Compare commits
8 Commits
1ec7e2c38c
...
main
Author | SHA1 | Date | |
---|---|---|---|
14abc446b7 | |||
1b6845774b | |||
09e3c86f0a | |||
9cf2f0e6fa | |||
a2adc8b958 | |||
4867614474 | |||
6a995635ac | |||
7b81c20a26 |
@@ -6,6 +6,7 @@
|
|||||||
"Bash(uv add:*)"
|
"Bash(uv add:*)"
|
||||||
],
|
],
|
||||||
"deny": [],
|
"deny": [],
|
||||||
"ask": []
|
"ask": [],
|
||||||
|
"defaultMode": "acceptEdits"
|
||||||
}
|
}
|
||||||
}
|
}
|
31
README.md
31
README.md
@@ -90,7 +90,7 @@ uv run python main.py
|
|||||||
|
|
||||||
The application follows a modular architecture for improved maintainability and testability:
|
The application follows a modular architecture for improved maintainability and testability:
|
||||||
|
|
||||||
```
|
```text
|
||||||
src/embeddingbuddy/
|
src/embeddingbuddy/
|
||||||
├── config/ # Configuration management
|
├── config/ # Configuration management
|
||||||
│ └── settings.py # Centralized app settings
|
│ └── settings.py # Centralized app settings
|
||||||
@@ -115,8 +115,8 @@ src/embeddingbuddy/
|
|||||||
Run the test suite to verify functionality:
|
Run the test suite to verify functionality:
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# Install pytest
|
# Install test dependencies
|
||||||
uv add pytest
|
uv sync --extra test
|
||||||
|
|
||||||
# Run all tests
|
# Run all tests
|
||||||
uv run pytest tests/ -v
|
uv run pytest tests/ -v
|
||||||
@@ -128,6 +128,31 @@ uv run pytest tests/test_data_processing.py -v
|
|||||||
uv run pytest tests/ --cov=src/embeddingbuddy
|
uv run pytest tests/ --cov=src/embeddingbuddy
|
||||||
```
|
```
|
||||||
|
|
||||||
|
### Development Tools
|
||||||
|
|
||||||
|
Install development dependencies for linting, type checking, and security:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Install all dev dependencies
|
||||||
|
uv sync --extra dev
|
||||||
|
|
||||||
|
# Or install specific groups
|
||||||
|
uv sync --extra test # Testing tools
|
||||||
|
uv sync --extra lint # Linting and formatting
|
||||||
|
uv sync --extra security # Security scanning tools
|
||||||
|
|
||||||
|
# Run linting
|
||||||
|
uv run ruff check src/ tests/
|
||||||
|
uv run ruff format src/ tests/
|
||||||
|
|
||||||
|
# Run type checking
|
||||||
|
uv run mypy src/embeddingbuddy/
|
||||||
|
|
||||||
|
# Run security scans
|
||||||
|
uv run bandit -r src/
|
||||||
|
uv run safety check
|
||||||
|
```
|
||||||
|
|
||||||
### Adding New Features
|
### Adding New Features
|
||||||
|
|
||||||
The modular architecture makes it easy to extend functionality:
|
The modular architecture makes it easy to extend functionality:
|
||||||
|
515
app.py
515
app.py
@@ -1,515 +0,0 @@
|
|||||||
import json
|
|
||||||
import uuid
|
|
||||||
from io import StringIO
|
|
||||||
import base64
|
|
||||||
|
|
||||||
import dash
|
|
||||||
from dash import dcc, html, Input, Output, State, callback
|
|
||||||
import dash_bootstrap_components as dbc
|
|
||||||
import plotly.express as px
|
|
||||||
import plotly.graph_objects as go
|
|
||||||
import pandas as pd
|
|
||||||
import numpy as np
|
|
||||||
from sklearn.decomposition import PCA
|
|
||||||
import umap
|
|
||||||
from openTSNE import TSNE
|
|
||||||
|
|
||||||
|
|
||||||
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
|
||||||
|
|
||||||
def parse_ndjson(contents):
|
|
||||||
"""Parse NDJSON content and return list of documents."""
|
|
||||||
content_type, content_string = contents.split(',')
|
|
||||||
decoded = base64.b64decode(content_string)
|
|
||||||
text_content = decoded.decode('utf-8')
|
|
||||||
|
|
||||||
documents = []
|
|
||||||
for line in text_content.strip().split('\n'):
|
|
||||||
if line.strip():
|
|
||||||
doc = json.loads(line)
|
|
||||||
if 'id' not in doc:
|
|
||||||
doc['id'] = str(uuid.uuid4())
|
|
||||||
documents.append(doc)
|
|
||||||
return documents
|
|
||||||
|
|
||||||
def apply_dimensionality_reduction(embeddings, method='pca', n_components=3):
|
|
||||||
"""Apply dimensionality reduction to embeddings."""
|
|
||||||
if method == 'pca':
|
|
||||||
reducer = PCA(n_components=n_components)
|
|
||||||
reduced = reducer.fit_transform(embeddings)
|
|
||||||
variance_explained = reducer.explained_variance_ratio_
|
|
||||||
return reduced, variance_explained
|
|
||||||
elif method == 'tsne':
|
|
||||||
reducer = TSNE(n_components=n_components, random_state=42)
|
|
||||||
reduced = reducer.fit(embeddings)
|
|
||||||
return reduced, None
|
|
||||||
elif method == 'umap':
|
|
||||||
reducer = umap.UMAP(n_components=n_components, random_state=42)
|
|
||||||
reduced = reducer.fit_transform(embeddings)
|
|
||||||
return reduced, None
|
|
||||||
else:
|
|
||||||
raise ValueError(f"Unknown method: {method}")
|
|
||||||
|
|
||||||
def create_color_mapping(documents, color_by):
|
|
||||||
"""Create color mapping for documents based on specified field."""
|
|
||||||
if color_by == 'category':
|
|
||||||
values = [doc.get('category', 'Unknown') for doc in documents]
|
|
||||||
elif color_by == 'subcategory':
|
|
||||||
values = [doc.get('subcategory', 'Unknown') for doc in documents]
|
|
||||||
elif color_by == 'tags':
|
|
||||||
values = [', '.join(doc.get('tags', [])) if doc.get('tags') else 'No tags' for doc in documents]
|
|
||||||
else:
|
|
||||||
values = ['All'] * len(documents)
|
|
||||||
|
|
||||||
return values
|
|
||||||
|
|
||||||
def create_plot(df, dimensions='3d', color_by='category', method='PCA'):
|
|
||||||
"""Create plotly scatter plot."""
|
|
||||||
color_values = create_color_mapping(df.to_dict('records'), color_by)
|
|
||||||
|
|
||||||
# Truncate text for hover display
|
|
||||||
df_display = df.copy()
|
|
||||||
df_display['text_preview'] = df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
|
|
||||||
|
|
||||||
# Include all metadata fields in hover
|
|
||||||
hover_fields = ['id', 'text_preview', 'category', 'subcategory']
|
|
||||||
# Add tags as a string for hover
|
|
||||||
df_display['tags_str'] = df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
|
|
||||||
hover_fields.append('tags_str')
|
|
||||||
|
|
||||||
if dimensions == '3d':
|
|
||||||
fig = px.scatter_3d(
|
|
||||||
df_display, x='dim_1', y='dim_2', z='dim_3',
|
|
||||||
color=color_values,
|
|
||||||
hover_data=hover_fields,
|
|
||||||
title=f'3D Embedding Visualization - {method} (colored by {color_by})'
|
|
||||||
)
|
|
||||||
fig.update_traces(marker=dict(size=5))
|
|
||||||
else:
|
|
||||||
fig = px.scatter(
|
|
||||||
df_display, x='dim_1', y='dim_2',
|
|
||||||
color=color_values,
|
|
||||||
hover_data=hover_fields,
|
|
||||||
title=f'2D Embedding Visualization - {method} (colored by {color_by})'
|
|
||||||
)
|
|
||||||
fig.update_traces(marker=dict(size=8))
|
|
||||||
|
|
||||||
fig.update_layout(
|
|
||||||
height=None, # Let CSS height control this
|
|
||||||
autosize=True,
|
|
||||||
margin=dict(l=0, r=0, t=50, b=0)
|
|
||||||
)
|
|
||||||
return fig
|
|
||||||
|
|
||||||
def create_dual_plot(doc_df, prompt_df, dimensions='3d', color_by='category', method='PCA', show_prompts=None):
|
|
||||||
"""Create plotly scatter plot with separate traces for documents and prompts."""
|
|
||||||
|
|
||||||
# Create the base figure
|
|
||||||
fig = go.Figure()
|
|
||||||
|
|
||||||
# Helper function to convert colors to grayscale
|
|
||||||
def to_grayscale_hex(color_str):
|
|
||||||
"""Convert a color to grayscale while maintaining some distinction."""
|
|
||||||
import plotly.colors as pc
|
|
||||||
# Try to get RGB values from the color
|
|
||||||
try:
|
|
||||||
if color_str.startswith('#'):
|
|
||||||
# Hex color
|
|
||||||
rgb = tuple(int(color_str[i:i+2], 16) for i in (1, 3, 5))
|
|
||||||
else:
|
|
||||||
# Named color or other format - convert through plotly
|
|
||||||
rgb = pc.hex_to_rgb(pc.convert_colors_to_same_type([color_str], colortype='hex')[0][0])
|
|
||||||
|
|
||||||
# Convert to grayscale using luminance formula, but keep some color
|
|
||||||
gray_value = int(0.299 * rgb[0] + 0.587 * rgb[1] + 0.114 * rgb[2])
|
|
||||||
# Make it a bit more gray but not completely
|
|
||||||
gray_rgb = (gray_value * 0.7 + rgb[0] * 0.3,
|
|
||||||
gray_value * 0.7 + rgb[1] * 0.3,
|
|
||||||
gray_value * 0.7 + rgb[2] * 0.3)
|
|
||||||
return f'rgb({int(gray_rgb[0])},{int(gray_rgb[1])},{int(gray_rgb[2])})'
|
|
||||||
except:
|
|
||||||
return 'rgb(128,128,128)' # fallback gray
|
|
||||||
|
|
||||||
# Create document plot using plotly express for consistent colors
|
|
||||||
doc_color_values = create_color_mapping(doc_df.to_dict('records'), color_by)
|
|
||||||
doc_df_display = doc_df.copy()
|
|
||||||
doc_df_display['text_preview'] = doc_df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
|
|
||||||
doc_df_display['tags_str'] = doc_df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
|
|
||||||
|
|
||||||
hover_fields = ['id', 'text_preview', 'category', 'subcategory', 'tags_str']
|
|
||||||
|
|
||||||
# Create documents plot to get the color mapping
|
|
||||||
if dimensions == '3d':
|
|
||||||
doc_fig = px.scatter_3d(
|
|
||||||
doc_df_display, x='dim_1', y='dim_2', z='dim_3',
|
|
||||||
color=doc_color_values,
|
|
||||||
hover_data=hover_fields
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
doc_fig = px.scatter(
|
|
||||||
doc_df_display, x='dim_1', y='dim_2',
|
|
||||||
color=doc_color_values,
|
|
||||||
hover_data=hover_fields
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add document traces to main figure
|
|
||||||
for trace in doc_fig.data:
|
|
||||||
trace.name = f'Documents - {trace.name}'
|
|
||||||
if dimensions == '3d':
|
|
||||||
trace.marker.size = 5
|
|
||||||
trace.marker.symbol = 'circle'
|
|
||||||
else:
|
|
||||||
trace.marker.size = 8
|
|
||||||
trace.marker.symbol = 'circle'
|
|
||||||
trace.marker.opacity = 1.0
|
|
||||||
fig.add_trace(trace)
|
|
||||||
|
|
||||||
# Add prompt traces if they exist
|
|
||||||
if prompt_df is not None and show_prompts and 'show' in show_prompts:
|
|
||||||
prompt_color_values = create_color_mapping(prompt_df.to_dict('records'), color_by)
|
|
||||||
prompt_df_display = prompt_df.copy()
|
|
||||||
prompt_df_display['text_preview'] = prompt_df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
|
|
||||||
prompt_df_display['tags_str'] = prompt_df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
|
|
||||||
|
|
||||||
# Create prompts plot to get consistent color grouping
|
|
||||||
if dimensions == '3d':
|
|
||||||
prompt_fig = px.scatter_3d(
|
|
||||||
prompt_df_display, x='dim_1', y='dim_2', z='dim_3',
|
|
||||||
color=prompt_color_values,
|
|
||||||
hover_data=hover_fields
|
|
||||||
)
|
|
||||||
else:
|
|
||||||
prompt_fig = px.scatter(
|
|
||||||
prompt_df_display, x='dim_1', y='dim_2',
|
|
||||||
color=prompt_color_values,
|
|
||||||
hover_data=hover_fields
|
|
||||||
)
|
|
||||||
|
|
||||||
# Add prompt traces with grayed colors
|
|
||||||
for trace in prompt_fig.data:
|
|
||||||
# Convert the color to grayscale
|
|
||||||
original_color = trace.marker.color
|
|
||||||
if hasattr(trace.marker, 'color') and isinstance(trace.marker.color, str):
|
|
||||||
trace.marker.color = to_grayscale_hex(trace.marker.color)
|
|
||||||
|
|
||||||
trace.name = f'Prompts - {trace.name}'
|
|
||||||
if dimensions == '3d':
|
|
||||||
trace.marker.size = 6
|
|
||||||
trace.marker.symbol = 'diamond'
|
|
||||||
else:
|
|
||||||
trace.marker.size = 10
|
|
||||||
trace.marker.symbol = 'diamond'
|
|
||||||
trace.marker.opacity = 0.8
|
|
||||||
fig.add_trace(trace)
|
|
||||||
|
|
||||||
title = f'{dimensions.upper()} Embedding Visualization - {method} (colored by {color_by})'
|
|
||||||
fig.update_layout(
|
|
||||||
title=title,
|
|
||||||
height=None,
|
|
||||||
autosize=True,
|
|
||||||
margin=dict(l=0, r=0, t=50, b=0)
|
|
||||||
)
|
|
||||||
|
|
||||||
return fig
|
|
||||||
|
|
||||||
# Layout
|
|
||||||
app.layout = dbc.Container([
|
|
||||||
dbc.Row([
|
|
||||||
dbc.Col([
|
|
||||||
html.H1("EmbeddingBuddy", className="text-center mb-4"),
|
|
||||||
], width=12)
|
|
||||||
]),
|
|
||||||
|
|
||||||
dbc.Row([
|
|
||||||
# Left sidebar with controls
|
|
||||||
dbc.Col([
|
|
||||||
html.H5("Upload Data", className="mb-3"),
|
|
||||||
dcc.Upload(
|
|
||||||
id='upload-data',
|
|
||||||
children=html.Div([
|
|
||||||
'Drag and Drop or ',
|
|
||||||
html.A('Select Files')
|
|
||||||
]),
|
|
||||||
style={
|
|
||||||
'width': '100%',
|
|
||||||
'height': '60px',
|
|
||||||
'lineHeight': '60px',
|
|
||||||
'borderWidth': '1px',
|
|
||||||
'borderStyle': 'dashed',
|
|
||||||
'borderRadius': '5px',
|
|
||||||
'textAlign': 'center',
|
|
||||||
'margin-bottom': '20px'
|
|
||||||
},
|
|
||||||
multiple=False
|
|
||||||
),
|
|
||||||
|
|
||||||
dcc.Upload(
|
|
||||||
id='upload-prompts',
|
|
||||||
children=html.Div([
|
|
||||||
'Drag and Drop Prompts or ',
|
|
||||||
html.A('Select Files')
|
|
||||||
]),
|
|
||||||
style={
|
|
||||||
'width': '100%',
|
|
||||||
'height': '60px',
|
|
||||||
'lineHeight': '60px',
|
|
||||||
'borderWidth': '1px',
|
|
||||||
'borderStyle': 'dashed',
|
|
||||||
'borderRadius': '5px',
|
|
||||||
'textAlign': 'center',
|
|
||||||
'margin-bottom': '20px',
|
|
||||||
'borderColor': '#28a745'
|
|
||||||
},
|
|
||||||
multiple=False
|
|
||||||
),
|
|
||||||
|
|
||||||
dbc.Button(
|
|
||||||
"Reset All Data",
|
|
||||||
id='reset-button',
|
|
||||||
color='danger',
|
|
||||||
outline=True,
|
|
||||||
size='sm',
|
|
||||||
className='mb-3',
|
|
||||||
style={'width': '100%'}
|
|
||||||
),
|
|
||||||
|
|
||||||
html.H5("Visualization Controls", className="mb-3"),
|
|
||||||
|
|
||||||
dbc.Label("Method:"),
|
|
||||||
dcc.Dropdown(
|
|
||||||
id='method-dropdown',
|
|
||||||
options=[
|
|
||||||
{'label': 'PCA', 'value': 'pca'},
|
|
||||||
{'label': 't-SNE', 'value': 'tsne'},
|
|
||||||
{'label': 'UMAP', 'value': 'umap'}
|
|
||||||
],
|
|
||||||
value='pca',
|
|
||||||
style={'margin-bottom': '15px'}
|
|
||||||
),
|
|
||||||
|
|
||||||
dbc.Label("Color by:"),
|
|
||||||
dcc.Dropdown(
|
|
||||||
id='color-dropdown',
|
|
||||||
options=[
|
|
||||||
{'label': 'Category', 'value': 'category'},
|
|
||||||
{'label': 'Subcategory', 'value': 'subcategory'},
|
|
||||||
{'label': 'Tags', 'value': 'tags'}
|
|
||||||
],
|
|
||||||
value='category',
|
|
||||||
style={'margin-bottom': '15px'}
|
|
||||||
),
|
|
||||||
|
|
||||||
dbc.Label("Dimensions:"),
|
|
||||||
dcc.RadioItems(
|
|
||||||
id='dimension-toggle',
|
|
||||||
options=[
|
|
||||||
{'label': '2D', 'value': '2d'},
|
|
||||||
{'label': '3D', 'value': '3d'}
|
|
||||||
],
|
|
||||||
value='3d',
|
|
||||||
style={'margin-bottom': '20px'}
|
|
||||||
),
|
|
||||||
|
|
||||||
dbc.Label("Show Prompts:"),
|
|
||||||
dcc.Checklist(
|
|
||||||
id='show-prompts-toggle',
|
|
||||||
options=[{'label': 'Show prompts on plot', 'value': 'show'}],
|
|
||||||
value=['show'],
|
|
||||||
style={'margin-bottom': '20px'}
|
|
||||||
),
|
|
||||||
|
|
||||||
html.H5("Point Details", className="mb-3"),
|
|
||||||
html.Div(id='point-details', children="Click on a point to see details")
|
|
||||||
|
|
||||||
], width=3, style={'padding-right': '20px'}),
|
|
||||||
|
|
||||||
# Main visualization area
|
|
||||||
dbc.Col([
|
|
||||||
dcc.Graph(
|
|
||||||
id='embedding-plot',
|
|
||||||
style={'height': '85vh', 'width': '100%'},
|
|
||||||
config={'responsive': True, 'displayModeBar': True}
|
|
||||||
)
|
|
||||||
], width=9)
|
|
||||||
]),
|
|
||||||
|
|
||||||
dcc.Store(id='processed-data'),
|
|
||||||
dcc.Store(id='processed-prompts')
|
|
||||||
], fluid=True)
|
|
||||||
|
|
||||||
@callback(
|
|
||||||
Output('processed-data', 'data'),
|
|
||||||
Input('upload-data', 'contents'),
|
|
||||||
State('upload-data', 'filename')
|
|
||||||
)
|
|
||||||
def process_uploaded_file(contents, filename):
|
|
||||||
if contents is None:
|
|
||||||
return None
|
|
||||||
|
|
||||||
try:
|
|
||||||
documents = parse_ndjson(contents)
|
|
||||||
embeddings = np.array([doc['embedding'] for doc in documents])
|
|
||||||
|
|
||||||
# Store original embeddings and documents
|
|
||||||
return {
|
|
||||||
'documents': documents,
|
|
||||||
'embeddings': embeddings.tolist()
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
return {'error': str(e)}
|
|
||||||
|
|
||||||
@callback(
|
|
||||||
Output('processed-prompts', 'data'),
|
|
||||||
Input('upload-prompts', 'contents'),
|
|
||||||
State('upload-prompts', 'filename')
|
|
||||||
)
|
|
||||||
def process_uploaded_prompts(contents, filename):
|
|
||||||
if contents is None:
|
|
||||||
return None
|
|
||||||
|
|
||||||
try:
|
|
||||||
prompts = parse_ndjson(contents)
|
|
||||||
embeddings = np.array([prompt['embedding'] for prompt in prompts])
|
|
||||||
|
|
||||||
# Store original embeddings and prompts
|
|
||||||
return {
|
|
||||||
'prompts': prompts,
|
|
||||||
'embeddings': embeddings.tolist()
|
|
||||||
}
|
|
||||||
except Exception as e:
|
|
||||||
return {'error': str(e)}
|
|
||||||
|
|
||||||
@callback(
|
|
||||||
Output('embedding-plot', 'figure'),
|
|
||||||
[Input('processed-data', 'data'),
|
|
||||||
Input('processed-prompts', 'data'),
|
|
||||||
Input('method-dropdown', 'value'),
|
|
||||||
Input('color-dropdown', 'value'),
|
|
||||||
Input('dimension-toggle', 'value'),
|
|
||||||
Input('show-prompts-toggle', 'value')]
|
|
||||||
)
|
|
||||||
def update_plot(data, prompts_data, method, color_by, dimensions, show_prompts):
|
|
||||||
if not data or 'error' in data:
|
|
||||||
return go.Figure().add_annotation(
|
|
||||||
text="Upload a valid NDJSON file to see visualization",
|
|
||||||
xref="paper", yref="paper",
|
|
||||||
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
|
||||||
showarrow=False, font=dict(size=16)
|
|
||||||
)
|
|
||||||
|
|
||||||
# Prepare embeddings for dimensionality reduction
|
|
||||||
doc_embeddings = np.array(data['embeddings'])
|
|
||||||
all_embeddings = doc_embeddings
|
|
||||||
has_prompts = prompts_data and 'error' not in prompts_data and prompts_data.get('prompts')
|
|
||||||
|
|
||||||
if has_prompts:
|
|
||||||
prompt_embeddings = np.array(prompts_data['embeddings'])
|
|
||||||
all_embeddings = np.vstack([doc_embeddings, prompt_embeddings])
|
|
||||||
|
|
||||||
n_components = 3 if dimensions == '3d' else 2
|
|
||||||
|
|
||||||
# Apply dimensionality reduction to combined data
|
|
||||||
reduced, variance_explained = apply_dimensionality_reduction(
|
|
||||||
all_embeddings, method=method, n_components=n_components
|
|
||||||
)
|
|
||||||
|
|
||||||
# Split reduced embeddings back
|
|
||||||
doc_reduced = reduced[:len(doc_embeddings)]
|
|
||||||
prompt_reduced = reduced[len(doc_embeddings):] if has_prompts else None
|
|
||||||
|
|
||||||
# Create dataframes
|
|
||||||
doc_df_data = []
|
|
||||||
for i, doc in enumerate(data['documents']):
|
|
||||||
row = {
|
|
||||||
'id': doc['id'],
|
|
||||||
'text': doc['text'],
|
|
||||||
'category': doc.get('category', 'Unknown'),
|
|
||||||
'subcategory': doc.get('subcategory', 'Unknown'),
|
|
||||||
'tags': doc.get('tags', []),
|
|
||||||
'dim_1': doc_reduced[i, 0],
|
|
||||||
'dim_2': doc_reduced[i, 1],
|
|
||||||
'type': 'document'
|
|
||||||
}
|
|
||||||
if dimensions == '3d':
|
|
||||||
row['dim_3'] = doc_reduced[i, 2]
|
|
||||||
doc_df_data.append(row)
|
|
||||||
|
|
||||||
doc_df = pd.DataFrame(doc_df_data)
|
|
||||||
|
|
||||||
prompt_df = None
|
|
||||||
if has_prompts and prompt_reduced is not None:
|
|
||||||
prompt_df_data = []
|
|
||||||
for i, prompt in enumerate(prompts_data['prompts']):
|
|
||||||
row = {
|
|
||||||
'id': prompt['id'],
|
|
||||||
'text': prompt['text'],
|
|
||||||
'category': prompt.get('category', 'Unknown'),
|
|
||||||
'subcategory': prompt.get('subcategory', 'Unknown'),
|
|
||||||
'tags': prompt.get('tags', []),
|
|
||||||
'dim_1': prompt_reduced[i, 0],
|
|
||||||
'dim_2': prompt_reduced[i, 1],
|
|
||||||
'type': 'prompt'
|
|
||||||
}
|
|
||||||
if dimensions == '3d':
|
|
||||||
row['dim_3'] = prompt_reduced[i, 2]
|
|
||||||
prompt_df_data.append(row)
|
|
||||||
|
|
||||||
prompt_df = pd.DataFrame(prompt_df_data)
|
|
||||||
|
|
||||||
return create_dual_plot(doc_df, prompt_df, dimensions, color_by, method.upper(), show_prompts)
|
|
||||||
|
|
||||||
@callback(
|
|
||||||
Output('point-details', 'children'),
|
|
||||||
Input('embedding-plot', 'clickData'),
|
|
||||||
[State('processed-data', 'data'),
|
|
||||||
State('processed-prompts', 'data')]
|
|
||||||
)
|
|
||||||
def display_click_data(clickData, data, prompts_data):
|
|
||||||
if not clickData or not data:
|
|
||||||
return "Click on a point to see details"
|
|
||||||
|
|
||||||
# Get point info from click
|
|
||||||
point_data = clickData['points'][0]
|
|
||||||
trace_name = point_data.get('fullData', {}).get('name', 'Documents')
|
|
||||||
|
|
||||||
if 'pointIndex' in point_data:
|
|
||||||
point_index = point_data['pointIndex']
|
|
||||||
elif 'pointNumber' in point_data:
|
|
||||||
point_index = point_data['pointNumber']
|
|
||||||
else:
|
|
||||||
return "Could not identify clicked point"
|
|
||||||
|
|
||||||
# Determine which dataset this point belongs to
|
|
||||||
if trace_name == 'Prompts' and prompts_data and 'prompts' in prompts_data:
|
|
||||||
item = prompts_data['prompts'][point_index]
|
|
||||||
item_type = 'Prompt'
|
|
||||||
else:
|
|
||||||
item = data['documents'][point_index]
|
|
||||||
item_type = 'Document'
|
|
||||||
|
|
||||||
return dbc.Card([
|
|
||||||
dbc.CardBody([
|
|
||||||
html.H5(f"{item_type}: {item['id']}", className="card-title"),
|
|
||||||
html.P(f"Text: {item['text']}", className="card-text"),
|
|
||||||
html.P(f"Category: {item.get('category', 'Unknown')}", className="card-text"),
|
|
||||||
html.P(f"Subcategory: {item.get('subcategory', 'Unknown')}", className="card-text"),
|
|
||||||
html.P(f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}", className="card-text"),
|
|
||||||
html.P(f"Type: {item_type}", className="card-text text-muted")
|
|
||||||
])
|
|
||||||
])
|
|
||||||
|
|
||||||
@callback(
|
|
||||||
[Output('processed-data', 'data', allow_duplicate=True),
|
|
||||||
Output('processed-prompts', 'data', allow_duplicate=True),
|
|
||||||
Output('point-details', 'children', allow_duplicate=True)],
|
|
||||||
Input('reset-button', 'n_clicks'),
|
|
||||||
prevent_initial_call=True
|
|
||||||
)
|
|
||||||
def reset_data(n_clicks):
|
|
||||||
if n_clicks is None or n_clicks == 0:
|
|
||||||
return dash.no_update, dash.no_update, dash.no_update
|
|
||||||
|
|
||||||
return None, None, "Click on a point to see details"
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
|
||||||
app.run(debug=True)
|
|
157
example/README_elasticsearch.md
Normal file
157
example/README_elasticsearch.md
Normal file
@@ -0,0 +1,157 @@
|
|||||||
|
# Elasticsearch/OpenSearch Sample Data
|
||||||
|
|
||||||
|
This directory contains sample data files in Elasticsearch bulk index format for testing the OpenSearch integration in EmbeddingBuddy.
|
||||||
|
|
||||||
|
## Files
|
||||||
|
|
||||||
|
### Original NDJSON Files
|
||||||
|
|
||||||
|
- `sample_data.ndjson` - Original sample documents in EmbeddingBuddy format
|
||||||
|
- `sample_prompts.ndjson` - Original sample prompts in EmbeddingBuddy format
|
||||||
|
|
||||||
|
### Elasticsearch Bulk Files
|
||||||
|
|
||||||
|
- `sample_data_es_bulk.ndjson` - Documents in ES bulk format (index: "embeddings")
|
||||||
|
- `sample_prompts_es_bulk.ndjson` - Prompts in ES bulk format (index: "prompts")
|
||||||
|
|
||||||
|
## Usage
|
||||||
|
|
||||||
|
### 1. Index the data using curl
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Index main documents
|
||||||
|
curl -X POST "localhost:9200/_bulk" \
|
||||||
|
-H "Content-Type: application/x-ndjson" \
|
||||||
|
--data-binary @sample_data_es_bulk.ndjson
|
||||||
|
|
||||||
|
# Index prompts
|
||||||
|
curl -X POST "localhost:9200/_bulk" \
|
||||||
|
-H "Content-Type: application/x-ndjson" \
|
||||||
|
--data-binary @sample_prompts_es_bulk.ndjson
|
||||||
|
```
|
||||||
|
|
||||||
|
### 2. Create proper mappings (recommended)
|
||||||
|
|
||||||
|
First create the index with proper dense_vector mapping:
|
||||||
|
|
||||||
|
```bash
|
||||||
|
# Create embeddings index with dense_vector mapping
|
||||||
|
curl -X PUT "localhost:9200/embeddings" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"settings": {
|
||||||
|
"index.knn": true
|
||||||
|
},
|
||||||
|
"mappings": {
|
||||||
|
"properties": {
|
||||||
|
"id": {"type": "keyword"},
|
||||||
|
"embedding": {
|
||||||
|
"type": "knn_vector",
|
||||||
|
"dimension": 8,
|
||||||
|
"method": {
|
||||||
|
"engine": "lucene",
|
||||||
|
"space_type": "cosinesimil",
|
||||||
|
"name": "hnsw",
|
||||||
|
"parameters": {}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"text": {"type": "text"},
|
||||||
|
"category": {"type": "keyword"},
|
||||||
|
"subcategory": {"type": "keyword"},
|
||||||
|
"tags": {"type": "keyword"}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}'
|
||||||
|
|
||||||
|
# Create dense vector index with alternative field names
|
||||||
|
curl -X PUT "localhost:9200/prompts" \
|
||||||
|
-H "Content-Type: application/json" \
|
||||||
|
-d '{
|
||||||
|
"settings": {
|
||||||
|
"index.knn": true
|
||||||
|
},
|
||||||
|
"mappings": {
|
||||||
|
"properties": {
|
||||||
|
"id": {"type": "keyword"},
|
||||||
|
"embedding": {
|
||||||
|
"type": "knn_vector",
|
||||||
|
"dimension": 8,
|
||||||
|
"method": {
|
||||||
|
"engine": "lucene",
|
||||||
|
"space_type": "cosinesimil",
|
||||||
|
"name": "hnsw",
|
||||||
|
"parameters": {}
|
||||||
|
}
|
||||||
|
},
|
||||||
|
"text": {"type": "text"},
|
||||||
|
"category": {"type": "keyword"},
|
||||||
|
"subcategory": {"type": "keyword"},
|
||||||
|
"tags": {"type": "keyword"}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}'
|
||||||
|
```
|
||||||
|
|
||||||
|
Then index the data using the bulk files above.
|
||||||
|
|
||||||
|
### 3. Test in EmbeddingBuddy
|
||||||
|
|
||||||
|
#### For "embeddings" index
|
||||||
|
|
||||||
|
- **OpenSearch URL**: `http://localhost:9200`
|
||||||
|
- **Index Name**: `embeddings`
|
||||||
|
- **Field Mapping**:
|
||||||
|
- Embedding Field: `embedding`
|
||||||
|
- Text Field: `text`
|
||||||
|
- ID Field: `id`
|
||||||
|
- Category Field: `category`
|
||||||
|
- Subcategory Field: `subcategory`
|
||||||
|
- Tags Field: `tags`
|
||||||
|
|
||||||
|
#### For "embeddings-dense" index (alternative field names)
|
||||||
|
|
||||||
|
- **OpenSearch URL**: `http://localhost:9200`
|
||||||
|
- **Index Name**: `embeddings-dense`
|
||||||
|
- **Field Mapping**:
|
||||||
|
- Embedding Field: `vector`
|
||||||
|
- Text Field: `content`
|
||||||
|
- ID Field: `doc_id`
|
||||||
|
- Category Field: `type`
|
||||||
|
- Subcategory Field: `subtopic`
|
||||||
|
- Tags Field: `keywords`
|
||||||
|
|
||||||
|
## Data Structure
|
||||||
|
|
||||||
|
### Original Format (from NDJSON files)
|
||||||
|
|
||||||
|
```json
|
||||||
|
{
|
||||||
|
"id": "doc_001",
|
||||||
|
"embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3],
|
||||||
|
"text": "Machine learning algorithms are transforming healthcare...",
|
||||||
|
"category": "technology",
|
||||||
|
"subcategory": "healthcare",
|
||||||
|
"tags": ["ai", "medicine", "prediction"]
|
||||||
|
}
|
||||||
|
```
|
||||||
|
|
||||||
|
### ES Bulk Format
|
||||||
|
|
||||||
|
```json
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_001"}}
|
||||||
|
{"id": "doc_001", "embedding": [...], "text": "...", "category": "...", ...}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Alternative Field Names (dense vector format)
|
||||||
|
|
||||||
|
```json
|
||||||
|
{"index": {"_index": "embeddings-dense", "_id": "doc_001"}}
|
||||||
|
{"doc_id": "doc_001", "vector": [...], "content": "...", "type": "...", ...}
|
||||||
|
```
|
||||||
|
|
||||||
|
## Notes
|
||||||
|
|
||||||
|
- All embedding vectors are 8-dimensional for these sample files
|
||||||
|
- The alternative format demonstrates how EmbeddingBuddy's field mapping handles different field names
|
||||||
|
- For production use, you may want larger embedding dimensions (e.g., 384, 768, 1536)
|
||||||
|
- The `dense_vector` field type in Elasticsearch/OpenSearch enables vector similarity search
|
2
example/bad/bad_binary_content.ndjson
Normal file
2
example/bad/bad_binary_content.ndjson
Normal file
@@ -0,0 +1,2 @@
|
|||||||
|
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "Binary junk at start"}
|
||||||
|
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Normal line"}<7D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
6
example/bad/bad_empty_lines.ndjson
Normal file
6
example/bad/bad_empty_lines.ndjson
Normal file
@@ -0,0 +1,6 @@
|
|||||||
|
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "First line"}
|
||||||
|
|
||||||
|
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "After empty line"}
|
||||||
|
|
||||||
|
|
||||||
|
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1], "text": "After multiple empty lines"}
|
4
example/bad/bad_inconsistent_dimensions.ndjson
Normal file
4
example/bad/bad_inconsistent_dimensions.ndjson
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "4D embedding"}
|
||||||
|
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2], "text": "3D embedding"}
|
||||||
|
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1, 0.8], "text": "5D embedding"}
|
||||||
|
{"id": "doc_004", "embedding": [0.2, 0.1], "text": "2D embedding"}
|
8
example/bad/bad_invalid_embeddings.ndjson
Normal file
8
example/bad/bad_invalid_embeddings.ndjson
Normal file
@@ -0,0 +1,8 @@
|
|||||||
|
{"id": "doc_001", "embedding": "not_an_array", "text": "Embedding as string"}
|
||||||
|
{"id": "doc_002", "embedding": [0.1, "text", 0.7, 0.2], "text": "Mixed types in embedding"}
|
||||||
|
{"id": "doc_003", "embedding": [], "text": "Empty embedding array"}
|
||||||
|
{"id": "doc_004", "embedding": [0.1], "text": "Single dimension embedding"}
|
||||||
|
{"id": "doc_005", "embedding": null, "text": "Null embedding"}
|
||||||
|
{"id": "doc_006", "embedding": [0.1, 0.2, null, 0.4], "text": "Null value in embedding"}
|
||||||
|
{"id": "doc_007", "embedding": [0.1, 0.2, "NaN", 0.4], "text": "String NaN in embedding"}
|
||||||
|
{"id": "doc_008", "embedding": [0.1, 0.2, Infinity, 0.4], "text": "Infinity in embedding"}
|
5
example/bad/bad_malformed_json.ndjson
Normal file
5
example/bad/bad_malformed_json.ndjson
Normal file
@@ -0,0 +1,5 @@
|
|||||||
|
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, "text": "Valid line"}
|
||||||
|
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Missing closing brace"
|
||||||
|
{"id": "doc_003" "embedding": [0.3, 0.4, 0.1, -0.1], "text": "Missing colon after id"}
|
||||||
|
{id: "doc_004", "embedding": [0.2, 0.1, 0.3, 0.4], "text": "Unquoted key"}
|
||||||
|
{"id": "doc_005", "embedding": [0.1, 0.2, 0.3, 0.4], "text": "Valid line again"}
|
3
example/bad/bad_missing_embedding.ndjson
Normal file
3
example/bad/bad_missing_embedding.ndjson
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
{"id": "doc_001", "text": "Sample text without embedding field", "category": "test"}
|
||||||
|
{"id": "doc_002", "text": "Another text without embedding", "category": "test"}
|
||||||
|
{"id": "doc_003", "text": "Third text missing embedding", "category": "test"}
|
3
example/bad/bad_missing_text.ndjson
Normal file
3
example/bad/bad_missing_text.ndjson
Normal file
@@ -0,0 +1,3 @@
|
|||||||
|
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "category": "test"}
|
||||||
|
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "category": "test"}
|
||||||
|
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1], "category": "test"}
|
4
example/bad/bad_not_ndjson.json
Normal file
4
example/bad/bad_not_ndjson.json
Normal file
@@ -0,0 +1,4 @@
|
|||||||
|
[
|
||||||
|
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "Regular JSON array"},
|
||||||
|
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Instead of NDJSON"}
|
||||||
|
]
|
40
example/sample_data_es_bulk.ndjson
Normal file
40
example/sample_data_es_bulk.ndjson
Normal file
@@ -0,0 +1,40 @@
|
|||||||
|
{"index": {"_index": "embeddings", "_id": "doc_001"}}
|
||||||
|
{"id": "doc_001", "embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3], "text": "Machine learning algorithms are transforming healthcare by enabling predictive analytics and personalized medicine.", "category": "technology", "subcategory": "healthcare", "tags": ["ai", "medicine", "prediction"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_002"}}
|
||||||
|
{"id": "doc_002", "embedding": [0.1, 0.4, -0.2, 0.6, 0.3, -0.4, 0.8, 0.2], "text": "Climate change poses significant challenges to global food security and agricultural sustainability.", "category": "environment", "subcategory": "agriculture", "tags": ["climate", "food", "sustainability"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_003"}}
|
||||||
|
{"id": "doc_003", "embedding": [-0.3, 0.7, 0.1, -0.2, 0.9, 0.4, -0.1, 0.5], "text": "The rise of electric vehicles is reshaping the automotive industry and urban transportation systems.", "category": "technology", "subcategory": "automotive", "tags": ["electric", "transport", "urban"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_004"}}
|
||||||
|
{"id": "doc_004", "embedding": [0.5, -0.6, 0.3, 0.8, -0.2, 0.1, 0.7, -0.4], "text": "Renewable energy sources like solar and wind are becoming increasingly cost-competitive with fossil fuels.", "category": "environment", "subcategory": "energy", "tags": ["renewable", "solar", "wind"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_005"}}
|
||||||
|
{"id": "doc_005", "embedding": [0.8, 0.2, -0.5, 0.1, 0.6, -0.3, 0.4, 0.9], "text": "Financial markets are experiencing volatility due to geopolitical tensions and inflation concerns.", "category": "finance", "subcategory": "markets", "tags": ["volatility", "inflation", "geopolitics"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_006"}}
|
||||||
|
{"id": "doc_006", "embedding": [-0.1, 0.5, 0.7, -0.4, 0.2, 0.8, -0.6, 0.3], "text": "Quantum computing research is advancing rapidly with potential applications in cryptography and drug discovery.", "category": "technology", "subcategory": "research", "tags": ["quantum", "cryptography", "research"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_007"}}
|
||||||
|
{"id": "doc_007", "embedding": [0.4, -0.3, 0.6, 0.7, -0.8, 0.2, 0.5, -0.1], "text": "Ocean pollution from plastic waste is threatening marine ecosystems and biodiversity worldwide.", "category": "environment", "subcategory": "marine", "tags": ["pollution", "plastic", "marine"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_008"}}
|
||||||
|
{"id": "doc_008", "embedding": [0.3, 0.8, -0.2, 0.5, 0.1, -0.7, 0.6, 0.4], "text": "Artificial intelligence is revolutionizing customer service through chatbots and automated support systems.", "category": "technology", "subcategory": "customer_service", "tags": ["ai", "chatbots", "automation"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_009"}}
|
||||||
|
{"id": "doc_009", "embedding": [-0.5, 0.3, 0.9, -0.1, 0.7, 0.4, -0.2, 0.8], "text": "Global supply chains are being redesigned for resilience after pandemic-related disruptions.", "category": "business", "subcategory": "logistics", "tags": ["supply_chain", "pandemic", "resilience"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_010"}}
|
||||||
|
{"id": "doc_010", "embedding": [0.7, -0.4, 0.2, 0.9, -0.3, 0.6, 0.1, -0.8], "text": "Space exploration missions are expanding our understanding of the solar system and potential for life.", "category": "science", "subcategory": "space", "tags": ["space", "exploration", "life"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_011"}}
|
||||||
|
{"id": "doc_011", "embedding": [-0.2, 0.6, 0.4, -0.7, 0.8, 0.3, -0.5, 0.1], "text": "Cryptocurrency adoption is growing among institutional investors despite regulatory uncertainties.", "category": "finance", "subcategory": "crypto", "tags": ["cryptocurrency", "institutional", "regulation"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_012"}}
|
||||||
|
{"id": "doc_012", "embedding": [0.6, 0.1, -0.8, 0.4, 0.5, -0.2, 0.9, -0.3], "text": "Remote work technologies are transforming traditional office environments and work-life balance.", "category": "technology", "subcategory": "workplace", "tags": ["remote", "work", "balance"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_013"}}
|
||||||
|
{"id": "doc_013", "embedding": [0.1, -0.7, 0.5, 0.8, -0.4, 0.3, 0.2, 0.6], "text": "Gene therapy breakthroughs are offering new hope for treating previously incurable genetic diseases.", "category": "science", "subcategory": "medicine", "tags": ["gene_therapy", "genetics", "medicine"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_014"}}
|
||||||
|
{"id": "doc_014", "embedding": [-0.4, 0.2, 0.7, -0.1, 0.9, -0.6, 0.3, 0.5], "text": "Urban planning is evolving to create more sustainable and livable cities for growing populations.", "category": "environment", "subcategory": "urban", "tags": ["urban_planning", "sustainability", "cities"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_015"}}
|
||||||
|
{"id": "doc_015", "embedding": [0.9, -0.1, 0.3, 0.6, -0.5, 0.8, -0.2, 0.4], "text": "Social media platforms are implementing new policies to combat misinformation and protect user privacy.", "category": "technology", "subcategory": "social_media", "tags": ["social_media", "misinformation", "privacy"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_016"}}
|
||||||
|
{"id": "doc_016", "embedding": [-0.3, 0.8, -0.1, 0.4, 0.7, -0.5, 0.6, -0.9], "text": "Educational technology is personalizing learning experiences and improving student outcomes.", "category": "education", "subcategory": "technology", "tags": ["education", "personalization", "technology"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_017"}}
|
||||||
|
{"id": "doc_017", "embedding": [0.5, 0.3, -0.6, 0.2, 0.8, 0.1, -0.4, 0.7], "text": "Biodiversity conservation efforts are critical for maintaining ecosystem balance and preventing species extinction.", "category": "environment", "subcategory": "conservation", "tags": ["biodiversity", "conservation", "extinction"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_018"}}
|
||||||
|
{"id": "doc_018", "embedding": [0.2, -0.8, 0.4, 0.7, -0.1, 0.5, 0.9, -0.3], "text": "Healthcare systems are adopting telemedicine to improve access and reduce costs for patients.", "category": "technology", "subcategory": "healthcare", "tags": ["telemedicine", "healthcare", "access"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_019"}}
|
||||||
|
{"id": "doc_019", "embedding": [-0.7, 0.4, 0.8, -0.2, 0.3, 0.6, -0.1, 0.9], "text": "Autonomous vehicles are being tested extensively with promises of safer and more efficient transportation.", "category": "technology", "subcategory": "automotive", "tags": ["autonomous", "safety", "efficiency"]}
|
||||||
|
{"index": {"_index": "embeddings", "_id": "doc_020"}}
|
||||||
|
{"id": "doc_020", "embedding": [0.4, 0.7, -0.3, 0.9, -0.6, 0.2, 0.5, -0.1], "text": "Mental health awareness is increasing with new approaches to therapy and workplace wellness programs.", "category": "health", "subcategory": "mental", "tags": ["mental_health", "therapy", "wellness"]}
|
20
example/sample_prompts_es_bulk.ndjson
Normal file
20
example/sample_prompts_es_bulk.ndjson
Normal file
@@ -0,0 +1,20 @@
|
|||||||
|
{"index": {"_index": "prompts", "_id": "prompt_001"}}
|
||||||
|
{"id": "prompt_001", "embedding": [0.15, -0.28, 0.65, 0.42, -0.11, 0.33, 0.78, -0.52], "text": "Find articles about machine learning applications", "category": "search", "subcategory": "technology", "tags": ["AI", "research"]}
|
||||||
|
{"index": {"_index": "prompts", "_id": "prompt_002"}}
|
||||||
|
{"id": "prompt_002", "embedding": [0.72, 0.18, -0.35, 0.51, 0.09, -0.44, 0.27, 0.63], "text": "Show me product reviews for smartphones", "category": "search", "subcategory": "product", "tags": ["mobile", "reviews"]}
|
||||||
|
{"index": {"_index": "prompts", "_id": "prompt_003"}}
|
||||||
|
{"id": "prompt_003", "embedding": [-0.21, 0.59, 0.34, -0.67, 0.45, 0.12, -0.38, 0.76], "text": "What are the latest political developments?", "category": "search", "subcategory": "news", "tags": ["politics", "current events"]}
|
||||||
|
{"index": {"_index": "prompts", "_id": "prompt_004"}}
|
||||||
|
{"id": "prompt_004", "embedding": [0.48, -0.15, 0.72, 0.31, -0.58, 0.24, 0.67, -0.39], "text": "Summarize recent tech industry trends", "category": "analysis", "subcategory": "technology", "tags": ["tech", "trends", "summary"]}
|
||||||
|
{"index": {"_index": "prompts", "_id": "prompt_005"}}
|
||||||
|
{"id": "prompt_005", "embedding": [-0.33, 0.47, -0.62, 0.28, 0.71, -0.18, 0.54, 0.35], "text": "Compare different smartphone models", "category": "analysis", "subcategory": "product", "tags": ["comparison", "mobile", "evaluation"]}
|
||||||
|
{"index": {"_index": "prompts", "_id": "prompt_006"}}
|
||||||
|
{"id": "prompt_006", "embedding": [0.64, 0.21, 0.39, -0.45, 0.13, 0.58, -0.27, 0.74], "text": "Analyze voter sentiment on recent policies", "category": "analysis", "subcategory": "politics", "tags": ["sentiment", "politics", "analysis"]}
|
||||||
|
{"index": {"_index": "prompts", "_id": "prompt_007"}}
|
||||||
|
{"id": "prompt_007", "embedding": [0.29, -0.43, 0.56, 0.68, -0.22, 0.37, 0.14, -0.61], "text": "Generate a summary of machine learning research", "category": "generation", "subcategory": "technology", "tags": ["AI", "research", "summary"]}
|
||||||
|
{"index": {"_index": "prompts", "_id": "prompt_008"}}
|
||||||
|
{"id": "prompt_008", "embedding": [-0.17, 0.52, -0.48, 0.36, 0.74, -0.29, 0.61, 0.18], "text": "Create a product recommendation report", "category": "generation", "subcategory": "product", "tags": ["recommendation", "report", "analysis"]}
|
||||||
|
{"index": {"_index": "prompts", "_id": "prompt_009"}}
|
||||||
|
{"id": "prompt_009", "embedding": [0.55, 0.08, 0.41, -0.37, 0.26, 0.69, -0.14, 0.58], "text": "Write a news brief on election updates", "category": "generation", "subcategory": "news", "tags": ["election", "news", "brief"]}
|
||||||
|
{"index": {"_index": "prompts", "_id": "prompt_010"}}
|
||||||
|
{"id": "prompt_010", "embedding": [0.23, -0.59, 0.47, 0.61, -0.35, 0.18, 0.72, -0.26], "text": "Explain how neural networks work", "category": "explanation", "subcategory": "technology", "tags": ["AI", "education", "neural networks"]}
|
@@ -1,6 +1,6 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "embeddingbuddy"
|
name = "embeddingbuddy"
|
||||||
version = "0.2.0"
|
version = "0.3.0"
|
||||||
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
|
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.11"
|
requires-python = ">=3.11"
|
||||||
@@ -15,6 +15,7 @@ dependencies = [
|
|||||||
"numba>=0.56.4",
|
"numba>=0.56.4",
|
||||||
"openTSNE>=1.0.0",
|
"openTSNE>=1.0.0",
|
||||||
"mypy>=1.17.1",
|
"mypy>=1.17.1",
|
||||||
|
"opensearch-py>=3.0.0",
|
||||||
]
|
]
|
||||||
|
|
||||||
[project.optional-dependencies]
|
[project.optional-dependencies]
|
||||||
|
@@ -10,6 +10,9 @@ from .ui.callbacks.interactions import InteractionCallbacks
|
|||||||
def create_app():
|
def create_app():
|
||||||
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||||||
|
|
||||||
|
# Allow callbacks to components that are dynamically created in tabs
|
||||||
|
app.config.suppress_callback_exceptions = True
|
||||||
|
|
||||||
layout_manager = AppLayout()
|
layout_manager = AppLayout()
|
||||||
app.layout = layout_manager.create_layout()
|
app.layout = layout_manager.create_layout()
|
||||||
|
|
||||||
|
@@ -73,6 +73,12 @@ class AppSettings:
|
|||||||
HOST = os.getenv("EMBEDDINGBUDDY_HOST", "127.0.0.1")
|
HOST = os.getenv("EMBEDDINGBUDDY_HOST", "127.0.0.1")
|
||||||
PORT = int(os.getenv("EMBEDDINGBUDDY_PORT", "8050"))
|
PORT = int(os.getenv("EMBEDDINGBUDDY_PORT", "8050"))
|
||||||
|
|
||||||
|
# OpenSearch Configuration
|
||||||
|
OPENSEARCH_DEFAULT_SIZE = 100
|
||||||
|
OPENSEARCH_SAMPLE_SIZE = 5
|
||||||
|
OPENSEARCH_CONNECTION_TIMEOUT = 30
|
||||||
|
OPENSEARCH_VERIFY_CERTS = True
|
||||||
|
|
||||||
# Bootstrap Theme
|
# Bootstrap Theme
|
||||||
EXTERNAL_STYLESHEETS = [
|
EXTERNAL_STYLESHEETS = [
|
||||||
"https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"
|
"https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"
|
||||||
|
@@ -16,11 +16,22 @@ class NDJSONParser:
|
|||||||
@staticmethod
|
@staticmethod
|
||||||
def parse_text(text_content: str) -> List[Document]:
|
def parse_text(text_content: str) -> List[Document]:
|
||||||
documents = []
|
documents = []
|
||||||
for line in text_content.strip().split("\n"):
|
for line_num, line in enumerate(text_content.strip().split("\n"), 1):
|
||||||
if line.strip():
|
if line.strip():
|
||||||
doc_dict = json.loads(line)
|
try:
|
||||||
doc = NDJSONParser._dict_to_document(doc_dict)
|
doc_dict = json.loads(line)
|
||||||
documents.append(doc)
|
doc = NDJSONParser._dict_to_document(doc_dict)
|
||||||
|
documents.append(doc)
|
||||||
|
except json.JSONDecodeError as e:
|
||||||
|
raise json.JSONDecodeError(
|
||||||
|
f"Invalid JSON on line {line_num}: {e.msg}", e.doc, e.pos
|
||||||
|
)
|
||||||
|
except KeyError as e:
|
||||||
|
raise KeyError(f"Missing required field {e} on line {line_num}")
|
||||||
|
except (TypeError, ValueError) as e:
|
||||||
|
raise ValueError(
|
||||||
|
f"Invalid data format on line {line_num}: {str(e)}"
|
||||||
|
)
|
||||||
return documents
|
return documents
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
@@ -28,10 +39,33 @@ class NDJSONParser:
|
|||||||
if "id" not in doc_dict:
|
if "id" not in doc_dict:
|
||||||
doc_dict["id"] = str(uuid.uuid4())
|
doc_dict["id"] = str(uuid.uuid4())
|
||||||
|
|
||||||
|
# Validate required fields
|
||||||
|
if "text" not in doc_dict:
|
||||||
|
raise KeyError("'text'")
|
||||||
|
if "embedding" not in doc_dict:
|
||||||
|
raise KeyError("'embedding'")
|
||||||
|
|
||||||
|
# Validate embedding format
|
||||||
|
embedding = doc_dict["embedding"]
|
||||||
|
if not isinstance(embedding, list):
|
||||||
|
raise ValueError(
|
||||||
|
f"Embedding must be a list, got {type(embedding).__name__}"
|
||||||
|
)
|
||||||
|
|
||||||
|
if not embedding:
|
||||||
|
raise ValueError("Embedding cannot be empty")
|
||||||
|
|
||||||
|
# Check that all embedding values are numbers
|
||||||
|
for i, val in enumerate(embedding):
|
||||||
|
if not isinstance(val, (int, float)) or val != val: # NaN check
|
||||||
|
raise ValueError(
|
||||||
|
f"Embedding contains invalid value at index {i}: {val}"
|
||||||
|
)
|
||||||
|
|
||||||
return Document(
|
return Document(
|
||||||
id=doc_dict["id"],
|
id=doc_dict["id"],
|
||||||
text=doc_dict["text"],
|
text=doc_dict["text"],
|
||||||
embedding=doc_dict["embedding"],
|
embedding=embedding,
|
||||||
category=doc_dict.get("category"),
|
category=doc_dict.get("category"),
|
||||||
subcategory=doc_dict.get("subcategory"),
|
subcategory=doc_dict.get("subcategory"),
|
||||||
tags=doc_dict.get("tags"),
|
tags=doc_dict.get("tags"),
|
||||||
|
@@ -1,6 +1,7 @@
|
|||||||
import numpy as np
|
import numpy as np
|
||||||
from typing import List, Optional, Tuple
|
from typing import List, Optional, Tuple
|
||||||
from ..models.schemas import Document, ProcessedData
|
from ..models.schemas import Document, ProcessedData
|
||||||
|
from ..models.field_mapper import FieldMapper
|
||||||
from .parser import NDJSONParser
|
from .parser import NDJSONParser
|
||||||
|
|
||||||
|
|
||||||
@@ -26,6 +27,42 @@ class DataProcessor:
|
|||||||
except Exception as e:
|
except Exception as e:
|
||||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||||
|
|
||||||
|
def process_opensearch_data(
|
||||||
|
self, raw_documents: List[dict], field_mapping
|
||||||
|
) -> ProcessedData:
|
||||||
|
"""Process raw OpenSearch documents using field mapping."""
|
||||||
|
try:
|
||||||
|
# Transform documents using field mapping
|
||||||
|
transformed_docs = FieldMapper.transform_documents(
|
||||||
|
raw_documents, field_mapping
|
||||||
|
)
|
||||||
|
|
||||||
|
# Parse transformed documents
|
||||||
|
documents = []
|
||||||
|
for doc_dict in transformed_docs:
|
||||||
|
try:
|
||||||
|
# Ensure required fields are present with defaults if needed
|
||||||
|
if "id" not in doc_dict or not doc_dict["id"]:
|
||||||
|
doc_dict["id"] = f"doc_{len(documents)}"
|
||||||
|
|
||||||
|
doc = Document(**doc_dict)
|
||||||
|
documents.append(doc)
|
||||||
|
except Exception:
|
||||||
|
continue # Skip invalid documents
|
||||||
|
|
||||||
|
if not documents:
|
||||||
|
return ProcessedData(
|
||||||
|
documents=[],
|
||||||
|
embeddings=np.array([]),
|
||||||
|
error="No valid documents after transformation",
|
||||||
|
)
|
||||||
|
|
||||||
|
embeddings = self._extract_embeddings(documents)
|
||||||
|
return ProcessedData(documents=documents, embeddings=embeddings)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||||
|
|
||||||
def _extract_embeddings(self, documents: List[Document]) -> np.ndarray:
|
def _extract_embeddings(self, documents: List[Document]) -> np.ndarray:
|
||||||
if not documents:
|
if not documents:
|
||||||
return np.array([])
|
return np.array([])
|
||||||
|
0
src/embeddingbuddy/data/sources/__init__.py
Normal file
0
src/embeddingbuddy/data/sources/__init__.py
Normal file
189
src/embeddingbuddy/data/sources/opensearch.py
Normal file
189
src/embeddingbuddy/data/sources/opensearch.py
Normal file
@@ -0,0 +1,189 @@
|
|||||||
|
from typing import Dict, List, Optional, Any, Tuple
|
||||||
|
import logging
|
||||||
|
from opensearchpy import OpenSearch
|
||||||
|
from opensearchpy.exceptions import OpenSearchException
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
class OpenSearchClient:
|
||||||
|
def __init__(self):
|
||||||
|
self.client: Optional[OpenSearch] = None
|
||||||
|
self.connection_info: Optional[Dict[str, Any]] = None
|
||||||
|
|
||||||
|
def connect(
|
||||||
|
self,
|
||||||
|
url: str,
|
||||||
|
username: Optional[str] = None,
|
||||||
|
password: Optional[str] = None,
|
||||||
|
api_key: Optional[str] = None,
|
||||||
|
verify_certs: bool = True,
|
||||||
|
) -> Tuple[bool, str]:
|
||||||
|
"""
|
||||||
|
Connect to OpenSearch instance.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (success: bool, message: str)
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
# Parse URL to extract host and port
|
||||||
|
if url.startswith("http://") or url.startswith("https://"):
|
||||||
|
host = url
|
||||||
|
else:
|
||||||
|
host = f"https://{url}"
|
||||||
|
|
||||||
|
# Build auth configuration
|
||||||
|
auth_config = {}
|
||||||
|
if username and password:
|
||||||
|
auth_config["http_auth"] = (username, password)
|
||||||
|
elif api_key:
|
||||||
|
auth_config["api_key"] = api_key
|
||||||
|
|
||||||
|
# Create client
|
||||||
|
self.client = OpenSearch([host], verify_certs=verify_certs, **auth_config)
|
||||||
|
|
||||||
|
# Test connection
|
||||||
|
info = self.client.info()
|
||||||
|
self.connection_info = {
|
||||||
|
"url": host,
|
||||||
|
"cluster_name": info.get("cluster_name", "Unknown"),
|
||||||
|
"version": info.get("version", {}).get("number", "Unknown"),
|
||||||
|
}
|
||||||
|
|
||||||
|
return (
|
||||||
|
True,
|
||||||
|
f"Connected to {info.get('cluster_name', 'OpenSearch cluster')}",
|
||||||
|
)
|
||||||
|
|
||||||
|
except OpenSearchException as e:
|
||||||
|
logger.error(f"OpenSearch connection error: {e}")
|
||||||
|
return False, f"Connection failed: {str(e)}"
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Unexpected error connecting to OpenSearch: {e}")
|
||||||
|
return False, f"Unexpected error: {str(e)}"
|
||||||
|
|
||||||
|
def get_index_mapping(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
|
||||||
|
"""
|
||||||
|
Get the mapping for a specific index.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (success: bool, mapping: Dict or None, message: str)
|
||||||
|
"""
|
||||||
|
if not self.client:
|
||||||
|
return False, None, "Not connected to OpenSearch"
|
||||||
|
|
||||||
|
try:
|
||||||
|
mapping = self.client.indices.get_mapping(index=index_name)
|
||||||
|
return True, mapping, "Mapping retrieved successfully"
|
||||||
|
except OpenSearchException as e:
|
||||||
|
logger.error(f"Error getting mapping for index {index_name}: {e}")
|
||||||
|
return False, None, f"Failed to get mapping: {str(e)}"
|
||||||
|
|
||||||
|
def analyze_fields(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
|
||||||
|
"""
|
||||||
|
Analyze index fields to detect potential embedding and text fields.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (success: bool, analysis: Dict or None, message: str)
|
||||||
|
"""
|
||||||
|
success, mapping, message = self.get_index_mapping(index_name)
|
||||||
|
if not success:
|
||||||
|
return False, None, message
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Extract field information from mapping
|
||||||
|
index_mapping = mapping[index_name]["mappings"]["properties"]
|
||||||
|
|
||||||
|
analysis = {
|
||||||
|
"vector_fields": [],
|
||||||
|
"text_fields": [],
|
||||||
|
"keyword_fields": [],
|
||||||
|
"numeric_fields": [],
|
||||||
|
"all_fields": [],
|
||||||
|
}
|
||||||
|
|
||||||
|
for field_name, field_info in index_mapping.items():
|
||||||
|
field_type = field_info.get("type", "unknown")
|
||||||
|
analysis["all_fields"].append(field_name)
|
||||||
|
|
||||||
|
if field_type == "dense_vector":
|
||||||
|
analysis["vector_fields"].append(
|
||||||
|
{
|
||||||
|
"name": field_name,
|
||||||
|
"dimension": field_info.get("dimension", "unknown"),
|
||||||
|
}
|
||||||
|
)
|
||||||
|
elif field_type == "text":
|
||||||
|
analysis["text_fields"].append(field_name)
|
||||||
|
elif field_type == "keyword":
|
||||||
|
analysis["keyword_fields"].append(field_name)
|
||||||
|
elif field_type in ["integer", "long", "float", "double"]:
|
||||||
|
analysis["numeric_fields"].append(field_name)
|
||||||
|
|
||||||
|
return True, analysis, "Field analysis completed"
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error analyzing fields: {e}")
|
||||||
|
return False, None, f"Field analysis failed: {str(e)}"
|
||||||
|
|
||||||
|
def fetch_sample_data(
|
||||||
|
self, index_name: str, size: int = 5
|
||||||
|
) -> Tuple[bool, List[Dict], str]:
|
||||||
|
"""
|
||||||
|
Fetch sample documents from the index.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (success: bool, documents: List[Dict], message: str)
|
||||||
|
"""
|
||||||
|
if not self.client:
|
||||||
|
return False, [], "Not connected to OpenSearch"
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = self.client.search(
|
||||||
|
index=index_name, body={"query": {"match_all": {}}, "size": size}
|
||||||
|
)
|
||||||
|
|
||||||
|
documents = [hit["_source"] for hit in response["hits"]["hits"]]
|
||||||
|
return True, documents, f"Retrieved {len(documents)} sample documents"
|
||||||
|
|
||||||
|
except OpenSearchException as e:
|
||||||
|
logger.error(f"Error fetching sample data: {e}")
|
||||||
|
return False, [], f"Failed to fetch sample data: {str(e)}"
|
||||||
|
|
||||||
|
def fetch_data(
|
||||||
|
self, index_name: str, size: int = 100
|
||||||
|
) -> Tuple[bool, List[Dict], str]:
|
||||||
|
"""
|
||||||
|
Fetch documents from the index.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Tuple of (success: bool, documents: List[Dict], message: str)
|
||||||
|
"""
|
||||||
|
if not self.client:
|
||||||
|
return False, [], "Not connected to OpenSearch"
|
||||||
|
|
||||||
|
try:
|
||||||
|
response = self.client.search(
|
||||||
|
index=index_name, body={"query": {"match_all": {}}, "size": size}
|
||||||
|
)
|
||||||
|
|
||||||
|
documents = [hit["_source"] for hit in response["hits"]["hits"]]
|
||||||
|
total_hits = response["hits"]["total"]["value"]
|
||||||
|
|
||||||
|
message = f"Retrieved {len(documents)} documents from {total_hits} total"
|
||||||
|
return True, documents, message
|
||||||
|
|
||||||
|
except OpenSearchException as e:
|
||||||
|
logger.error(f"Error fetching data: {e}")
|
||||||
|
return False, [], f"Failed to fetch data: {str(e)}"
|
||||||
|
|
||||||
|
def disconnect(self):
|
||||||
|
"""Disconnect from OpenSearch."""
|
||||||
|
if self.client:
|
||||||
|
self.client = None
|
||||||
|
self.connection_info = None
|
||||||
|
|
||||||
|
def is_connected(self) -> bool:
|
||||||
|
"""Check if connected to OpenSearch."""
|
||||||
|
return self.client is not None
|
254
src/embeddingbuddy/models/field_mapper.py
Normal file
254
src/embeddingbuddy/models/field_mapper.py
Normal file
@@ -0,0 +1,254 @@
|
|||||||
|
from dataclasses import dataclass
|
||||||
|
from typing import Dict, List, Optional, Any
|
||||||
|
import logging
|
||||||
|
|
||||||
|
|
||||||
|
logger = logging.getLogger(__name__)
|
||||||
|
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class FieldMapping:
|
||||||
|
"""Configuration for mapping OpenSearch fields to standard format."""
|
||||||
|
|
||||||
|
embedding_field: str
|
||||||
|
text_field: str
|
||||||
|
id_field: Optional[str] = None
|
||||||
|
category_field: Optional[str] = None
|
||||||
|
subcategory_field: Optional[str] = None
|
||||||
|
tags_field: Optional[str] = None
|
||||||
|
|
||||||
|
|
||||||
|
class FieldMapper:
|
||||||
|
"""Handles field mapping and data transformation from OpenSearch to standard format."""
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def suggest_mappings(field_analysis: Dict) -> Dict[str, List[str]]:
|
||||||
|
"""
|
||||||
|
Suggest field mappings based on field analysis.
|
||||||
|
|
||||||
|
Each dropdown will show ALL available fields, but ordered by relevance
|
||||||
|
with the most likely candidates first.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
field_analysis: Analysis results from OpenSearchClient.analyze_fields
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
Dictionary with suggested fields for each mapping (ordered by relevance)
|
||||||
|
"""
|
||||||
|
all_fields = field_analysis.get("all_fields", [])
|
||||||
|
vector_fields = [vf["name"] for vf in field_analysis.get("vector_fields", [])]
|
||||||
|
text_fields = field_analysis.get("text_fields", [])
|
||||||
|
keyword_fields = field_analysis.get("keyword_fields", [])
|
||||||
|
|
||||||
|
# Helper function to create ordered suggestions
|
||||||
|
def create_ordered_suggestions(primary_candidates, all_available_fields):
|
||||||
|
# Start with primary candidates, then add all other fields
|
||||||
|
ordered = []
|
||||||
|
# Add primary candidates first
|
||||||
|
for field in primary_candidates:
|
||||||
|
if field in all_available_fields and field not in ordered:
|
||||||
|
ordered.append(field)
|
||||||
|
# Add remaining fields
|
||||||
|
for field in all_available_fields:
|
||||||
|
if field not in ordered:
|
||||||
|
ordered.append(field)
|
||||||
|
return ordered
|
||||||
|
|
||||||
|
suggestions = {}
|
||||||
|
|
||||||
|
# Embedding field suggestions (vector fields first, then name-based candidates, then all fields)
|
||||||
|
embedding_candidates = vector_fields.copy()
|
||||||
|
# Add fields that likely contain embeddings based on name
|
||||||
|
embedding_name_candidates = [
|
||||||
|
f
|
||||||
|
for f in all_fields
|
||||||
|
if any(
|
||||||
|
keyword in f.lower()
|
||||||
|
for keyword in ["embedding", "embeddings", "vector", "vectors", "embed"]
|
||||||
|
)
|
||||||
|
]
|
||||||
|
# Add name-based candidates that aren't already in vector_fields
|
||||||
|
for candidate in embedding_name_candidates:
|
||||||
|
if candidate not in embedding_candidates:
|
||||||
|
embedding_candidates.append(candidate)
|
||||||
|
suggestions["embedding"] = create_ordered_suggestions(
|
||||||
|
embedding_candidates, all_fields
|
||||||
|
)
|
||||||
|
|
||||||
|
# Text field suggestions (text fields first, then all fields)
|
||||||
|
text_candidates = text_fields.copy()
|
||||||
|
suggestions["text"] = create_ordered_suggestions(text_candidates, all_fields)
|
||||||
|
|
||||||
|
# ID field suggestions (ID-like fields first, then all fields)
|
||||||
|
id_candidates = [
|
||||||
|
f
|
||||||
|
for f in keyword_fields
|
||||||
|
if any(keyword in f.lower() for keyword in ["id", "_id", "doc", "document"])
|
||||||
|
]
|
||||||
|
id_candidates.append("_id") # _id is always available
|
||||||
|
suggestions["id"] = create_ordered_suggestions(id_candidates, all_fields)
|
||||||
|
|
||||||
|
# Category field suggestions (category-like fields first, then all fields)
|
||||||
|
category_candidates = [
|
||||||
|
f
|
||||||
|
for f in keyword_fields
|
||||||
|
if any(
|
||||||
|
keyword in f.lower()
|
||||||
|
for keyword in ["category", "class", "type", "label"]
|
||||||
|
)
|
||||||
|
]
|
||||||
|
suggestions["category"] = create_ordered_suggestions(
|
||||||
|
category_candidates, all_fields
|
||||||
|
)
|
||||||
|
|
||||||
|
# Subcategory field suggestions (subcategory-like fields first, then all fields)
|
||||||
|
subcategory_candidates = [
|
||||||
|
f
|
||||||
|
for f in keyword_fields
|
||||||
|
if any(
|
||||||
|
keyword in f.lower()
|
||||||
|
for keyword in ["subcategory", "subclass", "subtype", "subtopic"]
|
||||||
|
)
|
||||||
|
]
|
||||||
|
suggestions["subcategory"] = create_ordered_suggestions(
|
||||||
|
subcategory_candidates, all_fields
|
||||||
|
)
|
||||||
|
|
||||||
|
# Tags field suggestions (tag-like fields first, then all fields)
|
||||||
|
tags_candidates = [
|
||||||
|
f
|
||||||
|
for f in keyword_fields
|
||||||
|
if any(
|
||||||
|
keyword in f.lower()
|
||||||
|
for keyword in ["tag", "tags", "keyword", "keywords"]
|
||||||
|
)
|
||||||
|
]
|
||||||
|
suggestions["tags"] = create_ordered_suggestions(tags_candidates, all_fields)
|
||||||
|
|
||||||
|
return suggestions
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def validate_mapping(
|
||||||
|
mapping: FieldMapping, available_fields: List[str]
|
||||||
|
) -> List[str]:
|
||||||
|
"""
|
||||||
|
Validate that the field mapping is correct.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of validation errors (empty if valid)
|
||||||
|
"""
|
||||||
|
errors = []
|
||||||
|
|
||||||
|
# Required fields validation
|
||||||
|
if not mapping.embedding_field:
|
||||||
|
errors.append("Embedding field is required")
|
||||||
|
elif mapping.embedding_field not in available_fields:
|
||||||
|
errors.append(
|
||||||
|
f"Embedding field '{mapping.embedding_field}' not found in index"
|
||||||
|
)
|
||||||
|
|
||||||
|
if not mapping.text_field:
|
||||||
|
errors.append("Text field is required")
|
||||||
|
elif mapping.text_field not in available_fields:
|
||||||
|
errors.append(f"Text field '{mapping.text_field}' not found in index")
|
||||||
|
|
||||||
|
# Optional fields validation
|
||||||
|
optional_fields = {
|
||||||
|
"id_field": mapping.id_field,
|
||||||
|
"category_field": mapping.category_field,
|
||||||
|
"subcategory_field": mapping.subcategory_field,
|
||||||
|
"tags_field": mapping.tags_field,
|
||||||
|
}
|
||||||
|
|
||||||
|
for field_name, field_value in optional_fields.items():
|
||||||
|
if field_value and field_value not in available_fields:
|
||||||
|
errors.append(
|
||||||
|
f"Field '{field_value}' for {field_name} not found in index"
|
||||||
|
)
|
||||||
|
|
||||||
|
return errors
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def transform_documents(
|
||||||
|
documents: List[Dict[str, Any]], mapping: FieldMapping
|
||||||
|
) -> List[Dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Transform OpenSearch documents to standard format using field mapping.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
documents: Raw documents from OpenSearch
|
||||||
|
mapping: Field mapping configuration
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List of transformed documents in standard format
|
||||||
|
"""
|
||||||
|
transformed = []
|
||||||
|
|
||||||
|
for doc in documents:
|
||||||
|
try:
|
||||||
|
# Build standard format document
|
||||||
|
standard_doc = {}
|
||||||
|
|
||||||
|
# Required fields
|
||||||
|
if mapping.embedding_field in doc:
|
||||||
|
standard_doc["embedding"] = doc[mapping.embedding_field]
|
||||||
|
else:
|
||||||
|
logger.warning(
|
||||||
|
f"Missing embedding field '{mapping.embedding_field}' in document"
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
|
||||||
|
if mapping.text_field in doc:
|
||||||
|
standard_doc["text"] = str(doc[mapping.text_field])
|
||||||
|
else:
|
||||||
|
logger.warning(
|
||||||
|
f"Missing text field '{mapping.text_field}' in document"
|
||||||
|
)
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Optional fields
|
||||||
|
if mapping.id_field and mapping.id_field in doc:
|
||||||
|
standard_doc["id"] = str(doc[mapping.id_field])
|
||||||
|
|
||||||
|
if mapping.category_field and mapping.category_field in doc:
|
||||||
|
standard_doc["category"] = str(doc[mapping.category_field])
|
||||||
|
|
||||||
|
if mapping.subcategory_field and mapping.subcategory_field in doc:
|
||||||
|
standard_doc["subcategory"] = str(doc[mapping.subcategory_field])
|
||||||
|
|
||||||
|
if mapping.tags_field and mapping.tags_field in doc:
|
||||||
|
tags = doc[mapping.tags_field]
|
||||||
|
# Handle both string and list tags
|
||||||
|
if isinstance(tags, list):
|
||||||
|
standard_doc["tags"] = [str(tag) for tag in tags]
|
||||||
|
else:
|
||||||
|
standard_doc["tags"] = [str(tags)]
|
||||||
|
|
||||||
|
transformed.append(standard_doc)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Error transforming document: {e}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
logger.info(f"Transformed {len(transformed)} documents out of {len(documents)}")
|
||||||
|
return transformed
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def create_mapping_from_dict(mapping_dict: Dict[str, str]) -> FieldMapping:
|
||||||
|
"""
|
||||||
|
Create a FieldMapping from a dictionary.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
mapping_dict: Dictionary with field mappings
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
FieldMapping instance
|
||||||
|
"""
|
||||||
|
return FieldMapping(
|
||||||
|
embedding_field=mapping_dict.get("embedding", ""),
|
||||||
|
text_field=mapping_dict.get("text", ""),
|
||||||
|
id_field=mapping_dict.get("id") or None,
|
||||||
|
category_field=mapping_dict.get("category") or None,
|
||||||
|
subcategory_field=mapping_dict.get("subcategory") or None,
|
||||||
|
tags_field=mapping_dict.get("tags") or None,
|
||||||
|
)
|
@@ -1,38 +1,60 @@
|
|||||||
from dash import callback, Input, Output, State
|
from dash import callback, Input, Output, State, no_update
|
||||||
from ...data.processor import DataProcessor
|
from ...data.processor import DataProcessor
|
||||||
|
from ...data.sources.opensearch import OpenSearchClient
|
||||||
|
from ...models.field_mapper import FieldMapper
|
||||||
|
from ...config.settings import AppSettings
|
||||||
|
|
||||||
|
|
||||||
class DataProcessingCallbacks:
|
class DataProcessingCallbacks:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.processor = DataProcessor()
|
self.processor = DataProcessor()
|
||||||
|
self.opensearch_client_data = OpenSearchClient() # For data/documents
|
||||||
|
self.opensearch_client_prompts = OpenSearchClient() # For prompts
|
||||||
self._register_callbacks()
|
self._register_callbacks()
|
||||||
|
|
||||||
def _register_callbacks(self):
|
def _register_callbacks(self):
|
||||||
@callback(
|
@callback(
|
||||||
Output("processed-data", "data"),
|
[
|
||||||
|
Output("processed-data", "data", allow_duplicate=True),
|
||||||
|
Output("upload-error-alert", "children", allow_duplicate=True),
|
||||||
|
Output("upload-error-alert", "is_open", allow_duplicate=True),
|
||||||
|
],
|
||||||
Input("upload-data", "contents"),
|
Input("upload-data", "contents"),
|
||||||
State("upload-data", "filename"),
|
State("upload-data", "filename"),
|
||||||
|
prevent_initial_call=True,
|
||||||
)
|
)
|
||||||
def process_uploaded_file(contents, filename):
|
def process_uploaded_file(contents, filename):
|
||||||
if contents is None:
|
if contents is None:
|
||||||
return None
|
return None, "", False
|
||||||
|
|
||||||
processed_data = self.processor.process_upload(contents, filename)
|
processed_data = self.processor.process_upload(contents, filename)
|
||||||
|
|
||||||
if processed_data.error:
|
if processed_data.error:
|
||||||
return {"error": processed_data.error}
|
error_message = self._format_error_message(
|
||||||
|
processed_data.error, filename
|
||||||
|
)
|
||||||
|
return (
|
||||||
|
{"error": processed_data.error},
|
||||||
|
error_message,
|
||||||
|
True, # Show error alert
|
||||||
|
)
|
||||||
|
|
||||||
return {
|
return (
|
||||||
"documents": [
|
{
|
||||||
self._document_to_dict(doc) for doc in processed_data.documents
|
"documents": [
|
||||||
],
|
self._document_to_dict(doc) for doc in processed_data.documents
|
||||||
"embeddings": processed_data.embeddings.tolist(),
|
],
|
||||||
}
|
"embeddings": processed_data.embeddings.tolist(),
|
||||||
|
},
|
||||||
|
"",
|
||||||
|
False, # Hide error alert
|
||||||
|
)
|
||||||
|
|
||||||
@callback(
|
@callback(
|
||||||
Output("processed-prompts", "data"),
|
Output("processed-prompts", "data", allow_duplicate=True),
|
||||||
Input("upload-prompts", "contents"),
|
Input("upload-prompts", "contents"),
|
||||||
State("upload-prompts", "filename"),
|
State("upload-prompts", "filename"),
|
||||||
|
prevent_initial_call=True,
|
||||||
)
|
)
|
||||||
def process_uploaded_prompts(contents, filename):
|
def process_uploaded_prompts(contents, filename):
|
||||||
if contents is None:
|
if contents is None:
|
||||||
@@ -50,6 +72,397 @@ class DataProcessingCallbacks:
|
|||||||
"embeddings": processed_data.embeddings.tolist(),
|
"embeddings": processed_data.embeddings.tolist(),
|
||||||
}
|
}
|
||||||
|
|
||||||
|
# OpenSearch callbacks
|
||||||
|
@callback(
|
||||||
|
[
|
||||||
|
Output("tab-content", "children"),
|
||||||
|
],
|
||||||
|
[Input("data-source-tabs", "active_tab")],
|
||||||
|
prevent_initial_call=False,
|
||||||
|
)
|
||||||
|
def render_tab_content(active_tab):
|
||||||
|
from ...ui.components.datasource import DataSourceComponent
|
||||||
|
|
||||||
|
datasource = DataSourceComponent()
|
||||||
|
|
||||||
|
if active_tab == "opensearch-tab":
|
||||||
|
return [datasource.create_opensearch_tab()]
|
||||||
|
else:
|
||||||
|
return [datasource.create_file_upload_tab()]
|
||||||
|
|
||||||
|
# Register callbacks for both data and prompts sections
|
||||||
|
self._register_opensearch_callbacks("data", self.opensearch_client_data)
|
||||||
|
self._register_opensearch_callbacks("prompts", self.opensearch_client_prompts)
|
||||||
|
|
||||||
|
# Register collapsible section callbacks
|
||||||
|
self._register_collapse_callbacks()
|
||||||
|
|
||||||
|
def _register_opensearch_callbacks(self, section_type, opensearch_client):
|
||||||
|
"""Register callbacks for a specific section (data or prompts)."""
|
||||||
|
|
||||||
|
@callback(
|
||||||
|
Output(f"{section_type}-auth-collapse", "is_open"),
|
||||||
|
[Input(f"{section_type}-auth-toggle", "n_clicks")],
|
||||||
|
[State(f"{section_type}-auth-collapse", "is_open")],
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def toggle_auth(n_clicks, is_open):
|
||||||
|
if n_clicks:
|
||||||
|
return not is_open
|
||||||
|
return is_open
|
||||||
|
|
||||||
|
@callback(
|
||||||
|
Output(f"{section_type}-auth-toggle", "children"),
|
||||||
|
[Input(f"{section_type}-auth-collapse", "is_open")],
|
||||||
|
prevent_initial_call=False,
|
||||||
|
)
|
||||||
|
def update_auth_button_text(is_open):
|
||||||
|
return "Hide Authentication" if is_open else "Show Authentication"
|
||||||
|
|
||||||
|
@callback(
|
||||||
|
[
|
||||||
|
Output(f"{section_type}-connection-status", "children"),
|
||||||
|
Output(f"{section_type}-field-mapping-section", "children"),
|
||||||
|
Output(f"{section_type}-field-mapping-section", "style"),
|
||||||
|
Output(f"{section_type}-load-data-section", "style"),
|
||||||
|
Output(f"{section_type}-load-opensearch-data-btn", "disabled"),
|
||||||
|
Output(f"{section_type}-embedding-field-dropdown", "options"),
|
||||||
|
Output(f"{section_type}-text-field-dropdown", "options"),
|
||||||
|
Output(f"{section_type}-id-field-dropdown", "options"),
|
||||||
|
Output(f"{section_type}-category-field-dropdown", "options"),
|
||||||
|
Output(f"{section_type}-subcategory-field-dropdown", "options"),
|
||||||
|
Output(f"{section_type}-tags-field-dropdown", "options"),
|
||||||
|
],
|
||||||
|
[Input(f"{section_type}-test-connection-btn", "n_clicks")],
|
||||||
|
[
|
||||||
|
State(f"{section_type}-opensearch-url", "value"),
|
||||||
|
State(f"{section_type}-opensearch-index", "value"),
|
||||||
|
State(f"{section_type}-opensearch-username", "value"),
|
||||||
|
State(f"{section_type}-opensearch-password", "value"),
|
||||||
|
State(f"{section_type}-opensearch-api-key", "value"),
|
||||||
|
],
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def test_opensearch_connection(
|
||||||
|
n_clicks, url, index_name, username, password, api_key
|
||||||
|
):
|
||||||
|
if not n_clicks or not url or not index_name:
|
||||||
|
return (
|
||||||
|
no_update,
|
||||||
|
no_update,
|
||||||
|
no_update,
|
||||||
|
no_update,
|
||||||
|
no_update,
|
||||||
|
no_update,
|
||||||
|
no_update,
|
||||||
|
no_update,
|
||||||
|
no_update,
|
||||||
|
no_update,
|
||||||
|
no_update,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Test connection
|
||||||
|
success, message = opensearch_client.connect(
|
||||||
|
url=url,
|
||||||
|
username=username,
|
||||||
|
password=password,
|
||||||
|
api_key=api_key,
|
||||||
|
verify_certs=AppSettings.OPENSEARCH_VERIFY_CERTS,
|
||||||
|
)
|
||||||
|
|
||||||
|
if not success:
|
||||||
|
return (
|
||||||
|
self._create_status_alert(f"❌ {message}", "danger"),
|
||||||
|
[],
|
||||||
|
{"display": "none"},
|
||||||
|
{"display": "none"},
|
||||||
|
True,
|
||||||
|
[], # empty options for hidden dropdowns
|
||||||
|
[],
|
||||||
|
[],
|
||||||
|
[],
|
||||||
|
[],
|
||||||
|
[],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Analyze fields
|
||||||
|
success, field_analysis, analysis_message = (
|
||||||
|
opensearch_client.analyze_fields(index_name)
|
||||||
|
)
|
||||||
|
|
||||||
|
if not success:
|
||||||
|
return (
|
||||||
|
self._create_status_alert(f"❌ {analysis_message}", "danger"),
|
||||||
|
[],
|
||||||
|
{"display": "none"},
|
||||||
|
{"display": "none"},
|
||||||
|
True,
|
||||||
|
[], # empty options for hidden dropdowns
|
||||||
|
[],
|
||||||
|
[],
|
||||||
|
[],
|
||||||
|
[],
|
||||||
|
[],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Generate field suggestions
|
||||||
|
field_suggestions = FieldMapper.suggest_mappings(field_analysis)
|
||||||
|
|
||||||
|
from ...ui.components.datasource import DataSourceComponent
|
||||||
|
|
||||||
|
datasource = DataSourceComponent()
|
||||||
|
field_mapping_ui = datasource.create_field_mapping_interface(
|
||||||
|
field_suggestions, section_type
|
||||||
|
)
|
||||||
|
|
||||||
|
return (
|
||||||
|
self._create_status_alert(f"✅ {message}", "success"),
|
||||||
|
field_mapping_ui,
|
||||||
|
{"display": "block"},
|
||||||
|
{"display": "block"},
|
||||||
|
False,
|
||||||
|
[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get("embedding", [])
|
||||||
|
],
|
||||||
|
[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get("text", [])
|
||||||
|
],
|
||||||
|
[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get("id", [])
|
||||||
|
],
|
||||||
|
[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get("category", [])
|
||||||
|
],
|
||||||
|
[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get("subcategory", [])
|
||||||
|
],
|
||||||
|
[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get("tags", [])
|
||||||
|
],
|
||||||
|
)
|
||||||
|
|
||||||
|
# Determine output target based on section type
|
||||||
|
output_target = (
|
||||||
|
"processed-data" if section_type == "data" else "processed-prompts"
|
||||||
|
)
|
||||||
|
|
||||||
|
@callback(
|
||||||
|
[
|
||||||
|
Output(output_target, "data", allow_duplicate=True),
|
||||||
|
Output("opensearch-success-alert", "children", allow_duplicate=True),
|
||||||
|
Output("opensearch-success-alert", "is_open", allow_duplicate=True),
|
||||||
|
Output("opensearch-error-alert", "children", allow_duplicate=True),
|
||||||
|
Output("opensearch-error-alert", "is_open", allow_duplicate=True),
|
||||||
|
],
|
||||||
|
[Input(f"{section_type}-load-opensearch-data-btn", "n_clicks")],
|
||||||
|
[
|
||||||
|
State(f"{section_type}-opensearch-index", "value"),
|
||||||
|
State(f"{section_type}-opensearch-query-size", "value"),
|
||||||
|
State(f"{section_type}-embedding-field-dropdown-ui", "value"),
|
||||||
|
State(f"{section_type}-text-field-dropdown-ui", "value"),
|
||||||
|
State(f"{section_type}-id-field-dropdown-ui", "value"),
|
||||||
|
State(f"{section_type}-category-field-dropdown-ui", "value"),
|
||||||
|
State(f"{section_type}-subcategory-field-dropdown-ui", "value"),
|
||||||
|
State(f"{section_type}-tags-field-dropdown-ui", "value"),
|
||||||
|
],
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def load_opensearch_data(
|
||||||
|
n_clicks,
|
||||||
|
index_name,
|
||||||
|
query_size,
|
||||||
|
embedding_field,
|
||||||
|
text_field,
|
||||||
|
id_field,
|
||||||
|
category_field,
|
||||||
|
subcategory_field,
|
||||||
|
tags_field,
|
||||||
|
):
|
||||||
|
if not n_clicks or not index_name or not embedding_field or not text_field:
|
||||||
|
return no_update, no_update, no_update, no_update, no_update
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Validate and set query size
|
||||||
|
if not query_size or query_size < 1:
|
||||||
|
query_size = AppSettings.OPENSEARCH_DEFAULT_SIZE
|
||||||
|
elif query_size > 1000:
|
||||||
|
query_size = 1000 # Cap at reasonable maximum
|
||||||
|
|
||||||
|
# Create field mapping
|
||||||
|
field_mapping = FieldMapper.create_mapping_from_dict(
|
||||||
|
{
|
||||||
|
"embedding": embedding_field,
|
||||||
|
"text": text_field,
|
||||||
|
"id": id_field,
|
||||||
|
"category": category_field,
|
||||||
|
"subcategory": subcategory_field,
|
||||||
|
"tags": tags_field,
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# Fetch data from OpenSearch
|
||||||
|
success, raw_documents, message = opensearch_client.fetch_data(
|
||||||
|
index_name, size=query_size
|
||||||
|
)
|
||||||
|
|
||||||
|
if not success:
|
||||||
|
return (
|
||||||
|
no_update,
|
||||||
|
"",
|
||||||
|
False,
|
||||||
|
f"❌ Failed to fetch {section_type}: {message}",
|
||||||
|
True,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process the data
|
||||||
|
processed_data = self.processor.process_opensearch_data(
|
||||||
|
raw_documents, field_mapping
|
||||||
|
)
|
||||||
|
|
||||||
|
if processed_data.error:
|
||||||
|
return (
|
||||||
|
{"error": processed_data.error},
|
||||||
|
"",
|
||||||
|
False,
|
||||||
|
f"❌ {section_type.title()} processing error: {processed_data.error}",
|
||||||
|
True,
|
||||||
|
)
|
||||||
|
|
||||||
|
success_message = f"✅ Successfully loaded {len(processed_data.documents)} {section_type} from OpenSearch"
|
||||||
|
|
||||||
|
# Format for appropriate target (data vs prompts)
|
||||||
|
if section_type == "data":
|
||||||
|
return (
|
||||||
|
{
|
||||||
|
"documents": [
|
||||||
|
self._document_to_dict(doc)
|
||||||
|
for doc in processed_data.documents
|
||||||
|
],
|
||||||
|
"embeddings": processed_data.embeddings.tolist(),
|
||||||
|
},
|
||||||
|
success_message,
|
||||||
|
True,
|
||||||
|
"",
|
||||||
|
False,
|
||||||
|
)
|
||||||
|
else: # prompts
|
||||||
|
return (
|
||||||
|
{
|
||||||
|
"prompts": [
|
||||||
|
self._document_to_dict(doc)
|
||||||
|
for doc in processed_data.documents
|
||||||
|
],
|
||||||
|
"embeddings": processed_data.embeddings.tolist(),
|
||||||
|
},
|
||||||
|
success_message,
|
||||||
|
True,
|
||||||
|
"",
|
||||||
|
False,
|
||||||
|
)
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
return (no_update, "", False, f"❌ Unexpected error: {str(e)}", True)
|
||||||
|
|
||||||
|
# Sync callbacks to update hidden dropdowns from UI dropdowns
|
||||||
|
@callback(
|
||||||
|
Output(f"{section_type}-embedding-field-dropdown", "value"),
|
||||||
|
Input(f"{section_type}-embedding-field-dropdown-ui", "value"),
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def sync_embedding_dropdown(value):
|
||||||
|
return value
|
||||||
|
|
||||||
|
@callback(
|
||||||
|
Output(f"{section_type}-text-field-dropdown", "value"),
|
||||||
|
Input(f"{section_type}-text-field-dropdown-ui", "value"),
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def sync_text_dropdown(value):
|
||||||
|
return value
|
||||||
|
|
||||||
|
@callback(
|
||||||
|
Output(f"{section_type}-id-field-dropdown", "value"),
|
||||||
|
Input(f"{section_type}-id-field-dropdown-ui", "value"),
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def sync_id_dropdown(value):
|
||||||
|
return value
|
||||||
|
|
||||||
|
@callback(
|
||||||
|
Output(f"{section_type}-category-field-dropdown", "value"),
|
||||||
|
Input(f"{section_type}-category-field-dropdown-ui", "value"),
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def sync_category_dropdown(value):
|
||||||
|
return value
|
||||||
|
|
||||||
|
@callback(
|
||||||
|
Output(f"{section_type}-subcategory-field-dropdown", "value"),
|
||||||
|
Input(f"{section_type}-subcategory-field-dropdown-ui", "value"),
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def sync_subcategory_dropdown(value):
|
||||||
|
return value
|
||||||
|
|
||||||
|
@callback(
|
||||||
|
Output(f"{section_type}-tags-field-dropdown", "value"),
|
||||||
|
Input(f"{section_type}-tags-field-dropdown-ui", "value"),
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def sync_tags_dropdown(value):
|
||||||
|
return value
|
||||||
|
|
||||||
|
def _register_collapse_callbacks(self):
|
||||||
|
"""Register callbacks for collapsible sections."""
|
||||||
|
|
||||||
|
# Data section collapse callback
|
||||||
|
@callback(
|
||||||
|
[
|
||||||
|
Output("data-collapse", "is_open"),
|
||||||
|
Output("data-collapse-icon", "className"),
|
||||||
|
],
|
||||||
|
[Input("data-collapse-toggle", "n_clicks")],
|
||||||
|
[State("data-collapse", "is_open")],
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def toggle_data_collapse(n_clicks, is_open):
|
||||||
|
if n_clicks:
|
||||||
|
new_state = not is_open
|
||||||
|
icon_class = (
|
||||||
|
"fas fa-chevron-down me-2"
|
||||||
|
if new_state
|
||||||
|
else "fas fa-chevron-right me-2"
|
||||||
|
)
|
||||||
|
return new_state, icon_class
|
||||||
|
return is_open, "fas fa-chevron-down me-2"
|
||||||
|
|
||||||
|
# Prompts section collapse callback
|
||||||
|
@callback(
|
||||||
|
[
|
||||||
|
Output("prompts-collapse", "is_open"),
|
||||||
|
Output("prompts-collapse-icon", "className"),
|
||||||
|
],
|
||||||
|
[Input("prompts-collapse-toggle", "n_clicks")],
|
||||||
|
[State("prompts-collapse", "is_open")],
|
||||||
|
prevent_initial_call=True,
|
||||||
|
)
|
||||||
|
def toggle_prompts_collapse(n_clicks, is_open):
|
||||||
|
if n_clicks:
|
||||||
|
new_state = not is_open
|
||||||
|
icon_class = (
|
||||||
|
"fas fa-chevron-down me-2"
|
||||||
|
if new_state
|
||||||
|
else "fas fa-chevron-right me-2"
|
||||||
|
)
|
||||||
|
return new_state, icon_class
|
||||||
|
return is_open, "fas fa-chevron-down me-2"
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def _document_to_dict(doc):
|
def _document_to_dict(doc):
|
||||||
return {
|
return {
|
||||||
@@ -60,3 +473,51 @@ class DataProcessingCallbacks:
|
|||||||
"subcategory": doc.subcategory,
|
"subcategory": doc.subcategory,
|
||||||
"tags": doc.tags,
|
"tags": doc.tags,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _format_error_message(error: str, filename: str | None = None) -> str:
|
||||||
|
"""Format error message with helpful guidance for users."""
|
||||||
|
file_part = f" in file '{filename}'" if filename else ""
|
||||||
|
|
||||||
|
# Check for common error patterns and provide helpful messages
|
||||||
|
if "embedding" in error.lower() and (
|
||||||
|
"key" in error.lower() or "required field" in error.lower()
|
||||||
|
):
|
||||||
|
return (
|
||||||
|
f"❌ Missing 'embedding' field{file_part}. "
|
||||||
|
"Each line must contain an 'embedding' field with a list of numbers."
|
||||||
|
)
|
||||||
|
elif "text" in error.lower() and (
|
||||||
|
"key" in error.lower() or "required field" in error.lower()
|
||||||
|
):
|
||||||
|
return (
|
||||||
|
f"❌ Missing 'text' field{file_part}. "
|
||||||
|
"Each line must contain a 'text' field with the document content."
|
||||||
|
)
|
||||||
|
elif "json" in error.lower() and "decode" in error.lower():
|
||||||
|
return (
|
||||||
|
f"❌ Invalid JSON format{file_part}. "
|
||||||
|
"Please check that each line is valid JSON with proper syntax (quotes, braces, etc.)."
|
||||||
|
)
|
||||||
|
elif "unicode" in error.lower() or "decode" in error.lower():
|
||||||
|
return (
|
||||||
|
f"❌ File encoding issue{file_part}. "
|
||||||
|
"Please ensure the file is saved in UTF-8 format and contains no binary data."
|
||||||
|
)
|
||||||
|
elif "array" in error.lower() or "list" in error.lower():
|
||||||
|
return (
|
||||||
|
f"❌ Invalid embedding format{file_part}. "
|
||||||
|
"Embeddings must be arrays/lists of numbers, not strings or other types."
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
return (
|
||||||
|
f"❌ Error processing file{file_part}: {error}. "
|
||||||
|
"Please check that your file is valid NDJSON with required 'text' and 'embedding' fields."
|
||||||
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def _create_status_alert(message: str, color: str):
|
||||||
|
"""Create a status alert component."""
|
||||||
|
import dash_bootstrap_components as dbc
|
||||||
|
|
||||||
|
return dbc.Alert(message, color=color, className="mb-2")
|
||||||
|
519
src/embeddingbuddy/ui/components/datasource.py
Normal file
519
src/embeddingbuddy/ui/components/datasource.py
Normal file
@@ -0,0 +1,519 @@
|
|||||||
|
from dash import dcc, html
|
||||||
|
import dash_bootstrap_components as dbc
|
||||||
|
from .upload import UploadComponent
|
||||||
|
|
||||||
|
|
||||||
|
class DataSourceComponent:
|
||||||
|
def __init__(self):
|
||||||
|
self.upload_component = UploadComponent()
|
||||||
|
|
||||||
|
def create_tabbed_interface(self):
|
||||||
|
"""Create tabbed interface for different data sources."""
|
||||||
|
return dbc.Card(
|
||||||
|
[
|
||||||
|
dbc.CardHeader(
|
||||||
|
[
|
||||||
|
dbc.Tabs(
|
||||||
|
[
|
||||||
|
dbc.Tab(label="File Upload", tab_id="file-tab"),
|
||||||
|
dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
|
||||||
|
],
|
||||||
|
id="data-source-tabs",
|
||||||
|
active_tab="file-tab",
|
||||||
|
)
|
||||||
|
]
|
||||||
|
),
|
||||||
|
dbc.CardBody([html.Div(id="tab-content")]),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
def create_file_upload_tab(self):
|
||||||
|
"""Create file upload tab content."""
|
||||||
|
return html.Div(
|
||||||
|
[
|
||||||
|
self.upload_component.create_error_alert(),
|
||||||
|
self.upload_component.create_data_upload(),
|
||||||
|
self.upload_component.create_prompts_upload(),
|
||||||
|
self.upload_component.create_reset_button(),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
def create_opensearch_tab(self):
|
||||||
|
"""Create OpenSearch tab content with separate Data and Prompts sections."""
|
||||||
|
return html.Div(
|
||||||
|
[
|
||||||
|
# Data Section
|
||||||
|
dbc.Card(
|
||||||
|
[
|
||||||
|
dbc.CardHeader(
|
||||||
|
[
|
||||||
|
dbc.Button(
|
||||||
|
[
|
||||||
|
html.I(
|
||||||
|
className="fas fa-chevron-down me-2",
|
||||||
|
id="data-collapse-icon",
|
||||||
|
),
|
||||||
|
"📄 Documents/Data",
|
||||||
|
],
|
||||||
|
id="data-collapse-toggle",
|
||||||
|
color="link",
|
||||||
|
className="text-start p-0 w-100 text-decoration-none",
|
||||||
|
style={
|
||||||
|
"border": "none",
|
||||||
|
"font-size": "1.25rem",
|
||||||
|
"font-weight": "500",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
dbc.Collapse(
|
||||||
|
[dbc.CardBody([self._create_opensearch_section("data")])],
|
||||||
|
id="data-collapse",
|
||||||
|
is_open=True,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
className="mb-4",
|
||||||
|
),
|
||||||
|
# Prompts Section
|
||||||
|
dbc.Card(
|
||||||
|
[
|
||||||
|
dbc.CardHeader(
|
||||||
|
[
|
||||||
|
dbc.Button(
|
||||||
|
[
|
||||||
|
html.I(
|
||||||
|
className="fas fa-chevron-down me-2",
|
||||||
|
id="prompts-collapse-icon",
|
||||||
|
),
|
||||||
|
"💬 Prompts",
|
||||||
|
],
|
||||||
|
id="prompts-collapse-toggle",
|
||||||
|
color="link",
|
||||||
|
className="text-start p-0 w-100 text-decoration-none",
|
||||||
|
style={
|
||||||
|
"border": "none",
|
||||||
|
"font-size": "1.25rem",
|
||||||
|
"font-weight": "500",
|
||||||
|
},
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
dbc.Collapse(
|
||||||
|
[
|
||||||
|
dbc.CardBody(
|
||||||
|
[self._create_opensearch_section("prompts")]
|
||||||
|
)
|
||||||
|
],
|
||||||
|
id="prompts-collapse",
|
||||||
|
is_open=True,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
className="mb-4",
|
||||||
|
),
|
||||||
|
# Hidden dropdowns to prevent callback errors (for both sections)
|
||||||
|
html.Div(
|
||||||
|
[
|
||||||
|
# Data dropdowns (hidden sync targets)
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-embedding-field-dropdown",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-text-field-dropdown", style={"display": "none"}
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-id-field-dropdown", style={"display": "none"}
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-category-field-dropdown", style={"display": "none"}
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-subcategory-field-dropdown",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-tags-field-dropdown", style={"display": "none"}
|
||||||
|
),
|
||||||
|
# Data UI dropdowns (hidden placeholders)
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-embedding-field-dropdown-ui",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-text-field-dropdown-ui", style={"display": "none"}
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-id-field-dropdown-ui", style={"display": "none"}
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-category-field-dropdown-ui",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-subcategory-field-dropdown-ui",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="data-tags-field-dropdown-ui", style={"display": "none"}
|
||||||
|
),
|
||||||
|
# Prompts dropdowns (hidden sync targets)
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-embedding-field-dropdown",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-text-field-dropdown", style={"display": "none"}
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-id-field-dropdown", style={"display": "none"}
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-category-field-dropdown",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-subcategory-field-dropdown",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-tags-field-dropdown", style={"display": "none"}
|
||||||
|
),
|
||||||
|
# Prompts UI dropdowns (hidden placeholders)
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-embedding-field-dropdown-ui",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-text-field-dropdown-ui",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-id-field-dropdown-ui", style={"display": "none"}
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-category-field-dropdown-ui",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-subcategory-field-dropdown-ui",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id="prompts-tags-field-dropdown-ui",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
],
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
def _create_opensearch_section(self, section_type):
|
||||||
|
"""Create a complete OpenSearch section for either 'data' or 'prompts'."""
|
||||||
|
section_id = section_type # 'data' or 'prompts'
|
||||||
|
|
||||||
|
return html.Div(
|
||||||
|
[
|
||||||
|
# Connection section
|
||||||
|
html.H6("Connection", className="mb-2"),
|
||||||
|
dbc.Row(
|
||||||
|
[
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label("OpenSearch URL:"),
|
||||||
|
dbc.Input(
|
||||||
|
id=f"{section_id}-opensearch-url",
|
||||||
|
type="text",
|
||||||
|
placeholder="https://opensearch.example.com:9200",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=12,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
dbc.Row(
|
||||||
|
[
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label("Index Name:"),
|
||||||
|
dbc.Input(
|
||||||
|
id=f"{section_id}-opensearch-index",
|
||||||
|
type="text",
|
||||||
|
placeholder="my-embeddings-index",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=6,
|
||||||
|
),
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label("Query Size:"),
|
||||||
|
dbc.Input(
|
||||||
|
id=f"{section_id}-opensearch-query-size",
|
||||||
|
type="number",
|
||||||
|
value=100,
|
||||||
|
min=1,
|
||||||
|
max=1000,
|
||||||
|
placeholder="100",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=6,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
dbc.Row(
|
||||||
|
[
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Button(
|
||||||
|
"Test Connection",
|
||||||
|
id=f"{section_id}-test-connection-btn",
|
||||||
|
color="primary",
|
||||||
|
className="mb-3",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=12,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
# Authentication section (collapsible)
|
||||||
|
dbc.Collapse(
|
||||||
|
[
|
||||||
|
html.Hr(),
|
||||||
|
html.H6("Authentication (Optional)", className="mb-2"),
|
||||||
|
dbc.Row(
|
||||||
|
[
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label("Username:"),
|
||||||
|
dbc.Input(
|
||||||
|
id=f"{section_id}-opensearch-username",
|
||||||
|
type="text",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=6,
|
||||||
|
),
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label("Password:"),
|
||||||
|
dbc.Input(
|
||||||
|
id=f"{section_id}-opensearch-password",
|
||||||
|
type="password",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=6,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
dbc.Label("OR"),
|
||||||
|
dbc.Input(
|
||||||
|
id=f"{section_id}-opensearch-api-key",
|
||||||
|
type="text",
|
||||||
|
placeholder="API Key",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
id=f"{section_id}-auth-collapse",
|
||||||
|
is_open=False,
|
||||||
|
),
|
||||||
|
dbc.Button(
|
||||||
|
"Show Authentication",
|
||||||
|
id=f"{section_id}-auth-toggle",
|
||||||
|
color="link",
|
||||||
|
size="sm",
|
||||||
|
className="p-0 mb-3",
|
||||||
|
),
|
||||||
|
# Connection status
|
||||||
|
html.Div(id=f"{section_id}-connection-status", className="mb-3"),
|
||||||
|
# Field mapping section (hidden initially)
|
||||||
|
html.Div(
|
||||||
|
id=f"{section_id}-field-mapping-section", style={"display": "none"}
|
||||||
|
),
|
||||||
|
# Load data button (hidden initially)
|
||||||
|
html.Div(
|
||||||
|
[
|
||||||
|
dbc.Button(
|
||||||
|
f"Load {section_type.title()}",
|
||||||
|
id=f"{section_id}-load-opensearch-data-btn",
|
||||||
|
color="success",
|
||||||
|
className="mb-2",
|
||||||
|
disabled=True,
|
||||||
|
),
|
||||||
|
],
|
||||||
|
id=f"{section_id}-load-data-section",
|
||||||
|
style={"display": "none"},
|
||||||
|
),
|
||||||
|
# OpenSearch status/results
|
||||||
|
html.Div(id=f"{section_id}-opensearch-status", className="mb-3"),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
def create_field_mapping_interface(self, field_suggestions, section_type="data"):
|
||||||
|
"""Create field mapping interface based on detected fields."""
|
||||||
|
return html.Div(
|
||||||
|
[
|
||||||
|
html.Hr(),
|
||||||
|
html.H6("Field Mapping", className="mb-2"),
|
||||||
|
html.P(
|
||||||
|
"Map your OpenSearch fields to the required format:",
|
||||||
|
className="text-muted small",
|
||||||
|
),
|
||||||
|
# Required fields
|
||||||
|
dbc.Row(
|
||||||
|
[
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label(
|
||||||
|
"Embedding Field (required):", className="fw-bold"
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id=f"{section_type}-embedding-field-dropdown-ui",
|
||||||
|
options=[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get(
|
||||||
|
"embedding", []
|
||||||
|
)
|
||||||
|
],
|
||||||
|
value=field_suggestions.get("embedding", [None])[
|
||||||
|
0
|
||||||
|
], # Default to first suggestion
|
||||||
|
placeholder="Select embedding field...",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=6,
|
||||||
|
),
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label(
|
||||||
|
"Text Field (required):", className="fw-bold"
|
||||||
|
),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id=f"{section_type}-text-field-dropdown-ui",
|
||||||
|
options=[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get("text", [])
|
||||||
|
],
|
||||||
|
value=field_suggestions.get("text", [None])[
|
||||||
|
0
|
||||||
|
], # Default to first suggestion
|
||||||
|
placeholder="Select text field...",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=6,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
# Optional fields
|
||||||
|
html.H6("Optional Fields", className="mb-2 mt-3"),
|
||||||
|
dbc.Row(
|
||||||
|
[
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label("ID Field:"),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id=f"{section_type}-id-field-dropdown-ui",
|
||||||
|
options=[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get("id", [])
|
||||||
|
],
|
||||||
|
value=field_suggestions.get("id", [None])[
|
||||||
|
0
|
||||||
|
], # Default to first suggestion
|
||||||
|
placeholder="Select ID field...",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=6,
|
||||||
|
),
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label("Category Field:"),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id=f"{section_type}-category-field-dropdown-ui",
|
||||||
|
options=[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get(
|
||||||
|
"category", []
|
||||||
|
)
|
||||||
|
],
|
||||||
|
value=field_suggestions.get("category", [None])[
|
||||||
|
0
|
||||||
|
], # Default to first suggestion
|
||||||
|
placeholder="Select category field...",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=6,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
dbc.Row(
|
||||||
|
[
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label("Subcategory Field:"),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id=f"{section_type}-subcategory-field-dropdown-ui",
|
||||||
|
options=[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get(
|
||||||
|
"subcategory", []
|
||||||
|
)
|
||||||
|
],
|
||||||
|
value=field_suggestions.get("subcategory", [None])[
|
||||||
|
0
|
||||||
|
], # Default to first suggestion
|
||||||
|
placeholder="Select subcategory field...",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=6,
|
||||||
|
),
|
||||||
|
dbc.Col(
|
||||||
|
[
|
||||||
|
dbc.Label("Tags Field:"),
|
||||||
|
dcc.Dropdown(
|
||||||
|
id=f"{section_type}-tags-field-dropdown-ui",
|
||||||
|
options=[
|
||||||
|
{"label": field, "value": field}
|
||||||
|
for field in field_suggestions.get("tags", [])
|
||||||
|
],
|
||||||
|
value=field_suggestions.get("tags", [None])[
|
||||||
|
0
|
||||||
|
], # Default to first suggestion
|
||||||
|
placeholder="Select tags field...",
|
||||||
|
className="mb-2",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
width=6,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
]
|
||||||
|
)
|
||||||
|
|
||||||
|
def create_error_alert(self):
|
||||||
|
"""Create error alert component for OpenSearch issues."""
|
||||||
|
return dbc.Alert(
|
||||||
|
id="opensearch-error-alert",
|
||||||
|
dismissable=True,
|
||||||
|
is_open=False,
|
||||||
|
color="danger",
|
||||||
|
className="mb-3",
|
||||||
|
)
|
||||||
|
|
||||||
|
def create_success_alert(self):
|
||||||
|
"""Create success alert component for OpenSearch operations."""
|
||||||
|
return dbc.Alert(
|
||||||
|
id="opensearch-success-alert",
|
||||||
|
dismissable=True,
|
||||||
|
is_open=False,
|
||||||
|
color="success",
|
||||||
|
className="mb-3",
|
||||||
|
)
|
@@ -1,24 +1,28 @@
|
|||||||
from dash import dcc, html
|
from dash import dcc, html
|
||||||
import dash_bootstrap_components as dbc
|
import dash_bootstrap_components as dbc
|
||||||
from .upload import UploadComponent
|
from .upload import UploadComponent
|
||||||
|
from .datasource import DataSourceComponent
|
||||||
|
|
||||||
|
|
||||||
class SidebarComponent:
|
class SidebarComponent:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.upload_component = UploadComponent()
|
self.upload_component = UploadComponent()
|
||||||
|
self.datasource_component = DataSourceComponent()
|
||||||
|
|
||||||
def create_layout(self):
|
def create_layout(self):
|
||||||
return dbc.Col(
|
return dbc.Col(
|
||||||
[
|
[
|
||||||
html.H5("Upload Data", className="mb-3"),
|
html.H5("Data Sources", className="mb-3"),
|
||||||
self.upload_component.create_data_upload(),
|
self.datasource_component.create_error_alert(),
|
||||||
self.upload_component.create_prompts_upload(),
|
self.datasource_component.create_success_alert(),
|
||||||
self.upload_component.create_reset_button(),
|
self.datasource_component.create_tabbed_interface(),
|
||||||
html.H5("Visualization Controls", className="mb-3"),
|
html.H5("Visualization Controls", className="mb-3 mt-4"),
|
||||||
self._create_method_dropdown(),
|
]
|
||||||
self._create_color_dropdown(),
|
+ self._create_method_dropdown()
|
||||||
self._create_dimension_toggle(),
|
+ self._create_color_dropdown()
|
||||||
self._create_prompts_toggle(),
|
+ self._create_dimension_toggle()
|
||||||
|
+ self._create_prompts_toggle()
|
||||||
|
+ [
|
||||||
html.H5("Point Details", className="mb-3"),
|
html.H5("Point Details", className="mb-3"),
|
||||||
html.Div(
|
html.Div(
|
||||||
id="point-details", children="Click on a point to see details"
|
id="point-details", children="Click on a point to see details"
|
||||||
|
@@ -51,3 +51,14 @@ class UploadComponent:
|
|||||||
className="mb-3",
|
className="mb-3",
|
||||||
style={"width": "100%"},
|
style={"width": "100%"},
|
||||||
)
|
)
|
||||||
|
|
||||||
|
@staticmethod
|
||||||
|
def create_error_alert():
|
||||||
|
"""Create error alert component for data upload issues."""
|
||||||
|
return dbc.Alert(
|
||||||
|
id="upload-error-alert",
|
||||||
|
dismissable=True,
|
||||||
|
is_open=False,
|
||||||
|
color="danger",
|
||||||
|
className="mb-3",
|
||||||
|
)
|
||||||
|
@@ -9,7 +9,8 @@ class AppLayout:
|
|||||||
|
|
||||||
def create_layout(self):
|
def create_layout(self):
|
||||||
return dbc.Container(
|
return dbc.Container(
|
||||||
[self._create_header(), self._create_main_content(), self._create_stores()],
|
[self._create_header(), self._create_main_content()]
|
||||||
|
+ self._create_stores(),
|
||||||
fluid=True,
|
fluid=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
|
197
tests/test_bad_data.py
Normal file
197
tests/test_bad_data.py
Normal file
@@ -0,0 +1,197 @@
|
|||||||
|
"""Tests for handling bad/invalid data files."""
|
||||||
|
|
||||||
|
import pytest
|
||||||
|
import json
|
||||||
|
import base64
|
||||||
|
from src.embeddingbuddy.data.parser import NDJSONParser
|
||||||
|
from src.embeddingbuddy.data.processor import DataProcessor
|
||||||
|
|
||||||
|
|
||||||
|
class TestBadDataHandling:
|
||||||
|
"""Test suite for various types of invalid input data."""
|
||||||
|
|
||||||
|
def setup_method(self):
|
||||||
|
"""Set up test fixtures."""
|
||||||
|
self.parser = NDJSONParser()
|
||||||
|
self.processor = DataProcessor()
|
||||||
|
|
||||||
|
def _create_upload_contents(self, text_content: str) -> str:
|
||||||
|
"""Helper to create upload contents format."""
|
||||||
|
encoded = base64.b64encode(text_content.encode("utf-8")).decode("utf-8")
|
||||||
|
return f"data:application/json;base64,{encoded}"
|
||||||
|
|
||||||
|
def test_missing_embedding_field(self):
|
||||||
|
"""Test files missing required embedding field."""
|
||||||
|
bad_content = '{"id": "doc_001", "text": "Sample text", "category": "test"}'
|
||||||
|
|
||||||
|
with pytest.raises(KeyError, match="embedding"):
|
||||||
|
self.parser.parse_text(bad_content)
|
||||||
|
|
||||||
|
# Test processor error handling
|
||||||
|
upload_contents = self._create_upload_contents(bad_content)
|
||||||
|
result = self.processor.process_upload(upload_contents)
|
||||||
|
assert result.error is not None
|
||||||
|
assert "embedding" in result.error
|
||||||
|
|
||||||
|
def test_missing_text_field(self):
|
||||||
|
"""Test files missing required text field."""
|
||||||
|
bad_content = (
|
||||||
|
'{"id": "doc_001", "embedding": [0.1, 0.2, 0.3], "category": "test"}'
|
||||||
|
)
|
||||||
|
|
||||||
|
with pytest.raises(KeyError, match="text"):
|
||||||
|
self.parser.parse_text(bad_content)
|
||||||
|
|
||||||
|
# Test processor error handling
|
||||||
|
upload_contents = self._create_upload_contents(bad_content)
|
||||||
|
result = self.processor.process_upload(upload_contents)
|
||||||
|
assert result.error is not None
|
||||||
|
assert "text" in result.error
|
||||||
|
|
||||||
|
def test_malformed_json_lines(self):
|
||||||
|
"""Test files with malformed JSON syntax."""
|
||||||
|
# Missing closing brace
|
||||||
|
bad_content = '{"id": "doc_001", "embedding": [0.1, 0.2], "text": "test"'
|
||||||
|
|
||||||
|
with pytest.raises(json.JSONDecodeError):
|
||||||
|
self.parser.parse_text(bad_content)
|
||||||
|
|
||||||
|
# Test processor error handling
|
||||||
|
upload_contents = self._create_upload_contents(bad_content)
|
||||||
|
result = self.processor.process_upload(upload_contents)
|
||||||
|
assert result.error is not None
|
||||||
|
|
||||||
|
def test_invalid_embedding_types(self):
|
||||||
|
"""Test files with invalid embedding data types."""
|
||||||
|
test_cases = [
|
||||||
|
# String instead of array
|
||||||
|
'{"id": "doc_001", "embedding": "not_an_array", "text": "test"}',
|
||||||
|
# Mixed types in array
|
||||||
|
'{"id": "doc_002", "embedding": [0.1, "text", 0.3], "text": "test"}',
|
||||||
|
# Empty array
|
||||||
|
'{"id": "doc_003", "embedding": [], "text": "test"}',
|
||||||
|
# Null embedding
|
||||||
|
'{"id": "doc_004", "embedding": null, "text": "test"}',
|
||||||
|
]
|
||||||
|
|
||||||
|
for bad_content in test_cases:
|
||||||
|
upload_contents = self._create_upload_contents(bad_content)
|
||||||
|
result = self.processor.process_upload(upload_contents)
|
||||||
|
assert result.error is not None, f"Should fail for: {bad_content}"
|
||||||
|
|
||||||
|
def test_inconsistent_embedding_dimensions(self):
|
||||||
|
"""Test files with embeddings of different dimensions."""
|
||||||
|
bad_content = """{"id": "doc_001", "embedding": [0.1, 0.2, 0.3, 0.4], "text": "4D embedding"}
|
||||||
|
{"id": "doc_002", "embedding": [0.1, 0.2, 0.3], "text": "3D embedding"}"""
|
||||||
|
|
||||||
|
upload_contents = self._create_upload_contents(bad_content)
|
||||||
|
result = self.processor.process_upload(upload_contents)
|
||||||
|
|
||||||
|
# This might succeed parsing but fail in processing
|
||||||
|
# The error depends on where dimension validation occurs
|
||||||
|
if result.error is None:
|
||||||
|
# If parsing succeeds, check that embeddings have inconsistent shapes
|
||||||
|
assert len(result.documents) == 2
|
||||||
|
assert len(result.documents[0].embedding) != len(
|
||||||
|
result.documents[1].embedding
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_empty_lines_in_ndjson(self):
|
||||||
|
"""Test files with empty lines mixed in."""
|
||||||
|
content_with_empty_lines = """{"id": "doc_001", "embedding": [0.1, 0.2], "text": "First line"}
|
||||||
|
|
||||||
|
{"id": "doc_002", "embedding": [0.3, 0.4], "text": "After empty line"}"""
|
||||||
|
|
||||||
|
# This should work - empty lines should be skipped
|
||||||
|
documents = self.parser.parse_text(content_with_empty_lines)
|
||||||
|
assert len(documents) == 2
|
||||||
|
assert documents[0].id == "doc_001"
|
||||||
|
assert documents[1].id == "doc_002"
|
||||||
|
|
||||||
|
def test_not_ndjson_format(self):
|
||||||
|
"""Test regular JSON array instead of NDJSON."""
|
||||||
|
json_array = """[
|
||||||
|
{"id": "doc_001", "embedding": [0.1, 0.2], "text": "First"},
|
||||||
|
{"id": "doc_002", "embedding": [0.3, 0.4], "text": "Second"}
|
||||||
|
]"""
|
||||||
|
|
||||||
|
with pytest.raises(json.JSONDecodeError):
|
||||||
|
self.parser.parse_text(json_array)
|
||||||
|
|
||||||
|
def test_binary_content_in_file(self):
|
||||||
|
"""Test files with binary content mixed in."""
|
||||||
|
# Simulate binary content that can't be decoded
|
||||||
|
binary_content = (
|
||||||
|
b'\x00\x01\x02{"id": "doc_001", "embedding": [0.1], "text": "test"}'
|
||||||
|
)
|
||||||
|
|
||||||
|
# This should result in an error when processing
|
||||||
|
encoded = base64.b64encode(binary_content).decode("utf-8")
|
||||||
|
upload_contents = f"data:application/json;base64,{encoded}"
|
||||||
|
result = self.processor.process_upload(upload_contents)
|
||||||
|
|
||||||
|
# Should either fail with UnicodeDecodeError or JSON parsing error
|
||||||
|
assert result.error is not None
|
||||||
|
|
||||||
|
def test_extremely_large_embeddings(self):
|
||||||
|
"""Test embeddings with very large dimensions."""
|
||||||
|
large_embedding = [0.1] * 10000 # 10k dimensions
|
||||||
|
content = json.dumps(
|
||||||
|
{
|
||||||
|
"id": "doc_001",
|
||||||
|
"embedding": large_embedding,
|
||||||
|
"text": "Large embedding test",
|
||||||
|
}
|
||||||
|
)
|
||||||
|
|
||||||
|
# This should work but might be slow
|
||||||
|
upload_contents = self._create_upload_contents(content)
|
||||||
|
result = self.processor.process_upload(upload_contents)
|
||||||
|
|
||||||
|
if result.error is None:
|
||||||
|
assert len(result.documents) == 1
|
||||||
|
assert len(result.documents[0].embedding) == 10000
|
||||||
|
|
||||||
|
def test_special_characters_in_text(self):
|
||||||
|
"""Test handling of special characters and unicode."""
|
||||||
|
special_content = json.dumps(
|
||||||
|
{
|
||||||
|
"id": "doc_001",
|
||||||
|
"embedding": [0.1, 0.2],
|
||||||
|
"text": 'Special chars: 🚀 ñoñó 中文 \n\t"',
|
||||||
|
},
|
||||||
|
ensure_ascii=False,
|
||||||
|
)
|
||||||
|
|
||||||
|
upload_contents = self._create_upload_contents(special_content)
|
||||||
|
result = self.processor.process_upload(upload_contents)
|
||||||
|
|
||||||
|
assert result.error is None
|
||||||
|
assert len(result.documents) == 1
|
||||||
|
assert "🚀" in result.documents[0].text
|
||||||
|
|
||||||
|
def test_processor_error_structure(self):
|
||||||
|
"""Test that processor returns proper error structure."""
|
||||||
|
bad_content = '{"invalid": "json"' # Missing closing brace
|
||||||
|
upload_contents = self._create_upload_contents(bad_content)
|
||||||
|
|
||||||
|
result = self.processor.process_upload(upload_contents)
|
||||||
|
|
||||||
|
# Check error structure
|
||||||
|
assert result.error is not None
|
||||||
|
assert isinstance(result.error, str)
|
||||||
|
assert len(result.documents) == 0
|
||||||
|
assert result.embeddings.size == 0
|
||||||
|
|
||||||
|
def test_multiple_errors_in_file(self):
|
||||||
|
"""Test file with multiple different types of errors."""
|
||||||
|
multi_error_content = """{"id": "doc_001", "text": "Missing embedding"}
|
||||||
|
{"id": "doc_002", "embedding": "wrong_type", "text": "Wrong embedding type"}
|
||||||
|
{"id": "doc_003", "embedding": [0.1, 0.2], "text": "Valid line"}
|
||||||
|
{"id": "doc_004", "embedding": [0.3, 0.4]""" # Missing text and closing brace
|
||||||
|
|
||||||
|
upload_contents = self._create_upload_contents(multi_error_content)
|
||||||
|
result = self.processor.process_upload(upload_contents)
|
||||||
|
|
||||||
|
# Should fail on first error encountered
|
||||||
|
assert result.error is not None
|
155
tests/test_data_processor_opensearch.py
Normal file
155
tests/test_data_processor_opensearch.py
Normal file
@@ -0,0 +1,155 @@
|
|||||||
|
from unittest.mock import patch
|
||||||
|
from src.embeddingbuddy.data.processor import DataProcessor
|
||||||
|
from src.embeddingbuddy.models.field_mapper import FieldMapping
|
||||||
|
|
||||||
|
|
||||||
|
class TestDataProcessorOpenSearch:
|
||||||
|
def test_process_opensearch_data_success(self):
|
||||||
|
processor = DataProcessor()
|
||||||
|
|
||||||
|
# Mock raw OpenSearch documents
|
||||||
|
raw_documents = [
|
||||||
|
{
|
||||||
|
"vector": [0.1, 0.2, 0.3],
|
||||||
|
"content": "Test document 1",
|
||||||
|
"doc_id": "doc1",
|
||||||
|
"type": "news",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"vector": [0.4, 0.5, 0.6],
|
||||||
|
"content": "Test document 2",
|
||||||
|
"doc_id": "doc2",
|
||||||
|
"type": "blog",
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
# Create field mapping
|
||||||
|
field_mapping = FieldMapping(
|
||||||
|
embedding_field="vector",
|
||||||
|
text_field="content",
|
||||||
|
id_field="doc_id",
|
||||||
|
category_field="type",
|
||||||
|
)
|
||||||
|
|
||||||
|
# Process the data
|
||||||
|
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||||
|
|
||||||
|
# Assertions
|
||||||
|
assert processed_data.error is None
|
||||||
|
assert len(processed_data.documents) == 2
|
||||||
|
assert processed_data.embeddings.shape == (2, 3)
|
||||||
|
|
||||||
|
# Check first document
|
||||||
|
doc1 = processed_data.documents[0]
|
||||||
|
assert doc1.text == "Test document 1"
|
||||||
|
assert doc1.embedding == [0.1, 0.2, 0.3]
|
||||||
|
assert doc1.id == "doc1"
|
||||||
|
assert doc1.category == "news"
|
||||||
|
|
||||||
|
# Check second document
|
||||||
|
doc2 = processed_data.documents[1]
|
||||||
|
assert doc2.text == "Test document 2"
|
||||||
|
assert doc2.embedding == [0.4, 0.5, 0.6]
|
||||||
|
assert doc2.id == "doc2"
|
||||||
|
assert doc2.category == "blog"
|
||||||
|
|
||||||
|
def test_process_opensearch_data_with_tags(self):
|
||||||
|
processor = DataProcessor()
|
||||||
|
|
||||||
|
# Mock raw OpenSearch documents with tags
|
||||||
|
raw_documents = [
|
||||||
|
{
|
||||||
|
"vector": [0.1, 0.2, 0.3],
|
||||||
|
"content": "Test document with tags",
|
||||||
|
"keywords": ["tag1", "tag2"],
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
# Create field mapping
|
||||||
|
field_mapping = FieldMapping(
|
||||||
|
embedding_field="vector", text_field="content", tags_field="keywords"
|
||||||
|
)
|
||||||
|
|
||||||
|
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||||
|
|
||||||
|
assert processed_data.error is None
|
||||||
|
assert len(processed_data.documents) == 1
|
||||||
|
doc = processed_data.documents[0]
|
||||||
|
assert doc.tags == ["tag1", "tag2"]
|
||||||
|
|
||||||
|
def test_process_opensearch_data_invalid_documents(self):
|
||||||
|
processor = DataProcessor()
|
||||||
|
|
||||||
|
# Mock raw documents with missing required fields
|
||||||
|
raw_documents = [
|
||||||
|
{
|
||||||
|
"vector": [0.1, 0.2, 0.3],
|
||||||
|
# Missing text field
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||||
|
|
||||||
|
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||||
|
|
||||||
|
# Should return error since no valid documents
|
||||||
|
assert processed_data.error is not None
|
||||||
|
assert "No valid documents" in processed_data.error
|
||||||
|
assert len(processed_data.documents) == 0
|
||||||
|
|
||||||
|
def test_process_opensearch_data_partial_success(self):
|
||||||
|
processor = DataProcessor()
|
||||||
|
|
||||||
|
# Mix of valid and invalid documents
|
||||||
|
raw_documents = [
|
||||||
|
{
|
||||||
|
"vector": [0.1, 0.2, 0.3],
|
||||||
|
"content": "Valid document",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"vector": [0.4, 0.5, 0.6],
|
||||||
|
# Missing content field - should be skipped
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"vector": [0.7, 0.8, 0.9],
|
||||||
|
"content": "Another valid document",
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||||
|
|
||||||
|
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||||
|
|
||||||
|
# Should process valid documents only
|
||||||
|
assert processed_data.error is None
|
||||||
|
assert len(processed_data.documents) == 2
|
||||||
|
assert processed_data.documents[0].text == "Valid document"
|
||||||
|
assert processed_data.documents[1].text == "Another valid document"
|
||||||
|
|
||||||
|
@patch("src.embeddingbuddy.models.field_mapper.FieldMapper.transform_documents")
|
||||||
|
def test_process_opensearch_data_transformation_error(self, mock_transform):
|
||||||
|
processor = DataProcessor()
|
||||||
|
|
||||||
|
# Mock transformation error
|
||||||
|
mock_transform.side_effect = Exception("Transformation failed")
|
||||||
|
|
||||||
|
raw_documents = [{"vector": [0.1], "content": "test"}]
|
||||||
|
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||||
|
|
||||||
|
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||||
|
|
||||||
|
assert processed_data.error is not None
|
||||||
|
assert "Transformation failed" in processed_data.error
|
||||||
|
assert len(processed_data.documents) == 0
|
||||||
|
|
||||||
|
def test_process_opensearch_data_empty_input(self):
|
||||||
|
processor = DataProcessor()
|
||||||
|
|
||||||
|
raw_documents = []
|
||||||
|
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||||
|
|
||||||
|
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||||
|
|
||||||
|
assert processed_data.error is not None
|
||||||
|
assert "No valid documents" in processed_data.error
|
||||||
|
assert len(processed_data.documents) == 0
|
310
tests/test_opensearch.py
Normal file
310
tests/test_opensearch.py
Normal file
@@ -0,0 +1,310 @@
|
|||||||
|
from unittest.mock import Mock, patch
|
||||||
|
from src.embeddingbuddy.data.sources.opensearch import OpenSearchClient
|
||||||
|
from src.embeddingbuddy.models.field_mapper import FieldMapper, FieldMapping
|
||||||
|
|
||||||
|
|
||||||
|
class TestOpenSearchClient:
|
||||||
|
def test_init(self):
|
||||||
|
client = OpenSearchClient()
|
||||||
|
assert client.client is None
|
||||||
|
assert client.connection_info is None
|
||||||
|
|
||||||
|
@patch("src.embeddingbuddy.data.sources.opensearch.OpenSearch")
|
||||||
|
def test_connect_success(self, mock_opensearch):
|
||||||
|
# Mock the OpenSearch client
|
||||||
|
mock_client_instance = Mock()
|
||||||
|
mock_client_instance.info.return_value = {
|
||||||
|
"cluster_name": "test-cluster",
|
||||||
|
"version": {"number": "2.0.0"},
|
||||||
|
}
|
||||||
|
mock_opensearch.return_value = mock_client_instance
|
||||||
|
|
||||||
|
client = OpenSearchClient()
|
||||||
|
success, message = client.connect("https://localhost:9200")
|
||||||
|
|
||||||
|
assert success is True
|
||||||
|
assert "test-cluster" in message
|
||||||
|
assert client.client is not None
|
||||||
|
assert client.connection_info["cluster_name"] == "test-cluster"
|
||||||
|
|
||||||
|
@patch("src.embeddingbuddy.data.sources.opensearch.OpenSearch")
|
||||||
|
def test_connect_failure(self, mock_opensearch):
|
||||||
|
# Mock connection failure
|
||||||
|
mock_opensearch.side_effect = Exception("Connection failed")
|
||||||
|
|
||||||
|
client = OpenSearchClient()
|
||||||
|
success, message = client.connect("https://localhost:9200")
|
||||||
|
|
||||||
|
assert success is False
|
||||||
|
assert "Connection failed" in message
|
||||||
|
assert client.client is None
|
||||||
|
|
||||||
|
def test_analyze_fields(self):
|
||||||
|
client = OpenSearchClient()
|
||||||
|
client.client = Mock()
|
||||||
|
|
||||||
|
# Mock mapping response
|
||||||
|
mock_mapping = {
|
||||||
|
"test-index": {
|
||||||
|
"mappings": {
|
||||||
|
"properties": {
|
||||||
|
"embedding": {"type": "dense_vector", "dimension": 768},
|
||||||
|
"text": {"type": "text"},
|
||||||
|
"category": {"type": "keyword"},
|
||||||
|
"id": {"type": "keyword"},
|
||||||
|
"count": {"type": "integer"},
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
client.client.indices.get_mapping.return_value = mock_mapping
|
||||||
|
|
||||||
|
success, analysis, message = client.analyze_fields("test-index")
|
||||||
|
|
||||||
|
assert success is True
|
||||||
|
assert len(analysis["vector_fields"]) == 1
|
||||||
|
assert analysis["vector_fields"][0]["name"] == "embedding"
|
||||||
|
assert analysis["vector_fields"][0]["dimension"] == 768
|
||||||
|
assert "text" in analysis["text_fields"]
|
||||||
|
assert "category" in analysis["keyword_fields"]
|
||||||
|
assert "count" in analysis["numeric_fields"]
|
||||||
|
|
||||||
|
def test_fetch_sample_data(self):
|
||||||
|
client = OpenSearchClient()
|
||||||
|
client.client = Mock()
|
||||||
|
|
||||||
|
# Mock search response
|
||||||
|
mock_response = {
|
||||||
|
"hits": {
|
||||||
|
"hits": [
|
||||||
|
{"_source": {"text": "doc1", "embedding": [0.1, 0.2]}},
|
||||||
|
{"_source": {"text": "doc2", "embedding": [0.3, 0.4]}},
|
||||||
|
]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
client.client.search.return_value = mock_response
|
||||||
|
|
||||||
|
success, documents, message = client.fetch_sample_data("test-index", size=2)
|
||||||
|
|
||||||
|
assert success is True
|
||||||
|
assert len(documents) == 2
|
||||||
|
assert documents[0]["text"] == "doc1"
|
||||||
|
assert documents[1]["text"] == "doc2"
|
||||||
|
|
||||||
|
|
||||||
|
class TestFieldMapper:
|
||||||
|
def test_suggest_mappings(self):
|
||||||
|
field_analysis = {
|
||||||
|
"vector_fields": [{"name": "embedding", "dimension": 768}],
|
||||||
|
"text_fields": ["content", "description"],
|
||||||
|
"keyword_fields": ["doc_id", "category", "type", "tags"],
|
||||||
|
"numeric_fields": ["count"],
|
||||||
|
"all_fields": [
|
||||||
|
"embedding",
|
||||||
|
"content",
|
||||||
|
"description",
|
||||||
|
"doc_id",
|
||||||
|
"category",
|
||||||
|
"type",
|
||||||
|
"tags",
|
||||||
|
"count",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
suggestions = FieldMapper.suggest_mappings(field_analysis)
|
||||||
|
|
||||||
|
# Check that all dropdowns contain all fields
|
||||||
|
all_fields = [
|
||||||
|
"embedding",
|
||||||
|
"content",
|
||||||
|
"description",
|
||||||
|
"doc_id",
|
||||||
|
"category",
|
||||||
|
"type",
|
||||||
|
"tags",
|
||||||
|
"count",
|
||||||
|
]
|
||||||
|
for field_type in [
|
||||||
|
"embedding",
|
||||||
|
"text",
|
||||||
|
"id",
|
||||||
|
"category",
|
||||||
|
"subcategory",
|
||||||
|
"tags",
|
||||||
|
]:
|
||||||
|
for field in all_fields:
|
||||||
|
assert field in suggestions[field_type], (
|
||||||
|
f"Field '{field}' missing from {field_type} suggestions"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check that best candidates are first
|
||||||
|
assert (
|
||||||
|
suggestions["embedding"][0] == "embedding"
|
||||||
|
) # vector field should be first
|
||||||
|
assert suggestions["text"][0] in [
|
||||||
|
"content",
|
||||||
|
"description",
|
||||||
|
] # text fields should be first
|
||||||
|
assert suggestions["id"][0] == "doc_id" # ID-like field should be first
|
||||||
|
assert suggestions["category"][0] in [
|
||||||
|
"category",
|
||||||
|
"type",
|
||||||
|
] # category-like field should be first
|
||||||
|
assert suggestions["tags"][0] == "tags" # tags field should be first
|
||||||
|
|
||||||
|
def test_suggest_mappings_name_based_embedding(self):
|
||||||
|
"""Test that fields named 'embedding' are prioritized even without vector type."""
|
||||||
|
field_analysis = {
|
||||||
|
"vector_fields": [], # No explicit vector fields detected
|
||||||
|
"text_fields": ["content", "description"],
|
||||||
|
"keyword_fields": ["doc_id", "category", "type", "tags"],
|
||||||
|
"numeric_fields": ["count"],
|
||||||
|
"all_fields": [
|
||||||
|
"content",
|
||||||
|
"description",
|
||||||
|
"doc_id",
|
||||||
|
"category",
|
||||||
|
"embedding",
|
||||||
|
"type",
|
||||||
|
"tags",
|
||||||
|
"count",
|
||||||
|
],
|
||||||
|
}
|
||||||
|
|
||||||
|
suggestions = FieldMapper.suggest_mappings(field_analysis)
|
||||||
|
|
||||||
|
# Check that 'embedding' field is prioritized despite not being detected as vector type
|
||||||
|
assert suggestions["embedding"][0] == "embedding", (
|
||||||
|
"Field named 'embedding' should be first priority"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Check that all fields are still available
|
||||||
|
all_fields = [
|
||||||
|
"content",
|
||||||
|
"description",
|
||||||
|
"doc_id",
|
||||||
|
"category",
|
||||||
|
"embedding",
|
||||||
|
"type",
|
||||||
|
"tags",
|
||||||
|
"count",
|
||||||
|
]
|
||||||
|
for field_type in [
|
||||||
|
"embedding",
|
||||||
|
"text",
|
||||||
|
"id",
|
||||||
|
"category",
|
||||||
|
"subcategory",
|
||||||
|
"tags",
|
||||||
|
]:
|
||||||
|
for field in all_fields:
|
||||||
|
assert field in suggestions[field_type], (
|
||||||
|
f"Field '{field}' missing from {field_type} suggestions"
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_validate_mapping_success(self):
|
||||||
|
mapping = FieldMapping(
|
||||||
|
embedding_field="embedding", text_field="text", id_field="doc_id"
|
||||||
|
)
|
||||||
|
available_fields = ["embedding", "text", "doc_id", "category"]
|
||||||
|
|
||||||
|
errors = FieldMapper.validate_mapping(mapping, available_fields)
|
||||||
|
|
||||||
|
assert len(errors) == 0
|
||||||
|
|
||||||
|
def test_validate_mapping_missing_required(self):
|
||||||
|
mapping = FieldMapping(embedding_field="missing_field", text_field="text")
|
||||||
|
available_fields = ["text", "category"]
|
||||||
|
|
||||||
|
errors = FieldMapper.validate_mapping(mapping, available_fields)
|
||||||
|
|
||||||
|
assert len(errors) == 1
|
||||||
|
assert "missing_field" in errors[0]
|
||||||
|
assert "not found" in errors[0]
|
||||||
|
|
||||||
|
def test_validate_mapping_missing_optional(self):
|
||||||
|
mapping = FieldMapping(
|
||||||
|
embedding_field="embedding",
|
||||||
|
text_field="text",
|
||||||
|
category_field="missing_category",
|
||||||
|
)
|
||||||
|
available_fields = ["embedding", "text"]
|
||||||
|
|
||||||
|
errors = FieldMapper.validate_mapping(mapping, available_fields)
|
||||||
|
|
||||||
|
assert len(errors) == 1
|
||||||
|
assert "missing_category" in errors[0]
|
||||||
|
|
||||||
|
def test_transform_documents(self):
|
||||||
|
mapping = FieldMapping(
|
||||||
|
embedding_field="vector",
|
||||||
|
text_field="content",
|
||||||
|
id_field="doc_id",
|
||||||
|
category_field="type",
|
||||||
|
)
|
||||||
|
|
||||||
|
raw_documents = [
|
||||||
|
{
|
||||||
|
"vector": [0.1, 0.2, 0.3],
|
||||||
|
"content": "Test document 1",
|
||||||
|
"doc_id": "doc1",
|
||||||
|
"type": "news",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"vector": [0.4, 0.5, 0.6],
|
||||||
|
"content": "Test document 2",
|
||||||
|
"doc_id": "doc2",
|
||||||
|
"type": "blog",
|
||||||
|
},
|
||||||
|
]
|
||||||
|
|
||||||
|
transformed = FieldMapper.transform_documents(raw_documents, mapping)
|
||||||
|
|
||||||
|
assert len(transformed) == 2
|
||||||
|
assert transformed[0]["embedding"] == [0.1, 0.2, 0.3]
|
||||||
|
assert transformed[0]["text"] == "Test document 1"
|
||||||
|
assert transformed[0]["id"] == "doc1"
|
||||||
|
assert transformed[0]["category"] == "news"
|
||||||
|
|
||||||
|
def test_transform_documents_missing_required(self):
|
||||||
|
mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||||
|
|
||||||
|
raw_documents = [
|
||||||
|
{
|
||||||
|
"vector": [0.1, 0.2, 0.3],
|
||||||
|
# Missing content field
|
||||||
|
}
|
||||||
|
]
|
||||||
|
|
||||||
|
transformed = FieldMapper.transform_documents(raw_documents, mapping)
|
||||||
|
|
||||||
|
assert len(transformed) == 0 # Document should be skipped
|
||||||
|
|
||||||
|
def test_create_mapping_from_dict(self):
|
||||||
|
mapping_dict = {
|
||||||
|
"embedding": "vector_field",
|
||||||
|
"text": "text_field",
|
||||||
|
"id": "doc_id",
|
||||||
|
"category": "cat_field",
|
||||||
|
"subcategory": "subcat_field",
|
||||||
|
"tags": "tags_field",
|
||||||
|
}
|
||||||
|
|
||||||
|
mapping = FieldMapper.create_mapping_from_dict(mapping_dict)
|
||||||
|
|
||||||
|
assert mapping.embedding_field == "vector_field"
|
||||||
|
assert mapping.text_field == "text_field"
|
||||||
|
assert mapping.id_field == "doc_id"
|
||||||
|
assert mapping.category_field == "cat_field"
|
||||||
|
assert mapping.subcategory_field == "subcat_field"
|
||||||
|
assert mapping.tags_field == "tags_field"
|
||||||
|
|
||||||
|
def test_create_mapping_from_dict_minimal(self):
|
||||||
|
mapping_dict = {"embedding": "vector_field", "text": "text_field"}
|
||||||
|
|
||||||
|
mapping = FieldMapper.create_mapping_from_dict(mapping_dict)
|
||||||
|
|
||||||
|
assert mapping.embedding_field == "vector_field"
|
||||||
|
assert mapping.text_field == "text_field"
|
||||||
|
assert mapping.id_field is None
|
||||||
|
assert mapping.category_field is None
|
28
uv.lock
generated
28
uv.lock
generated
@@ -412,7 +412,7 @@ wheels = [
|
|||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "embeddingbuddy"
|
name = "embeddingbuddy"
|
||||||
version = "0.2.0"
|
version = "0.3.0"
|
||||||
source = { editable = "." }
|
source = { editable = "." }
|
||||||
dependencies = [
|
dependencies = [
|
||||||
{ name = "dash" },
|
{ name = "dash" },
|
||||||
@@ -420,6 +420,7 @@ dependencies = [
|
|||||||
{ name = "mypy" },
|
{ name = "mypy" },
|
||||||
{ name = "numba" },
|
{ name = "numba" },
|
||||||
{ name = "numpy" },
|
{ name = "numpy" },
|
||||||
|
{ name = "opensearch-py" },
|
||||||
{ name = "opentsne" },
|
{ name = "opentsne" },
|
||||||
{ name = "pandas" },
|
{ name = "pandas" },
|
||||||
{ name = "plotly" },
|
{ name = "plotly" },
|
||||||
@@ -471,6 +472,7 @@ requires-dist = [
|
|||||||
{ name = "mypy", marker = "extra == 'lint'", specifier = ">=1.5.0" },
|
{ name = "mypy", marker = "extra == 'lint'", specifier = ">=1.5.0" },
|
||||||
{ name = "numba", specifier = ">=0.56.4" },
|
{ name = "numba", specifier = ">=0.56.4" },
|
||||||
{ name = "numpy", specifier = ">=1.24.4" },
|
{ name = "numpy", specifier = ">=1.24.4" },
|
||||||
|
{ name = "opensearch-py", specifier = ">=3.0.0" },
|
||||||
{ name = "opentsne", specifier = ">=1.0.0" },
|
{ name = "opentsne", specifier = ">=1.0.0" },
|
||||||
{ name = "pandas", specifier = ">=2.1.4" },
|
{ name = "pandas", specifier = ">=2.1.4" },
|
||||||
{ name = "pip-audit", marker = "extra == 'security'", specifier = ">=2.6.0" },
|
{ name = "pip-audit", marker = "extra == 'security'", specifier = ">=2.6.0" },
|
||||||
@@ -484,6 +486,14 @@ requires-dist = [
|
|||||||
]
|
]
|
||||||
provides-extras = ["test", "lint", "security", "dev", "all"]
|
provides-extras = ["test", "lint", "security", "dev", "all"]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "events"
|
||||||
|
version = "0.5"
|
||||||
|
source = { registry = "https://pypi.org/simple" }
|
||||||
|
wheels = [
|
||||||
|
{ url = "https://files.pythonhosted.org/packages/25/ed/e47dec0626edd468c84c04d97769e7ab4ea6457b7f54dcb3f72b17fcd876/Events-0.5-py3-none-any.whl", hash = "sha256:a7286af378ba3e46640ac9825156c93bdba7502174dd696090fdfcd4d80a1abd", size = 6758, upload-time = "2023-07-31T08:23:13.645Z" },
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "filelock"
|
name = "filelock"
|
||||||
version = "3.16.1"
|
version = "3.16.1"
|
||||||
@@ -913,6 +923,22 @@ wheels = [
|
|||||||
{ url = "https://files.pythonhosted.org/packages/67/0e/35082d13c09c02c011cf21570543d202ad929d961c02a147493cb0c2bdf5/numpy-2.2.6-cp313-cp313t-win_amd64.whl", hash = "sha256:6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06", size = 12771374, upload-time = "2025-05-17T21:43:35.479Z" },
|
{ url = "https://files.pythonhosted.org/packages/67/0e/35082d13c09c02c011cf21570543d202ad929d961c02a147493cb0c2bdf5/numpy-2.2.6-cp313-cp313t-win_amd64.whl", hash = "sha256:6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06", size = 12771374, upload-time = "2025-05-17T21:43:35.479Z" },
|
||||||
]
|
]
|
||||||
|
|
||||||
|
[[package]]
|
||||||
|
name = "opensearch-py"
|
||||||
|
version = "3.0.0"
|
||||||
|
source = { registry = "https://pypi.org/simple" }
|
||||||
|
dependencies = [
|
||||||
|
{ name = "certifi" },
|
||||||
|
{ name = "events" },
|
||||||
|
{ name = "python-dateutil" },
|
||||||
|
{ name = "requests" },
|
||||||
|
{ name = "urllib3" },
|
||||||
|
]
|
||||||
|
sdist = { url = "https://files.pythonhosted.org/packages/b8/58/ecec7f855aae7bcfb08f570088c6cb993f68c361a0727abab35dbf021acb/opensearch_py-3.0.0.tar.gz", hash = "sha256:ebb38f303f8a3f794db816196315bcddad880be0dc75094e3334bc271db2ed39", size = 248890, upload-time = "2025-06-17T05:39:48.453Z" }
|
||||||
|
wheels = [
|
||||||
|
{ url = "https://files.pythonhosted.org/packages/71/e0/69fd114c607b0323d3f864ab4a5ecb87d76ec5a172d2e36a739c8baebea1/opensearch_py-3.0.0-py3-none-any.whl", hash = "sha256:842bf5d56a4a0d8290eda9bb921c50f3080e5dc4e5fefb9c9648289da3f6a8bb", size = 371491, upload-time = "2025-06-17T05:39:46.539Z" },
|
||||||
|
]
|
||||||
|
|
||||||
[[package]]
|
[[package]]
|
||||||
name = "opentsne"
|
name = "opentsne"
|
||||||
version = "1.0.2"
|
version = "1.0.2"
|
||||||
|
Reference in New Issue
Block a user