add in browser embedding generation
Some checks failed
Security Scan / security (pull_request) Successful in 44s
Security Scan / dependency-check (pull_request) Successful in 49s
Test Suite / lint (pull_request) Failing after 40s
Test Suite / test (3.11) (pull_request) Successful in 1m39s
Test Suite / build (pull_request) Has been skipped
Some checks failed
Security Scan / security (pull_request) Successful in 44s
Security Scan / dependency-check (pull_request) Successful in 49s
Test Suite / lint (pull_request) Failing after 40s
Test Suite / test (3.11) (pull_request) Successful in 1m39s
Test Suite / build (pull_request) Has been skipped
This commit is contained in:
278
assets/embeddings.js
Normal file
278
assets/embeddings.js
Normal file
@@ -0,0 +1,278 @@
|
||||
// Text input embedding generation using Transformers.js
|
||||
// This module runs entirely in the browser for privacy and performance
|
||||
|
||||
// Global flag to track initialization
|
||||
window.transformersLoading = false;
|
||||
window.transformersLoaded = false;
|
||||
|
||||
class TransformersEmbedder {
|
||||
constructor() {
|
||||
this.extractor = null;
|
||||
this.currentModel = null;
|
||||
this.modelCache = new Map();
|
||||
this.isLoading = false;
|
||||
}
|
||||
|
||||
async initializeModel(modelName = 'Xenova/all-MiniLM-L6-v2') {
|
||||
try {
|
||||
if (this.modelCache.has(modelName)) {
|
||||
this.extractor = this.modelCache.get(modelName);
|
||||
this.currentModel = modelName;
|
||||
return { success: true, model: modelName };
|
||||
}
|
||||
|
||||
if (this.isLoading) {
|
||||
return { success: false, error: 'Model loading already in progress' };
|
||||
}
|
||||
|
||||
this.isLoading = true;
|
||||
|
||||
// Use globally loaded Transformers.js pipeline
|
||||
if (!window.transformers) {
|
||||
if (!window.transformersPipeline) {
|
||||
// Wait for the pipeline to load
|
||||
let attempts = 0;
|
||||
while (!window.transformersPipeline && attempts < 50) { // Wait up to 5 seconds
|
||||
await new Promise(resolve => setTimeout(resolve, 100));
|
||||
attempts++;
|
||||
}
|
||||
if (!window.transformersPipeline) {
|
||||
throw new Error('Transformers.js pipeline not available. Please refresh the page.');
|
||||
}
|
||||
}
|
||||
window.transformers = { pipeline: window.transformersPipeline };
|
||||
window.transformersLoaded = true;
|
||||
console.log('✅ Using globally loaded Transformers.js pipeline');
|
||||
}
|
||||
|
||||
// Show loading progress to user
|
||||
if (window.updateModelLoadingProgress) {
|
||||
window.updateModelLoadingProgress(0, `Loading ${modelName}...`);
|
||||
}
|
||||
|
||||
this.extractor = await window.transformers.pipeline('feature-extraction', modelName, {
|
||||
progress_callback: (data) => {
|
||||
if (window.updateModelLoadingProgress && data.progress !== undefined) {
|
||||
const progress = Math.round(data.progress);
|
||||
window.updateModelLoadingProgress(progress, data.status || 'Loading...');
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
this.modelCache.set(modelName, this.extractor);
|
||||
this.currentModel = modelName;
|
||||
this.isLoading = false;
|
||||
|
||||
if (window.updateModelLoadingProgress) {
|
||||
window.updateModelLoadingProgress(100, 'Model loaded successfully');
|
||||
}
|
||||
|
||||
return { success: true, model: modelName };
|
||||
} catch (error) {
|
||||
this.isLoading = false;
|
||||
console.error('Model initialization error:', error);
|
||||
return { success: false, error: error.message };
|
||||
}
|
||||
}
|
||||
|
||||
async generateEmbeddings(texts, options = {}) {
|
||||
if (!this.extractor) {
|
||||
throw new Error('Model not initialized. Call initializeModel() first.');
|
||||
}
|
||||
|
||||
if (!texts || texts.length === 0) {
|
||||
throw new Error('No texts provided for embedding generation.');
|
||||
}
|
||||
|
||||
const embeddings = [];
|
||||
const defaultOptions = {
|
||||
pooling: 'mean',
|
||||
normalize: true,
|
||||
...options
|
||||
};
|
||||
|
||||
// Process in batches to avoid memory issues
|
||||
const batchSize = options.batchSize || 8;
|
||||
|
||||
try {
|
||||
for (let i = 0; i < texts.length; i += batchSize) {
|
||||
const batch = texts.slice(i, i + batchSize);
|
||||
|
||||
const batchResults = await Promise.all(
|
||||
batch.map(text => {
|
||||
if (!text || text.trim().length === 0) {
|
||||
throw new Error('Empty text found in batch');
|
||||
}
|
||||
return this.extractor(text.trim(), defaultOptions);
|
||||
})
|
||||
);
|
||||
|
||||
// Convert tensor output to arrays
|
||||
batchResults.forEach((result, idx) => {
|
||||
if (result && result.data) {
|
||||
embeddings.push(Array.from(result.data));
|
||||
} else {
|
||||
throw new Error(`Invalid embedding result for text: ${batch[idx]}`);
|
||||
}
|
||||
});
|
||||
|
||||
// Update progress
|
||||
const progress = Math.min(100, ((i + batch.length) / texts.length) * 100);
|
||||
if (window.updateEmbeddingProgress) {
|
||||
window.updateEmbeddingProgress(progress, `Processing ${i + batch.length}/${texts.length} texts`);
|
||||
}
|
||||
}
|
||||
|
||||
if (window.updateEmbeddingProgress) {
|
||||
window.updateEmbeddingProgress(100, `Generated ${embeddings.length} embeddings successfully`);
|
||||
}
|
||||
|
||||
return embeddings;
|
||||
} catch (error) {
|
||||
console.error('Embedding generation error:', error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Global instance
|
||||
window.transformersEmbedder = new TransformersEmbedder();
|
||||
console.log('📦 TransformersEmbedder instance created');
|
||||
|
||||
// Global progress update functions
|
||||
window.updateModelLoadingProgress = function(progress, status) {
|
||||
const progressBar = document.getElementById('model-loading-progress');
|
||||
const statusText = document.getElementById('model-loading-status');
|
||||
if (progressBar) {
|
||||
progressBar.style.width = progress + '%';
|
||||
progressBar.setAttribute('aria-valuenow', progress);
|
||||
}
|
||||
if (statusText) {
|
||||
statusText.textContent = status;
|
||||
}
|
||||
};
|
||||
|
||||
window.updateEmbeddingProgress = function(progress, status) {
|
||||
const progressBar = document.getElementById('embedding-progress');
|
||||
const statusText = document.getElementById('embedding-status');
|
||||
if (progressBar) {
|
||||
progressBar.style.width = progress + '%';
|
||||
progressBar.setAttribute('aria-valuenow', progress);
|
||||
}
|
||||
if (statusText) {
|
||||
statusText.textContent = status;
|
||||
}
|
||||
};
|
||||
|
||||
// Dash clientside callback functions
|
||||
window.dash_clientside = window.dash_clientside || {};
|
||||
console.log('🔧 Setting up window.dash_clientside.transformers');
|
||||
window.dash_clientside.transformers = {
|
||||
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
||||
console.log('🚀 generateEmbeddings called with:', { nClicks, modelName, tokenizationMethod, textLength: textContent?.length });
|
||||
|
||||
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
||||
console.log('⚠️ Early return - missing required parameters');
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
try {
|
||||
// Initialize model if needed
|
||||
const initResult = await window.transformersEmbedder.initializeModel(modelName);
|
||||
if (!initResult.success) {
|
||||
return [
|
||||
{ error: initResult.error },
|
||||
`❌ Model loading error: ${initResult.error}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
// Tokenize text based on method
|
||||
let textChunks;
|
||||
const trimmedText = textContent.trim();
|
||||
|
||||
switch (tokenizationMethod) {
|
||||
case 'sentence':
|
||||
// Simple sentence splitting - can be enhanced with proper NLP
|
||||
textChunks = trimmedText
|
||||
.split(/[.!?]+/)
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 0);
|
||||
break;
|
||||
case 'paragraph':
|
||||
textChunks = trimmedText
|
||||
.split(/\n\s*\n/)
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 0);
|
||||
break;
|
||||
case 'manual':
|
||||
textChunks = trimmedText
|
||||
.split('\n')
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 0);
|
||||
break;
|
||||
default:
|
||||
textChunks = [trimmedText];
|
||||
}
|
||||
|
||||
if (textChunks.length === 0) {
|
||||
return [
|
||||
{ error: 'No valid text chunks found after tokenization' },
|
||||
'❌ Error: No valid text chunks found after tokenization',
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = await window.transformersEmbedder.generateEmbeddings(textChunks);
|
||||
|
||||
if (!embeddings || embeddings.length !== textChunks.length) {
|
||||
return [
|
||||
{ error: 'Embedding generation failed - mismatch in text chunks and embeddings' },
|
||||
'❌ Error: Embedding generation failed',
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
// Create documents structure
|
||||
const documents = textChunks.map((text, i) => ({
|
||||
id: `text_input_${Date.now()}_${i}`,
|
||||
text: text,
|
||||
embedding: embeddings[i],
|
||||
category: category || "Text Input",
|
||||
subcategory: subcategory || "Generated",
|
||||
tags: []
|
||||
}));
|
||||
|
||||
return [
|
||||
{
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
},
|
||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
||||
"success",
|
||||
false
|
||||
];
|
||||
|
||||
} catch (error) {
|
||||
console.error('Client-side embedding error:', error);
|
||||
return [
|
||||
{ error: error.message },
|
||||
`❌ Error: ${error.message}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
console.log('✅ Transformers.js client-side setup complete');
|
||||
console.log('Available:', {
|
||||
transformersEmbedder: !!window.transformersEmbedder,
|
||||
dashClientside: !!window.dash_clientside,
|
||||
transformersModule: !!window.dash_clientside?.transformers,
|
||||
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings
|
||||
});
|
9
assets/package.json
Normal file
9
assets/package.json
Normal file
@@ -0,0 +1,9 @@
|
||||
{
|
||||
"name": "embeddingbuddy-assets",
|
||||
"version": "1.0.0",
|
||||
"description": "JavaScript dependencies for EmbeddingBuddy text input functionality",
|
||||
"dependencies": {
|
||||
"@huggingface/transformers": "^3.0.0"
|
||||
},
|
||||
"type": "module"
|
||||
}
|
106
assets/sample-txt.md
Normal file
106
assets/sample-txt.md
Normal file
@@ -0,0 +1,106 @@
|
||||
The sun peeked through the clouds after a drizzly morning.
|
||||
A gentle breeze rustled the leaves as we walked along the shoreline.
|
||||
Heavy rains caused flooding in several low-lying neighborhoods.
|
||||
It was so hot that even the birds sought shade under the palm trees.
|
||||
By midnight, the temperature had dropped below freezing.
|
||||
Thunderstorms lit up the sky with flashes of lightning.
|
||||
A thick fog settled over the city streets at dawn.
|
||||
The air smelled of ozone after the sudden hailstorm.
|
||||
I watched the snowflakes drift silently onto the ground.
|
||||
A double rainbow appeared after the rain shower.
|
||||
The humidity soared to uncomfortable levels by midday.
|
||||
Dust devils formed in the dry desert plains.
|
||||
The barometer readings indicated an approaching front.
|
||||
A sudden gust of wind knocked over the garden chairs.
|
||||
Light drizzle turned into a torrential downpour within minutes.
|
||||
The new smartphone features a foldable display and 5G connectivity.
|
||||
In the world of AI, transformers have revolutionized natural language processing.
|
||||
Quantum computing promises to solve problems beyond classical computers' reach.
|
||||
Blockchain technology is being explored for secure voting systems.
|
||||
Virtual reality headsets are becoming more affordable and accessible.
|
||||
The rise of electric vehicles is reshaping the automotive industry.
|
||||
Cloud computing allows businesses to scale resources dynamically.
|
||||
Machine learning algorithms can now predict stock market trends with surprising accuracy.
|
||||
Augmented reality applications are transforming retail experiences.
|
||||
The Internet of Things connects everyday devices to the web for smarter living.
|
||||
Cybersecurity threats are evolving, requiring constant vigilance.
|
||||
3D printing is enabling rapid prototyping and custom manufacturing.
|
||||
Edge computing reduces latency by processing data closer to the source.
|
||||
Biometric authentication methods are enhancing security in devices.
|
||||
Wearable technology is tracking health metrics in real-time.
|
||||
Artificial intelligence is being used to create realistic deepfakes.
|
||||
Preheat the oven to 375°F before you start mixing the batter.
|
||||
She finely chopped the garlic and sautéed it in two tablespoons of olive oil.
|
||||
A pinch of saffron adds a beautiful color and aroma to traditional paella.
|
||||
If the soup is too salty, add a peeled potato to absorb excess sodium.
|
||||
Let the bread dough rise for at least an hour in a warm, draft-free spot.
|
||||
Marinate the chicken overnight in a blend of citrus and spices.
|
||||
Use a cast-iron skillet to sear the steak on high heat.
|
||||
Whisk the egg whites until they form stiff peaks.
|
||||
Fold in the chocolate chips gently to keep the batter airy.
|
||||
Brush the pastry with an egg wash for a golden finish.
|
||||
Slow-roast the pork shoulder until it falls off the bone.
|
||||
Garnish the salad with toasted nuts and fresh herbs.
|
||||
Deglaze the pan with white wine for a rich sauce.
|
||||
Simmer the curry paste until the aroma intensifies.
|
||||
Let the risotto rest before serving to thicken slightly.
|
||||
He dribbled past two defenders and sank a three-pointer at the buzzer.
|
||||
The marathon runner kept a steady pace despite the sweltering heat.
|
||||
Their home team clinched the championship with a last-minute goal.
|
||||
NASCAR fans cheered as the cars roared around the oval track.
|
||||
She landed a perfect triple axel at the figure skating championship.
|
||||
The cyclist pedaled up the steep hill in record time.
|
||||
He pitched a no-hitter during the high school baseball game.
|
||||
The quarterback threw a touchdown pass under heavy pressure.
|
||||
They scored a hat-trick in the hockey final.
|
||||
The boxer delivered a swift uppercut in the final round.
|
||||
Surfers caught massive waves at dawn on the Pacific coast.
|
||||
Fans erupted when the underdog scored the winning goal.
|
||||
The swimmer broke the national record in the 200m freestyle.
|
||||
The gymnast executed a flawless routine on the balance beam.
|
||||
The rugby team celebrated their victory with a traditional haka.
|
||||
The stock market rallied after positive earnings reports.
|
||||
Investors are closely watching interest rate changes by the Federal Reserve.
|
||||
Cryptocurrency prices have been extremely volatile this year.
|
||||
Diversification is key to managing investment risk effectively.
|
||||
Inflation rates have reached a 40-year high, impacting consumer spending.
|
||||
Many companies are adopting ESG criteria to attract socially conscious investors.
|
||||
The bond market is reacting to geopolitical tensions and supply chain disruptions.
|
||||
Venture capital funding for startups has surged in the tech sector.
|
||||
Exchange-traded funds (ETFs) offer a way to invest in diversified portfolios.
|
||||
The global economy is recovering from the pandemic, but challenges remain.
|
||||
Central banks are exploring digital currencies to modernize payment systems.
|
||||
Retail investors are increasingly participating in the stock market through apps.
|
||||
Hedge funds are using complex algorithms to gain an edge in trading.
|
||||
Real estate prices have skyrocketed in urban areas due to low inventory.
|
||||
The startup raised $10 million in its Series A funding round.
|
||||
The symphony orchestra played a hauntingly beautiful melody.
|
||||
She strummed her guitar softly, filling the room with a warm sound.
|
||||
The DJ mixed tracks seamlessly, keeping the crowd dancing all night.
|
||||
His voice soared during the high notes of the ballad.
|
||||
The band played an acoustic set in the intimate coffee shop.
|
||||
Jazz musicians often improvise solos based on the chord changes.
|
||||
The opera singer hit the high C with perfect pitch.
|
||||
The choir harmonized beautifully, filling the church with sound.
|
||||
He composed a symphony that was performed at the concert hall.
|
||||
The singer-songwriter wrote heartfelt lyrics about love and loss.
|
||||
The rock band headlined the festival, drawing a massive crowd.
|
||||
Hip-hop artists use rhythm and rhyme to tell powerful stories.
|
||||
The violinist played a virtuosic solo that left the audience in awe.
|
||||
Folk music often reflects the culture and traditions of a community.
|
||||
The gospel choir lifted spirits with their uplifting performance.
|
||||
The fall of the Berlin Wall in 1989 marked the end of the Cold War.
|
||||
Ancient Egypt's pyramids are a testament to their architectural prowess.
|
||||
Europe's Renaissance period sparked a revival in art and science.
|
||||
The signing of the Declaration of Independence in 1776 established the United States.
|
||||
The Industrial Revolution transformed economies and societies worldwide.
|
||||
Rome was the center of a vast empire that influenced law and governance.
|
||||
The discovery of the New World by Christopher Columbus in 1492 changed global trade.
|
||||
The French Revolution in 1789 led to significant political and social change.
|
||||
World War II was a global conflict that reshaped international relations.
|
||||
The fall of the Roman Empire in 476 AD marked the beginning of the Middle Ages.
|
||||
The invention of the printing press revolutionized the spread of knowledge.
|
||||
The Cold War was characterized by political tension between the U.S. and the Soviet Union.
|
||||
The ancient Silk Road connected East and West through trade routes.
|
||||
The signing of the Magna Carta in 1215 established principles of due process.
|
||||
Exploration during the Age of Discovery expanded European empires across the globe.
|
172
assets/transformers-loader.js
Normal file
172
assets/transformers-loader.js
Normal file
@@ -0,0 +1,172 @@
|
||||
// Simple script to load Transformers.js from CDN and initialize embedding functionality
|
||||
// This approach uses traditional script loading instead of ES6 modules
|
||||
|
||||
console.log('🔧 Transformers.js loader starting...');
|
||||
|
||||
// Global state
|
||||
window.transformersLibraryLoaded = false;
|
||||
window.transformersLibraryLoading = false;
|
||||
|
||||
// Function to dynamically load a script
|
||||
function loadScript(src) {
|
||||
return new Promise((resolve, reject) => {
|
||||
const script = document.createElement('script');
|
||||
script.src = src;
|
||||
script.type = 'module';
|
||||
script.onload = () => resolve();
|
||||
script.onerror = () => reject(new Error(`Failed to load script: ${src}`));
|
||||
document.head.appendChild(script);
|
||||
});
|
||||
}
|
||||
|
||||
// Function to initialize Transformers.js
|
||||
async function initializeTransformers() {
|
||||
if (window.transformersLibraryLoaded) {
|
||||
console.log('✅ Transformers.js already loaded');
|
||||
return true;
|
||||
}
|
||||
|
||||
if (window.transformersLibraryLoading) {
|
||||
console.log('⏳ Transformers.js already loading, waiting...');
|
||||
// Wait for loading to complete
|
||||
while (window.transformersLibraryLoading) {
|
||||
await new Promise(resolve => setTimeout(resolve, 100));
|
||||
}
|
||||
return window.transformersLibraryLoaded;
|
||||
}
|
||||
|
||||
window.transformersLibraryLoading = true;
|
||||
|
||||
try {
|
||||
console.log('📦 Loading Transformers.js from CDN...');
|
||||
|
||||
// Use dynamic import since this is more reliable with ES modules
|
||||
const transformers = await import('https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.0.0');
|
||||
window.transformersLibrary = transformers;
|
||||
window.transformersLibraryLoaded = true;
|
||||
|
||||
console.log('✅ Transformers.js loaded successfully');
|
||||
return true;
|
||||
} catch (error) {
|
||||
console.error('❌ Failed to load Transformers.js:', error);
|
||||
return false;
|
||||
} finally {
|
||||
window.transformersLibraryLoading = false;
|
||||
}
|
||||
}
|
||||
|
||||
// Simple embeddings class
|
||||
class SimpleEmbedder {
|
||||
constructor() {
|
||||
this.pipeline = null;
|
||||
this.modelCache = new Map();
|
||||
}
|
||||
|
||||
async generateEmbeddings(texts, modelName = 'Xenova/all-MiniLM-L6-v2') {
|
||||
console.log('🔄 Generating embeddings for', texts.length, 'texts with model', modelName);
|
||||
|
||||
// Ensure Transformers.js is loaded
|
||||
if (!window.transformersLibraryLoaded) {
|
||||
const loaded = await initializeTransformers();
|
||||
if (!loaded) {
|
||||
throw new Error('Failed to load Transformers.js');
|
||||
}
|
||||
}
|
||||
|
||||
// Create pipeline if not cached
|
||||
if (!this.modelCache.has(modelName)) {
|
||||
console.log('🏗️ Creating pipeline for', modelName);
|
||||
const { pipeline } = window.transformersLibrary;
|
||||
this.pipeline = await pipeline('feature-extraction', modelName);
|
||||
this.modelCache.set(modelName, this.pipeline);
|
||||
} else {
|
||||
this.pipeline = this.modelCache.get(modelName);
|
||||
}
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = [];
|
||||
for (let i = 0; i < texts.length; i++) {
|
||||
console.log(`Processing text ${i + 1}/${texts.length}...`);
|
||||
const result = await this.pipeline(texts[i], { pooling: 'mean', normalize: true });
|
||||
embeddings.push(Array.from(result.data));
|
||||
}
|
||||
|
||||
console.log('✅ Generated', embeddings.length, 'embeddings');
|
||||
return embeddings;
|
||||
}
|
||||
}
|
||||
|
||||
// Create global instance
|
||||
window.simpleEmbedder = new SimpleEmbedder();
|
||||
|
||||
// Set up Dash clientside callbacks
|
||||
window.dash_clientside = window.dash_clientside || {};
|
||||
window.dash_clientside.transformers = {
|
||||
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
||||
console.log('🚀 Client-side generateEmbeddings called');
|
||||
|
||||
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
||||
console.log('⚠️ Missing required parameters');
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
try {
|
||||
// Tokenize text
|
||||
let textChunks;
|
||||
const trimmedText = textContent.trim();
|
||||
|
||||
switch (tokenizationMethod) {
|
||||
case 'sentence':
|
||||
textChunks = trimmedText.split(/[.!?]+/).map(s => s.trim()).filter(s => s.length > 0);
|
||||
break;
|
||||
case 'paragraph':
|
||||
textChunks = trimmedText.split(/\n\s*\n/).map(s => s.trim()).filter(s => s.length > 0);
|
||||
break;
|
||||
case 'manual':
|
||||
textChunks = trimmedText.split('\n').map(s => s.trim()).filter(s => s.length > 0);
|
||||
break;
|
||||
default:
|
||||
textChunks = [trimmedText];
|
||||
}
|
||||
|
||||
if (textChunks.length === 0) {
|
||||
throw new Error('No valid text chunks after tokenization');
|
||||
}
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = await window.simpleEmbedder.generateEmbeddings(textChunks, modelName);
|
||||
|
||||
// Create documents
|
||||
const documents = textChunks.map((text, i) => ({
|
||||
id: `text_input_${Date.now()}_${i}`,
|
||||
text: text,
|
||||
embedding: embeddings[i],
|
||||
category: category || "Text Input",
|
||||
subcategory: subcategory || "Generated",
|
||||
tags: []
|
||||
}));
|
||||
|
||||
return [
|
||||
{
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
},
|
||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
||||
"success",
|
||||
false
|
||||
];
|
||||
|
||||
} catch (error) {
|
||||
console.error('❌ Error generating embeddings:', error);
|
||||
return [
|
||||
{ error: error.message },
|
||||
`❌ Error: ${error.message}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
console.log('✅ Simple Transformers.js setup complete');
|
||||
console.log('Available functions:', Object.keys(window.dash_clientside.transformers));
|
Reference in New Issue
Block a user