.Label(
"Text Field (required):", className="fw-bold"
),
dcc.Dropdown(
id="text-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get("text", [])
],
value=field_suggestions.get("text", [None])[0], # Default to first suggestion
placeholder="Select text field...",
className="mb-2",
),
],
width=6,
),
]
),
# Optional fields
html.H6("Optional Fields", className="mb-2 mt-3"),
dbc.Row(
[
dbc.Col(
[
dbc.Label("ID Field:"),
dcc.Dropdown(
id="id-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get("id", [])
],
value=field_suggestions.get("id", [None])[0], # Default to first suggestion
placeholder="Select ID field...",
className="mb-2",
),
],
width=6,
),
dbc.Col(
[
dbc.Label("Category Field:"),
dcc.Dropdown(
id="category-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get("category", [])
],
value=field_suggestions.get("category", [None])[0], # Default to first suggestion
placeholder="Select category field...",
className="mb-2",
),
],
width=6,
),
]
),
dbc.Row(
[
dbc.Col(
[
dbc.Label("Subcategory Field:"),
dcc.Dropdown(
id="subcategory-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get("subcategory", [])
],
value=field_suggestions.get("subcategory", [None])[0], # Default to first suggestion
placeholder="Select subcategory field...",
className="mb-2",
),
],
width=6,
),
dbc.Col(
[
dbc.Label("Tags Field:"),
dcc.Dropdown(
id="tags-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get("tags", [])
],
value=field_suggestions.get("tags", [None])[0], # Default to first suggestion
placeholder="Select tags field...",
className="mb-2",
),
],
width=6,
),
]
),
]
)
def create_error_alert(self):
"""Create error alert component for OpenSearch issues."""
return dbc.Alert(
id="opensearch-error-alert",
dismissable=True,
is_open=False,
color="danger",
className="mb-3",
)
def create_success_alert(self):
"""Create success alert component for OpenSearch operations."""
return dbc.Alert(
id="opensearch-success-alert",
dismissable=True,
is_open=False,
color="success",
className="mb-3",
)

View File

@@ -1,21 +1,22 @@
from dash import dcc, html
import dash_bootstrap_components as dbc
from .upload import UploadComponent
from .datasource import DataSourceComponent
class SidebarComponent:
def __init__(self):
self.upload_component = UploadComponent()
self.datasource_component = DataSourceComponent()
def create_layout(self):
return dbc.Col(
[
html.H5("Upload Data", className="mb-3"),
self.upload_component.create_error_alert(),
self.upload_component.create_data_upload(),
self.upload_component.create_prompts_upload(),
self.upload_component.create_reset_button(),
html.H5("Visualization Controls", className="mb-3"),
html.H5("Data Sources", className="mb-3"),
self.datasource_component.create_error_alert(),
self.datasource_component.create_success_alert(),
self.datasource_component.create_tabbed_interface(),
html.H5("Visualization Controls", className="mb-3 mt-4"),
]
+ self._create_method_dropdown()
+ self._create_color_dropdown()