Merge pull request 'fixed refactored code and validated inputs' (#2) from validate-inputs into main
Some checks failed
Security Scan / dependency-check (push) Successful in 34s
Security Scan / security (push) Successful in 40s
Test Suite / lint (push) Successful in 27s
Test Suite / test (3.11) (push) Successful in 1m30s
Release / test (push) Successful in 59s
Release / build-and-release (push) Failing after 36s
Test Suite / build (push) Successful in 46s

Fixed the refactored version, removed app.py, added error feedback on bad input files.

Reviewed-on: #2
This commit is contained in:
2025-08-14 08:11:28 -07:00
19 changed files with 389 additions and 539 deletions

View File

@@ -6,6 +6,7 @@
"Bash(uv add:*)" "Bash(uv add:*)"
], ],
"deny": [], "deny": [],
"ask": [] "ask": [],
"defaultMode": "acceptEdits"
} }
} }

View File

@@ -90,7 +90,7 @@ uv run python main.py
The application follows a modular architecture for improved maintainability and testability: The application follows a modular architecture for improved maintainability and testability:
``` ```text
src/embeddingbuddy/ src/embeddingbuddy/
├── config/ # Configuration management ├── config/ # Configuration management
│ └── settings.py # Centralized app settings │ └── settings.py # Centralized app settings
@@ -115,8 +115,8 @@ src/embeddingbuddy/
Run the test suite to verify functionality: Run the test suite to verify functionality:
```bash ```bash
# Install pytest # Install test dependencies
uv add pytest uv sync --extra test
# Run all tests # Run all tests
uv run pytest tests/ -v uv run pytest tests/ -v
@@ -128,6 +128,31 @@ uv run pytest tests/test_data_processing.py -v
uv run pytest tests/ --cov=src/embeddingbuddy uv run pytest tests/ --cov=src/embeddingbuddy
``` ```
### Development Tools
Install development dependencies for linting, type checking, and security:
```bash
# Install all dev dependencies
uv sync --extra dev
# Or install specific groups
uv sync --extra test # Testing tools
uv sync --extra lint # Linting and formatting
uv sync --extra security # Security scanning tools
# Run linting
uv run ruff check src/ tests/
uv run ruff format src/ tests/
# Run type checking
uv run mypy src/embeddingbuddy/
# Run security scans
uv run bandit -r src/
uv run safety check
```
### Adding New Features ### Adding New Features
The modular architecture makes it easy to extend functionality: The modular architecture makes it easy to extend functionality:

515
app.py
View File

@@ -1,515 +0,0 @@
import json
import uuid
from io import StringIO
import base64
import dash
from dash import dcc, html, Input, Output, State, callback
import dash_bootstrap_components as dbc
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
import umap
from openTSNE import TSNE
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
def parse_ndjson(contents):
"""Parse NDJSON content and return list of documents."""
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
text_content = decoded.decode('utf-8')
documents = []
for line in text_content.strip().split('\n'):
if line.strip():
doc = json.loads(line)
if 'id' not in doc:
doc['id'] = str(uuid.uuid4())
documents.append(doc)
return documents
def apply_dimensionality_reduction(embeddings, method='pca', n_components=3):
"""Apply dimensionality reduction to embeddings."""
if method == 'pca':
reducer = PCA(n_components=n_components)
reduced = reducer.fit_transform(embeddings)
variance_explained = reducer.explained_variance_ratio_
return reduced, variance_explained
elif method == 'tsne':
reducer = TSNE(n_components=n_components, random_state=42)
reduced = reducer.fit(embeddings)
return reduced, None
elif method == 'umap':
reducer = umap.UMAP(n_components=n_components, random_state=42)
reduced = reducer.fit_transform(embeddings)
return reduced, None
else:
raise ValueError(f"Unknown method: {method}")
def create_color_mapping(documents, color_by):
"""Create color mapping for documents based on specified field."""
if color_by == 'category':
values = [doc.get('category', 'Unknown') for doc in documents]
elif color_by == 'subcategory':
values = [doc.get('subcategory', 'Unknown') for doc in documents]
elif color_by == 'tags':
values = [', '.join(doc.get('tags', [])) if doc.get('tags') else 'No tags' for doc in documents]
else:
values = ['All'] * len(documents)
return values
def create_plot(df, dimensions='3d', color_by='category', method='PCA'):
"""Create plotly scatter plot."""
color_values = create_color_mapping(df.to_dict('records'), color_by)
# Truncate text for hover display
df_display = df.copy()
df_display['text_preview'] = df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
# Include all metadata fields in hover
hover_fields = ['id', 'text_preview', 'category', 'subcategory']
# Add tags as a string for hover
df_display['tags_str'] = df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
hover_fields.append('tags_str')
if dimensions == '3d':
fig = px.scatter_3d(
df_display, x='dim_1', y='dim_2', z='dim_3',
color=color_values,
hover_data=hover_fields,
title=f'3D Embedding Visualization - {method} (colored by {color_by})'
)
fig.update_traces(marker=dict(size=5))
else:
fig = px.scatter(
df_display, x='dim_1', y='dim_2',
color=color_values,
hover_data=hover_fields,
title=f'2D Embedding Visualization - {method} (colored by {color_by})'
)
fig.update_traces(marker=dict(size=8))
fig.update_layout(
height=None, # Let CSS height control this
autosize=True,
margin=dict(l=0, r=0, t=50, b=0)
)
return fig
def create_dual_plot(doc_df, prompt_df, dimensions='3d', color_by='category', method='PCA', show_prompts=None):
"""Create plotly scatter plot with separate traces for documents and prompts."""
# Create the base figure
fig = go.Figure()
# Helper function to convert colors to grayscale
def to_grayscale_hex(color_str):
"""Convert a color to grayscale while maintaining some distinction."""
import plotly.colors as pc
# Try to get RGB values from the color
try:
if color_str.startswith('#'):
# Hex color
rgb = tuple(int(color_str[i:i+2], 16) for i in (1, 3, 5))
else:
# Named color or other format - convert through plotly
rgb = pc.hex_to_rgb(pc.convert_colors_to_same_type([color_str], colortype='hex')[0][0])
# Convert to grayscale using luminance formula, but keep some color
gray_value = int(0.299 * rgb[0] + 0.587 * rgb[1] + 0.114 * rgb[2])
# Make it a bit more gray but not completely
gray_rgb = (gray_value * 0.7 + rgb[0] * 0.3,
gray_value * 0.7 + rgb[1] * 0.3,
gray_value * 0.7 + rgb[2] * 0.3)
return f'rgb({int(gray_rgb[0])},{int(gray_rgb[1])},{int(gray_rgb[2])})'
except:
return 'rgb(128,128,128)' # fallback gray
# Create document plot using plotly express for consistent colors
doc_color_values = create_color_mapping(doc_df.to_dict('records'), color_by)
doc_df_display = doc_df.copy()
doc_df_display['text_preview'] = doc_df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
doc_df_display['tags_str'] = doc_df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
hover_fields = ['id', 'text_preview', 'category', 'subcategory', 'tags_str']
# Create documents plot to get the color mapping
if dimensions == '3d':
doc_fig = px.scatter_3d(
doc_df_display, x='dim_1', y='dim_2', z='dim_3',
color=doc_color_values,
hover_data=hover_fields
)
else:
doc_fig = px.scatter(
doc_df_display, x='dim_1', y='dim_2',
color=doc_color_values,
hover_data=hover_fields
)
# Add document traces to main figure
for trace in doc_fig.data:
trace.name = f'Documents - {trace.name}'
if dimensions == '3d':
trace.marker.size = 5
trace.marker.symbol = 'circle'
else:
trace.marker.size = 8
trace.marker.symbol = 'circle'
trace.marker.opacity = 1.0
fig.add_trace(trace)
# Add prompt traces if they exist
if prompt_df is not None and show_prompts and 'show' in show_prompts:
prompt_color_values = create_color_mapping(prompt_df.to_dict('records'), color_by)
prompt_df_display = prompt_df.copy()
prompt_df_display['text_preview'] = prompt_df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
prompt_df_display['tags_str'] = prompt_df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
# Create prompts plot to get consistent color grouping
if dimensions == '3d':
prompt_fig = px.scatter_3d(
prompt_df_display, x='dim_1', y='dim_2', z='dim_3',
color=prompt_color_values,
hover_data=hover_fields
)
else:
prompt_fig = px.scatter(
prompt_df_display, x='dim_1', y='dim_2',
color=prompt_color_values,
hover_data=hover_fields
)
# Add prompt traces with grayed colors
for trace in prompt_fig.data:
# Convert the color to grayscale
original_color = trace.marker.color
if hasattr(trace.marker, 'color') and isinstance(trace.marker.color, str):
trace.marker.color = to_grayscale_hex(trace.marker.color)
trace.name = f'Prompts - {trace.name}'
if dimensions == '3d':
trace.marker.size = 6
trace.marker.symbol = 'diamond'
else:
trace.marker.size = 10
trace.marker.symbol = 'diamond'
trace.marker.opacity = 0.8
fig.add_trace(trace)
title = f'{dimensions.upper()} Embedding Visualization - {method} (colored by {color_by})'
fig.update_layout(
title=title,
height=None,
autosize=True,
margin=dict(l=0, r=0, t=50, b=0)
)
return fig
# Layout
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H1("EmbeddingBuddy", className="text-center mb-4"),
], width=12)
]),
dbc.Row([
# Left sidebar with controls
dbc.Col([
html.H5("Upload Data", className="mb-3"),
dcc.Upload(
id='upload-data',
children=html.Div([
'Drag and Drop or ',
html.A('Select Files')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin-bottom': '20px'
},
multiple=False
),
dcc.Upload(
id='upload-prompts',
children=html.Div([
'Drag and Drop Prompts or ',
html.A('Select Files')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin-bottom': '20px',
'borderColor': '#28a745'
},
multiple=False
),
dbc.Button(
"Reset All Data",
id='reset-button',
color='danger',
outline=True,
size='sm',
className='mb-3',
style={'width': '100%'}
),
html.H5("Visualization Controls", className="mb-3"),
dbc.Label("Method:"),
dcc.Dropdown(
id='method-dropdown',
options=[
{'label': 'PCA', 'value': 'pca'},
{'label': 't-SNE', 'value': 'tsne'},
{'label': 'UMAP', 'value': 'umap'}
],
value='pca',
style={'margin-bottom': '15px'}
),
dbc.Label("Color by:"),
dcc.Dropdown(
id='color-dropdown',
options=[
{'label': 'Category', 'value': 'category'},
{'label': 'Subcategory', 'value': 'subcategory'},
{'label': 'Tags', 'value': 'tags'}
],
value='category',
style={'margin-bottom': '15px'}
),
dbc.Label("Dimensions:"),
dcc.RadioItems(
id='dimension-toggle',
options=[
{'label': '2D', 'value': '2d'},
{'label': '3D', 'value': '3d'}
],
value='3d',
style={'margin-bottom': '20px'}
),
dbc.Label("Show Prompts:"),
dcc.Checklist(
id='show-prompts-toggle',
options=[{'label': 'Show prompts on plot', 'value': 'show'}],
value=['show'],
style={'margin-bottom': '20px'}
),
html.H5("Point Details", className="mb-3"),
html.Div(id='point-details', children="Click on a point to see details")
], width=3, style={'padding-right': '20px'}),
# Main visualization area
dbc.Col([
dcc.Graph(
id='embedding-plot',
style={'height': '85vh', 'width': '100%'},
config={'responsive': True, 'displayModeBar': True}
)
], width=9)
]),
dcc.Store(id='processed-data'),
dcc.Store(id='processed-prompts')
], fluid=True)
@callback(
Output('processed-data', 'data'),
Input('upload-data', 'contents'),
State('upload-data', 'filename')
)
def process_uploaded_file(contents, filename):
if contents is None:
return None
try:
documents = parse_ndjson(contents)
embeddings = np.array([doc['embedding'] for doc in documents])
# Store original embeddings and documents
return {
'documents': documents,
'embeddings': embeddings.tolist()
}
except Exception as e:
return {'error': str(e)}
@callback(
Output('processed-prompts', 'data'),
Input('upload-prompts', 'contents'),
State('upload-prompts', 'filename')
)
def process_uploaded_prompts(contents, filename):
if contents is None:
return None
try:
prompts = parse_ndjson(contents)
embeddings = np.array([prompt['embedding'] for prompt in prompts])
# Store original embeddings and prompts
return {
'prompts': prompts,
'embeddings': embeddings.tolist()
}
except Exception as e:
return {'error': str(e)}
@callback(
Output('embedding-plot', 'figure'),
[Input('processed-data', 'data'),
Input('processed-prompts', 'data'),
Input('method-dropdown', 'value'),
Input('color-dropdown', 'value'),
Input('dimension-toggle', 'value'),
Input('show-prompts-toggle', 'value')]
)
def update_plot(data, prompts_data, method, color_by, dimensions, show_prompts):
if not data or 'error' in data:
return go.Figure().add_annotation(
text="Upload a valid NDJSON file to see visualization",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=16)
)
# Prepare embeddings for dimensionality reduction
doc_embeddings = np.array(data['embeddings'])
all_embeddings = doc_embeddings
has_prompts = prompts_data and 'error' not in prompts_data and prompts_data.get('prompts')
if has_prompts:
prompt_embeddings = np.array(prompts_data['embeddings'])
all_embeddings = np.vstack([doc_embeddings, prompt_embeddings])
n_components = 3 if dimensions == '3d' else 2
# Apply dimensionality reduction to combined data
reduced, variance_explained = apply_dimensionality_reduction(
all_embeddings, method=method, n_components=n_components
)
# Split reduced embeddings back
doc_reduced = reduced[:len(doc_embeddings)]
prompt_reduced = reduced[len(doc_embeddings):] if has_prompts else None
# Create dataframes
doc_df_data = []
for i, doc in enumerate(data['documents']):
row = {
'id': doc['id'],
'text': doc['text'],
'category': doc.get('category', 'Unknown'),
'subcategory': doc.get('subcategory', 'Unknown'),
'tags': doc.get('tags', []),
'dim_1': doc_reduced[i, 0],
'dim_2': doc_reduced[i, 1],
'type': 'document'
}
if dimensions == '3d':
row['dim_3'] = doc_reduced[i, 2]
doc_df_data.append(row)
doc_df = pd.DataFrame(doc_df_data)
prompt_df = None
if has_prompts and prompt_reduced is not None:
prompt_df_data = []
for i, prompt in enumerate(prompts_data['prompts']):
row = {
'id': prompt['id'],
'text': prompt['text'],
'category': prompt.get('category', 'Unknown'),
'subcategory': prompt.get('subcategory', 'Unknown'),
'tags': prompt.get('tags', []),
'dim_1': prompt_reduced[i, 0],
'dim_2': prompt_reduced[i, 1],
'type': 'prompt'
}
if dimensions == '3d':
row['dim_3'] = prompt_reduced[i, 2]
prompt_df_data.append(row)
prompt_df = pd.DataFrame(prompt_df_data)
return create_dual_plot(doc_df, prompt_df, dimensions, color_by, method.upper(), show_prompts)
@callback(
Output('point-details', 'children'),
Input('embedding-plot', 'clickData'),
[State('processed-data', 'data'),
State('processed-prompts', 'data')]
)
def display_click_data(clickData, data, prompts_data):
if not clickData or not data:
return "Click on a point to see details"
# Get point info from click
point_data = clickData['points'][0]
trace_name = point_data.get('fullData', {}).get('name', 'Documents')
if 'pointIndex' in point_data:
point_index = point_data['pointIndex']
elif 'pointNumber' in point_data:
point_index = point_data['pointNumber']
else:
return "Could not identify clicked point"
# Determine which dataset this point belongs to
if trace_name == 'Prompts' and prompts_data and 'prompts' in prompts_data:
item = prompts_data['prompts'][point_index]
item_type = 'Prompt'
else:
item = data['documents'][point_index]
item_type = 'Document'
return dbc.Card([
dbc.CardBody([
html.H5(f"{item_type}: {item['id']}", className="card-title"),
html.P(f"Text: {item['text']}", className="card-text"),
html.P(f"Category: {item.get('category', 'Unknown')}", className="card-text"),
html.P(f"Subcategory: {item.get('subcategory', 'Unknown')}", className="card-text"),
html.P(f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}", className="card-text"),
html.P(f"Type: {item_type}", className="card-text text-muted")
])
])
@callback(
[Output('processed-data', 'data', allow_duplicate=True),
Output('processed-prompts', 'data', allow_duplicate=True),
Output('point-details', 'children', allow_duplicate=True)],
Input('reset-button', 'n_clicks'),
prevent_initial_call=True
)
def reset_data(n_clicks):
if n_clicks is None or n_clicks == 0:
return dash.no_update, dash.no_update, dash.no_update
return None, None, "Click on a point to see details"
if __name__ == '__main__':
app.run(debug=True)

View File

@@ -0,0 +1,2 @@
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "Binary junk at start"}
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Normal line"}<7D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>

View File

@@ -0,0 +1,6 @@
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "First line"}
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "After empty line"}
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1], "text": "After multiple empty lines"}

View File

@@ -0,0 +1,4 @@
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "4D embedding"}
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2], "text": "3D embedding"}
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1, 0.8], "text": "5D embedding"}
{"id": "doc_004", "embedding": [0.2, 0.1], "text": "2D embedding"}

View File

@@ -0,0 +1,8 @@
{"id": "doc_001", "embedding": "not_an_array", "text": "Embedding as string"}
{"id": "doc_002", "embedding": [0.1, "text", 0.7, 0.2], "text": "Mixed types in embedding"}
{"id": "doc_003", "embedding": [], "text": "Empty embedding array"}
{"id": "doc_004", "embedding": [0.1], "text": "Single dimension embedding"}
{"id": "doc_005", "embedding": null, "text": "Null embedding"}
{"id": "doc_006", "embedding": [0.1, 0.2, null, 0.4], "text": "Null value in embedding"}
{"id": "doc_007", "embedding": [0.1, 0.2, "NaN", 0.4], "text": "String NaN in embedding"}
{"id": "doc_008", "embedding": [0.1, 0.2, Infinity, 0.4], "text": "Infinity in embedding"}

View File

@@ -0,0 +1,5 @@
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, "text": "Valid line"}
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Missing closing brace"
{"id": "doc_003" "embedding": [0.3, 0.4, 0.1, -0.1], "text": "Missing colon after id"}
{id: "doc_004", "embedding": [0.2, 0.1, 0.3, 0.4], "text": "Unquoted key"}
{"id": "doc_005", "embedding": [0.1, 0.2, 0.3, 0.4], "text": "Valid line again"}

View File

@@ -0,0 +1,3 @@
{"id": "doc_001", "text": "Sample text without embedding field", "category": "test"}
{"id": "doc_002", "text": "Another text without embedding", "category": "test"}
{"id": "doc_003", "text": "Third text missing embedding", "category": "test"}

View File

@@ -0,0 +1,3 @@
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "category": "test"}
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "category": "test"}
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1], "category": "test"}

View File

@@ -0,0 +1,4 @@
[
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "Regular JSON array"},
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Instead of NDJSON"}
]

View File

@@ -16,11 +16,22 @@ class NDJSONParser:
@staticmethod @staticmethod
def parse_text(text_content: str) -> List[Document]: def parse_text(text_content: str) -> List[Document]:
documents = [] documents = []
for line in text_content.strip().split("\n"): for line_num, line in enumerate(text_content.strip().split("\n"), 1):
if line.strip(): if line.strip():
doc_dict = json.loads(line) try:
doc = NDJSONParser._dict_to_document(doc_dict) doc_dict = json.loads(line)
documents.append(doc) doc = NDJSONParser._dict_to_document(doc_dict)
documents.append(doc)
except json.JSONDecodeError as e:
raise json.JSONDecodeError(
f"Invalid JSON on line {line_num}: {e.msg}", e.doc, e.pos
)
except KeyError as e:
raise KeyError(f"Missing required field {e} on line {line_num}")
except (TypeError, ValueError) as e:
raise ValueError(
f"Invalid data format on line {line_num}: {str(e)}"
)
return documents return documents
@staticmethod @staticmethod
@@ -28,10 +39,33 @@ class NDJSONParser:
if "id" not in doc_dict: if "id" not in doc_dict:
doc_dict["id"] = str(uuid.uuid4()) doc_dict["id"] = str(uuid.uuid4())
# Validate required fields
if "text" not in doc_dict:
raise KeyError("'text'")
if "embedding" not in doc_dict:
raise KeyError("'embedding'")
# Validate embedding format
embedding = doc_dict["embedding"]
if not isinstance(embedding, list):
raise ValueError(
f"Embedding must be a list, got {type(embedding).__name__}"
)
if not embedding:
raise ValueError("Embedding cannot be empty")
# Check that all embedding values are numbers
for i, val in enumerate(embedding):
if not isinstance(val, (int, float)) or val != val: # NaN check
raise ValueError(
f"Embedding contains invalid value at index {i}: {val}"
)
return Document( return Document(
id=doc_dict["id"], id=doc_dict["id"],
text=doc_dict["text"], text=doc_dict["text"],
embedding=doc_dict["embedding"], embedding=embedding,
category=doc_dict.get("category"), category=doc_dict.get("category"),
subcategory=doc_dict.get("subcategory"), subcategory=doc_dict.get("subcategory"),
tags=doc_dict.get("tags"), tags=doc_dict.get("tags"),

View File

@@ -9,30 +9,47 @@ class DataProcessingCallbacks:
def _register_callbacks(self): def _register_callbacks(self):
@callback( @callback(
Output("processed-data", "data"), [
Output("processed-data", "data", allow_duplicate=True),
Output("upload-error-alert", "children", allow_duplicate=True),
Output("upload-error-alert", "is_open", allow_duplicate=True),
],
Input("upload-data", "contents"), Input("upload-data", "contents"),
State("upload-data", "filename"), State("upload-data", "filename"),
prevent_initial_call=True,
) )
def process_uploaded_file(contents, filename): def process_uploaded_file(contents, filename):
if contents is None: if contents is None:
return None return None, "", False
processed_data = self.processor.process_upload(contents, filename) processed_data = self.processor.process_upload(contents, filename)
if processed_data.error: if processed_data.error:
return {"error": processed_data.error} error_message = self._format_error_message(
processed_data.error, filename
)
return (
{"error": processed_data.error},
error_message,
True, # Show error alert
)
return { return (
"documents": [ {
self._document_to_dict(doc) for doc in processed_data.documents "documents": [
], self._document_to_dict(doc) for doc in processed_data.documents
"embeddings": processed_data.embeddings.tolist(), ],
} "embeddings": processed_data.embeddings.tolist(),
},
"",
False, # Hide error alert
)
@callback( @callback(
Output("processed-prompts", "data"), Output("processed-prompts", "data", allow_duplicate=True),
Input("upload-prompts", "contents"), Input("upload-prompts", "contents"),
State("upload-prompts", "filename"), State("upload-prompts", "filename"),
prevent_initial_call=True,
) )
def process_uploaded_prompts(contents, filename): def process_uploaded_prompts(contents, filename):
if contents is None: if contents is None:
@@ -60,3 +77,44 @@ class DataProcessingCallbacks:
"subcategory": doc.subcategory, "subcategory": doc.subcategory,
"tags": doc.tags, "tags": doc.tags,
} }
@staticmethod
def _format_error_message(error: str, filename: str | None = None) -> str:
"""Format error message with helpful guidance for users."""
file_part = f" in file '{filename}'" if filename else ""
# Check for common error patterns and provide helpful messages
if "embedding" in error.lower() and (
"key" in error.lower() or "required field" in error.lower()
):
return (
f"❌ Missing 'embedding' field{file_part}. "
"Each line must contain an 'embedding' field with a list of numbers."
)
elif "text" in error.lower() and (
"key" in error.lower() or "required field" in error.lower()
):
return (
f"❌ Missing 'text' field{file_part}. "
"Each line must contain a 'text' field with the document content."
)
elif "json" in error.lower() and "decode" in error.lower():
return (
f"❌ Invalid JSON format{file_part}. "
"Please check that each line is valid JSON with proper syntax (quotes, braces, etc.)."
)
elif "unicode" in error.lower() or "decode" in error.lower():
return (
f"❌ File encoding issue{file_part}. "
"Please ensure the file is saved in UTF-8 format and contains no binary data."
)
elif "array" in error.lower() or "list" in error.lower():
return (
f"❌ Invalid embedding format{file_part}. "
"Embeddings must be arrays/lists of numbers, not strings or other types."
)
else:
return (
f"❌ Error processing file{file_part}: {error}. "
"Please check that your file is valid NDJSON with required 'text' and 'embedding' fields."
)

View File

@@ -11,14 +11,17 @@ class SidebarComponent:
return dbc.Col( return dbc.Col(
[ [
html.H5("Upload Data", className="mb-3"), html.H5("Upload Data", className="mb-3"),
self.upload_component.create_error_alert(),
self.upload_component.create_data_upload(), self.upload_component.create_data_upload(),
self.upload_component.create_prompts_upload(), self.upload_component.create_prompts_upload(),
self.upload_component.create_reset_button(), self.upload_component.create_reset_button(),
html.H5("Visualization Controls", className="mb-3"), html.H5("Visualization Controls", className="mb-3"),
self._create_method_dropdown(), ]
self._create_color_dropdown(), + self._create_method_dropdown()
self._create_dimension_toggle(), + self._create_color_dropdown()
self._create_prompts_toggle(), + self._create_dimension_toggle()
+ self._create_prompts_toggle()
+ [
html.H5("Point Details", className="mb-3"), html.H5("Point Details", className="mb-3"),
html.Div( html.Div(
id="point-details", children="Click on a point to see details" id="point-details", children="Click on a point to see details"

View File

@@ -51,3 +51,14 @@ class UploadComponent:
className="mb-3", className="mb-3",
style={"width": "100%"}, style={"width": "100%"},
) )
@staticmethod
def create_error_alert():
"""Create error alert component for data upload issues."""
return dbc.Alert(
id="upload-error-alert",
dismissable=True,
is_open=False,
color="danger",
className="mb-3",
)

View File

@@ -9,7 +9,8 @@ class AppLayout:
def create_layout(self): def create_layout(self):
return dbc.Container( return dbc.Container(
[self._create_header(), self._create_main_content(), self._create_stores()], [self._create_header(), self._create_main_content()]
+ self._create_stores(),
fluid=True, fluid=True,
) )

197
tests/test_bad_data.py Normal file
View File

@@ -0,0 +1,197 @@
"""Tests for handling bad/invalid data files."""
import pytest
import json
import base64
from src.embeddingbuddy.data.parser import NDJSONParser
from src.embeddingbuddy.data.processor import DataProcessor
class TestBadDataHandling:
"""Test suite for various types of invalid input data."""
def setup_method(self):
"""Set up test fixtures."""
self.parser = NDJSONParser()
self.processor = DataProcessor()
def _create_upload_contents(self, text_content: str) -> str:
"""Helper to create upload contents format."""
encoded = base64.b64encode(text_content.encode("utf-8")).decode("utf-8")
return f"data:application/json;base64,{encoded}"
def test_missing_embedding_field(self):
"""Test files missing required embedding field."""
bad_content = '{"id": "doc_001", "text": "Sample text", "category": "test"}'
with pytest.raises(KeyError, match="embedding"):
self.parser.parse_text(bad_content)
# Test processor error handling
upload_contents = self._create_upload_contents(bad_content)
result = self.processor.process_upload(upload_contents)
assert result.error is not None
assert "embedding" in result.error
def test_missing_text_field(self):
"""Test files missing required text field."""
bad_content = (
'{"id": "doc_001", "embedding": [0.1, 0.2, 0.3], "category": "test"}'
)
with pytest.raises(KeyError, match="text"):
self.parser.parse_text(bad_content)
# Test processor error handling
upload_contents = self._create_upload_contents(bad_content)
result = self.processor.process_upload(upload_contents)
assert result.error is not None
assert "text" in result.error
def test_malformed_json_lines(self):
"""Test files with malformed JSON syntax."""
# Missing closing brace
bad_content = '{"id": "doc_001", "embedding": [0.1, 0.2], "text": "test"'
with pytest.raises(json.JSONDecodeError):
self.parser.parse_text(bad_content)
# Test processor error handling
upload_contents = self._create_upload_contents(bad_content)
result = self.processor.process_upload(upload_contents)
assert result.error is not None
def test_invalid_embedding_types(self):
"""Test files with invalid embedding data types."""
test_cases = [
# String instead of array
'{"id": "doc_001", "embedding": "not_an_array", "text": "test"}',
# Mixed types in array
'{"id": "doc_002", "embedding": [0.1, "text", 0.3], "text": "test"}',
# Empty array
'{"id": "doc_003", "embedding": [], "text": "test"}',
# Null embedding
'{"id": "doc_004", "embedding": null, "text": "test"}',
]
for bad_content in test_cases:
upload_contents = self._create_upload_contents(bad_content)
result = self.processor.process_upload(upload_contents)
assert result.error is not None, f"Should fail for: {bad_content}"
def test_inconsistent_embedding_dimensions(self):
"""Test files with embeddings of different dimensions."""
bad_content = """{"id": "doc_001", "embedding": [0.1, 0.2, 0.3, 0.4], "text": "4D embedding"}
{"id": "doc_002", "embedding": [0.1, 0.2, 0.3], "text": "3D embedding"}"""
upload_contents = self._create_upload_contents(bad_content)
result = self.processor.process_upload(upload_contents)
# This might succeed parsing but fail in processing
# The error depends on where dimension validation occurs
if result.error is None:
# If parsing succeeds, check that embeddings have inconsistent shapes
assert len(result.documents) == 2
assert len(result.documents[0].embedding) != len(
result.documents[1].embedding
)
def test_empty_lines_in_ndjson(self):
"""Test files with empty lines mixed in."""
content_with_empty_lines = """{"id": "doc_001", "embedding": [0.1, 0.2], "text": "First line"}
{"id": "doc_002", "embedding": [0.3, 0.4], "text": "After empty line"}"""
# This should work - empty lines should be skipped
documents = self.parser.parse_text(content_with_empty_lines)
assert len(documents) == 2
assert documents[0].id == "doc_001"
assert documents[1].id == "doc_002"
def test_not_ndjson_format(self):
"""Test regular JSON array instead of NDJSON."""
json_array = """[
{"id": "doc_001", "embedding": [0.1, 0.2], "text": "First"},
{"id": "doc_002", "embedding": [0.3, 0.4], "text": "Second"}
]"""
with pytest.raises(json.JSONDecodeError):
self.parser.parse_text(json_array)
def test_binary_content_in_file(self):
"""Test files with binary content mixed in."""
# Simulate binary content that can't be decoded
binary_content = (
b'\x00\x01\x02{"id": "doc_001", "embedding": [0.1], "text": "test"}'
)
# This should result in an error when processing
encoded = base64.b64encode(binary_content).decode("utf-8")
upload_contents = f"data:application/json;base64,{encoded}"
result = self.processor.process_upload(upload_contents)
# Should either fail with UnicodeDecodeError or JSON parsing error
assert result.error is not None
def test_extremely_large_embeddings(self):
"""Test embeddings with very large dimensions."""
large_embedding = [0.1] * 10000 # 10k dimensions
content = json.dumps(
{
"id": "doc_001",
"embedding": large_embedding,
"text": "Large embedding test",
}
)
# This should work but might be slow
upload_contents = self._create_upload_contents(content)
result = self.processor.process_upload(upload_contents)
if result.error is None:
assert len(result.documents) == 1
assert len(result.documents[0].embedding) == 10000
def test_special_characters_in_text(self):
"""Test handling of special characters and unicode."""
special_content = json.dumps(
{
"id": "doc_001",
"embedding": [0.1, 0.2],
"text": 'Special chars: 🚀 ñoñó 中文 \n\t"',
},
ensure_ascii=False,
)
upload_contents = self._create_upload_contents(special_content)
result = self.processor.process_upload(upload_contents)
assert result.error is None
assert len(result.documents) == 1
assert "🚀" in result.documents[0].text
def test_processor_error_structure(self):
"""Test that processor returns proper error structure."""
bad_content = '{"invalid": "json"' # Missing closing brace
upload_contents = self._create_upload_contents(bad_content)
result = self.processor.process_upload(upload_contents)
# Check error structure
assert result.error is not None
assert isinstance(result.error, str)
assert len(result.documents) == 0
assert result.embeddings.size == 0
def test_multiple_errors_in_file(self):
"""Test file with multiple different types of errors."""
multi_error_content = """{"id": "doc_001", "text": "Missing embedding"}
{"id": "doc_002", "embedding": "wrong_type", "text": "Wrong embedding type"}
{"id": "doc_003", "embedding": [0.1, 0.2], "text": "Valid line"}
{"id": "doc_004", "embedding": [0.3, 0.4]""" # Missing text and closing brace
upload_contents = self._create_upload_contents(multi_error_content)
result = self.processor.process_upload(upload_contents)
# Should fail on first error encountered
assert result.error is not None