Compare commits
3 Commits
9a2e257b0d
...
restructur
Author | SHA1 | Date | |
---|---|---|---|
c29160c9e9 | |||
bd3ee6e35a | |||
6936bc5d97 |
@@ -4,7 +4,9 @@
|
||||
"Bash(mkdir:*)",
|
||||
"Bash(uv run:*)",
|
||||
"Bash(uv add:*)",
|
||||
"Bash(uv sync:*)"
|
||||
"Bash(uv sync:*)",
|
||||
"Bash(tree:*)",
|
||||
"WebFetch(domain:www.dash-bootstrap-components.com)"
|
||||
],
|
||||
"deny": [],
|
||||
"ask": [],
|
||||
|
@@ -22,11 +22,13 @@ uv sync
|
||||
**Run the application:**
|
||||
|
||||
Development mode (with auto-reload):
|
||||
|
||||
```bash
|
||||
uv run run_dev.py
|
||||
```
|
||||
|
||||
Production mode (with Gunicorn WSGI server):
|
||||
|
||||
```bash
|
||||
# First install production dependencies
|
||||
uv sync --extra prod
|
||||
@@ -36,11 +38,12 @@ uv run run_prod.py
|
||||
```
|
||||
|
||||
Legacy mode (basic Dash server):
|
||||
|
||||
```bash
|
||||
uv run main.py
|
||||
```
|
||||
|
||||
The app will be available at http://127.0.0.1:8050
|
||||
The app will be available at <http://127.0.0.1:8050>
|
||||
|
||||
**Run tests:**
|
||||
|
||||
|
@@ -65,6 +65,11 @@ ENV EMBEDDINGBUDDY_ENV=production
|
||||
# Expose port
|
||||
EXPOSE 8050
|
||||
|
||||
# Create non-root user
|
||||
RUN groupadd -r appuser && useradd -r -g appuser appuser
|
||||
RUN chown -R appuser:appuser /app
|
||||
USER appuser
|
||||
|
||||
# Health check
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=30s --retries=3 \
|
||||
CMD python -c "import requests; requests.get('http://localhost:8050/', timeout=5)" || exit 1
|
||||
|
48
README.md
48
README.md
@@ -152,22 +152,38 @@ The application follows a modular architecture for improved maintainability and
|
||||
|
||||
```text
|
||||
src/embeddingbuddy/
|
||||
├── config/ # Configuration management
|
||||
│ └── settings.py # Centralized app settings
|
||||
├── data/ # Data parsing and processing
|
||||
│ ├── parser.py # NDJSON parsing logic
|
||||
│ └── processor.py # Data transformation utilities
|
||||
├── models/ # Data schemas and algorithms
|
||||
│ ├── schemas.py # Pydantic data models
|
||||
│ └── reducers.py # Dimensionality reduction algorithms
|
||||
├── visualization/ # Plot creation and styling
|
||||
│ ├── plots.py # Plot factory and creation logic
|
||||
│ └── colors.py # Color mapping utilities
|
||||
├── ui/ # User interface components
|
||||
│ ├── layout.py # Main application layout
|
||||
│ ├── components/ # Reusable UI components
|
||||
│ └── callbacks/ # Organized callback functions
|
||||
└── utils/ # Utility functions
|
||||
├── app.py # Main application entry point and factory
|
||||
├── config/ # Configuration management
|
||||
│ └── settings.py # Centralized app settings
|
||||
├── data/ # Data parsing and processing
|
||||
│ ├── parser.py # NDJSON parsing logic
|
||||
│ ├── processor.py # Data transformation utilities
|
||||
│ └── sources/ # Data source integrations
|
||||
│ └── opensearch.py # OpenSearch data source
|
||||
├── models/ # Data schemas and algorithms
|
||||
│ ├── schemas.py # Pydantic data models
|
||||
│ ├── reducers.py # Dimensionality reduction algorithms
|
||||
│ └── field_mapper.py # Field mapping utilities
|
||||
├── visualization/ # Plot creation and styling
|
||||
│ ├── plots.py # Plot factory and creation logic
|
||||
│ └── colors.py # Color mapping utilities
|
||||
├── ui/ # User interface components
|
||||
│ ├── layout.py # Main application layout
|
||||
│ ├── components/ # Reusable UI components
|
||||
│ │ ├── sidebar.py # Sidebar component
|
||||
│ │ ├── upload.py # Upload components
|
||||
│ │ ├── textinput.py # Text input components
|
||||
│ │ └── datasource.py # Data source components
|
||||
│ └── callbacks/ # Organized callback functions
|
||||
│ ├── data_processing.py # Data upload/processing callbacks
|
||||
│ ├── visualization.py # Plot update callbacks
|
||||
│ └── interactions.py # User interaction callbacks
|
||||
└── utils/ # Utility functions
|
||||
|
||||
main.py # Application runner (at project root)
|
||||
main.py # Application runner (at project root)
|
||||
run_dev.py # Development server runner
|
||||
run_prod.py # Production server runner
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
17
assets/custom.css
Normal file
17
assets/custom.css
Normal file
@@ -0,0 +1,17 @@
|
||||
/* CSS override for transparent hover boxes in Plotly plots */
|
||||
|
||||
/* Make hover boxes transparent while preserving text readability */
|
||||
.hovertext {
|
||||
fill-opacity: 0.8 !important;
|
||||
stroke-opacity: 1 !important;
|
||||
}
|
||||
|
||||
/* Alternative selector for different Plotly versions */
|
||||
g.hovertext > path {
|
||||
opacity: 0.8 !important;
|
||||
}
|
||||
|
||||
/* Ensure text remains fully visible */
|
||||
.hovertext text {
|
||||
opacity: 1 !important;
|
||||
}
|
@@ -45,28 +45,12 @@ class TransformersEmbedder {
|
||||
console.log('✅ Using globally loaded Transformers.js pipeline');
|
||||
}
|
||||
|
||||
// Show loading progress to user
|
||||
if (window.updateModelLoadingProgress) {
|
||||
window.updateModelLoadingProgress(0, `Loading ${modelName}...`);
|
||||
}
|
||||
|
||||
this.extractor = await window.transformers.pipeline('feature-extraction', modelName, {
|
||||
progress_callback: (data) => {
|
||||
if (window.updateModelLoadingProgress && data.progress !== undefined) {
|
||||
const progress = Math.round(data.progress);
|
||||
window.updateModelLoadingProgress(progress, data.status || 'Loading...');
|
||||
}
|
||||
}
|
||||
});
|
||||
this.extractor = await window.transformers.pipeline('feature-extraction', modelName);
|
||||
|
||||
this.modelCache.set(modelName, this.extractor);
|
||||
this.currentModel = modelName;
|
||||
this.isLoading = false;
|
||||
|
||||
if (window.updateModelLoadingProgress) {
|
||||
window.updateModelLoadingProgress(100, 'Model loaded successfully');
|
||||
}
|
||||
|
||||
return { success: true, model: modelName };
|
||||
} catch (error) {
|
||||
this.isLoading = false;
|
||||
@@ -116,15 +100,6 @@ class TransformersEmbedder {
|
||||
}
|
||||
});
|
||||
|
||||
// Update progress
|
||||
const progress = Math.min(100, ((i + batch.length) / texts.length) * 100);
|
||||
if (window.updateEmbeddingProgress) {
|
||||
window.updateEmbeddingProgress(progress, `Processing ${i + batch.length}/${texts.length} texts`);
|
||||
}
|
||||
}
|
||||
|
||||
if (window.updateEmbeddingProgress) {
|
||||
window.updateEmbeddingProgress(100, `Generated ${embeddings.length} embeddings successfully`);
|
||||
}
|
||||
|
||||
return embeddings;
|
||||
@@ -139,30 +114,6 @@ class TransformersEmbedder {
|
||||
window.transformersEmbedder = new TransformersEmbedder();
|
||||
console.log('📦 TransformersEmbedder instance created');
|
||||
|
||||
// Global progress update functions
|
||||
window.updateModelLoadingProgress = function(progress, status) {
|
||||
const progressBar = document.getElementById('model-loading-progress');
|
||||
const statusText = document.getElementById('model-loading-status');
|
||||
if (progressBar) {
|
||||
progressBar.style.width = progress + '%';
|
||||
progressBar.setAttribute('aria-valuenow', progress);
|
||||
}
|
||||
if (statusText) {
|
||||
statusText.textContent = status;
|
||||
}
|
||||
};
|
||||
|
||||
window.updateEmbeddingProgress = function(progress, status) {
|
||||
const progressBar = document.getElementById('embedding-progress');
|
||||
const statusText = document.getElementById('embedding-status');
|
||||
if (progressBar) {
|
||||
progressBar.style.width = progress + '%';
|
||||
progressBar.setAttribute('aria-valuenow', progress);
|
||||
}
|
||||
if (statusText) {
|
||||
statusText.textContent = status;
|
||||
}
|
||||
};
|
||||
|
||||
// Dash clientside callback functions
|
||||
window.dash_clientside = window.dash_clientside || {};
|
||||
@@ -181,9 +132,7 @@ window.dash_clientside.transformers = {
|
||||
const initResult = await window.transformersEmbedder.initializeModel(modelName);
|
||||
if (!initResult.success) {
|
||||
return [
|
||||
{ error: initResult.error },
|
||||
`❌ Model loading error: ${initResult.error}`,
|
||||
"danger",
|
||||
{ error: `Model loading error: ${initResult.error}` },
|
||||
false
|
||||
];
|
||||
}
|
||||
@@ -194,7 +143,6 @@ window.dash_clientside.transformers = {
|
||||
|
||||
switch (tokenizationMethod) {
|
||||
case 'sentence':
|
||||
// Simple sentence splitting - can be enhanced with proper NLP
|
||||
textChunks = trimmedText
|
||||
.split(/[.!?]+/)
|
||||
.map(s => s.trim())
|
||||
@@ -219,8 +167,6 @@ window.dash_clientside.transformers = {
|
||||
if (textChunks.length === 0) {
|
||||
return [
|
||||
{ error: 'No valid text chunks found after tokenization' },
|
||||
'❌ Error: No valid text chunks found after tokenization',
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
@@ -230,9 +176,7 @@ window.dash_clientside.transformers = {
|
||||
|
||||
if (!embeddings || embeddings.length !== textChunks.length) {
|
||||
return [
|
||||
{ error: 'Embedding generation failed - mismatch in text chunks and embeddings' },
|
||||
'❌ Error: Embedding generation failed',
|
||||
"danger",
|
||||
{ error: 'Embedding generation failed' },
|
||||
false
|
||||
];
|
||||
}
|
||||
@@ -247,13 +191,16 @@ window.dash_clientside.transformers = {
|
||||
tags: []
|
||||
}));
|
||||
|
||||
// Return the successful embeddings data
|
||||
const embeddingsData = {
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
};
|
||||
|
||||
console.log('✅ Embeddings generated successfully:', embeddingsData);
|
||||
|
||||
return [
|
||||
{
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
},
|
||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
||||
"success",
|
||||
embeddingsData,
|
||||
false
|
||||
];
|
||||
|
||||
@@ -261,18 +208,18 @@ window.dash_clientside.transformers = {
|
||||
console.error('Client-side embedding error:', error);
|
||||
return [
|
||||
{ error: error.message },
|
||||
`❌ Error: ${error.message}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
console.log('✅ Transformers.js client-side setup complete');
|
||||
console.log('Available:', {
|
||||
transformersEmbedder: !!window.transformersEmbedder,
|
||||
dashClientside: !!window.dash_clientside,
|
||||
transformersModule: !!window.dash_clientside?.transformers,
|
||||
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings
|
||||
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings,
|
||||
processAsync: typeof window.processEmbeddingsAsync
|
||||
});
|
@@ -111,6 +111,17 @@ window.dash_clientside.transformers = {
|
||||
}
|
||||
|
||||
try {
|
||||
// Ensure Transformers.js is loaded
|
||||
if (!window.transformersLibraryLoaded) {
|
||||
const loaded = await initializeTransformers();
|
||||
if (!loaded) {
|
||||
return [
|
||||
{ error: 'Failed to load Transformers.js' },
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
|
||||
// Tokenize text
|
||||
let textChunks;
|
||||
const trimmedText = textContent.trim();
|
||||
@@ -130,7 +141,10 @@ window.dash_clientside.transformers = {
|
||||
}
|
||||
|
||||
if (textChunks.length === 0) {
|
||||
throw new Error('No valid text chunks after tokenization');
|
||||
return [
|
||||
{ error: 'No valid text chunks after tokenization' },
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
// Generate embeddings
|
||||
@@ -146,13 +160,16 @@ window.dash_clientside.transformers = {
|
||||
tags: []
|
||||
}));
|
||||
|
||||
// Return the successful embeddings data
|
||||
const embeddingsData = {
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
};
|
||||
|
||||
console.log('✅ Embeddings generated successfully:', embeddingsData);
|
||||
|
||||
return [
|
||||
{
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
},
|
||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
||||
"success",
|
||||
embeddingsData,
|
||||
false
|
||||
];
|
||||
|
||||
@@ -160,13 +177,12 @@ window.dash_clientside.transformers = {
|
||||
console.error('❌ Error generating embeddings:', error);
|
||||
return [
|
||||
{ error: error.message },
|
||||
`❌ Error: ${error.message}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
console.log('✅ Simple Transformers.js setup complete');
|
||||
console.log('Available functions:', Object.keys(window.dash_clientside.transformers));
|
Binary file not shown.
Before Width: | Height: | Size: 501 KiB After Width: | Height: | Size: 844 KiB |
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "embeddingbuddy"
|
||||
version = "0.4.0"
|
||||
version = "0.5.0"
|
||||
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.11"
|
||||
|
@@ -15,7 +15,12 @@ def create_app():
|
||||
assets_path = os.path.join(project_root, "assets")
|
||||
|
||||
app = dash.Dash(
|
||||
__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], assets_folder=assets_path
|
||||
__name__,
|
||||
external_stylesheets=[
|
||||
dbc.themes.BOOTSTRAP,
|
||||
"https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css",
|
||||
],
|
||||
assets_folder=assets_path,
|
||||
)
|
||||
|
||||
# Allow callbacks to components that are dynamically created in tabs
|
||||
@@ -75,16 +80,12 @@ def _register_client_side_callbacks(app):
|
||||
|
||||
return [
|
||||
{ error: 'Transformers.js not loaded. Please refresh the page and try again.' },
|
||||
errorMsg + ' Please refresh the page.',
|
||||
'danger',
|
||||
false
|
||||
];
|
||||
}
|
||||
""",
|
||||
[
|
||||
Output("embeddings-generated-trigger", "data"),
|
||||
Output("text-input-status-immediate", "children"),
|
||||
Output("text-input-status-immediate", "color"),
|
||||
Output("generate-embeddings-btn", "disabled", allow_duplicate=True),
|
||||
],
|
||||
[Input("generate-embeddings-btn", "n_clicks")],
|
||||
|
@@ -621,6 +621,12 @@ class DataProcessingCallbacks:
|
||||
if not embeddings_data:
|
||||
return no_update, no_update, no_update, no_update, no_update
|
||||
|
||||
# Check if this is a request trigger (contains textContent) vs actual embeddings data
|
||||
if isinstance(embeddings_data, dict) and "textContent" in embeddings_data:
|
||||
# This is a processing request trigger, not the actual results
|
||||
# The JavaScript will handle the async processing and update the UI directly
|
||||
return no_update, no_update, no_update, no_update, no_update
|
||||
|
||||
processed_data = self.processor.process_client_embeddings(embeddings_data)
|
||||
|
||||
if processed_data.error:
|
||||
|
@@ -1,6 +1,5 @@
|
||||
import dash
|
||||
from dash import callback, Input, Output, State, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from dash import callback, Input, Output
|
||||
|
||||
|
||||
class InteractionCallbacks:
|
||||
@@ -8,75 +7,16 @@ class InteractionCallbacks:
|
||||
self._register_callbacks()
|
||||
|
||||
def _register_callbacks(self):
|
||||
@callback(
|
||||
Output("point-details", "children"),
|
||||
Input("embedding-plot", "clickData"),
|
||||
[State("processed-data", "data"), State("processed-prompts", "data")],
|
||||
)
|
||||
def display_click_data(clickData, data, prompts_data):
|
||||
if not clickData or not data:
|
||||
return "Click on a point to see details"
|
||||
|
||||
point_data = clickData["points"][0]
|
||||
trace_name = point_data.get("fullData", {}).get("name", "Documents")
|
||||
|
||||
if "pointIndex" in point_data:
|
||||
point_index = point_data["pointIndex"]
|
||||
elif "pointNumber" in point_data:
|
||||
point_index = point_data["pointNumber"]
|
||||
else:
|
||||
return "Could not identify clicked point"
|
||||
|
||||
if (
|
||||
trace_name.startswith("Prompts")
|
||||
and prompts_data
|
||||
and "prompts" in prompts_data
|
||||
):
|
||||
item = prompts_data["prompts"][point_index]
|
||||
item_type = "Prompt"
|
||||
else:
|
||||
item = data["documents"][point_index]
|
||||
item_type = "Document"
|
||||
|
||||
return self._create_detail_card(item, item_type)
|
||||
|
||||
@callback(
|
||||
[
|
||||
Output("processed-data", "data", allow_duplicate=True),
|
||||
Output("processed-prompts", "data", allow_duplicate=True),
|
||||
Output("point-details", "children", allow_duplicate=True),
|
||||
],
|
||||
Input("reset-button", "n_clicks"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def reset_data(n_clicks):
|
||||
if n_clicks is None or n_clicks == 0:
|
||||
return dash.no_update, dash.no_update, dash.no_update
|
||||
return dash.no_update, dash.no_update
|
||||
|
||||
return None, None, "Click on a point to see details"
|
||||
|
||||
@staticmethod
|
||||
def _create_detail_card(item, item_type):
|
||||
return dbc.Card(
|
||||
[
|
||||
dbc.CardBody(
|
||||
[
|
||||
html.H5(f"{item_type}: {item['id']}", className="card-title"),
|
||||
html.P(f"Text: {item['text']}", className="card-text"),
|
||||
html.P(
|
||||
f"Category: {item.get('category', 'Unknown')}",
|
||||
className="card-text",
|
||||
),
|
||||
html.P(
|
||||
f"Subcategory: {item.get('subcategory', 'Unknown')}",
|
||||
className="card-text",
|
||||
),
|
||||
html.P(
|
||||
f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}",
|
||||
className="card-text",
|
||||
),
|
||||
html.P(f"Type: {item_type}", className="card-text text-muted"),
|
||||
]
|
||||
)
|
||||
]
|
||||
)
|
||||
return None, None
|
||||
|
@@ -1,13 +1,11 @@
|
||||
from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .upload import UploadComponent
|
||||
from .textinput import TextInputComponent
|
||||
|
||||
|
||||
class DataSourceComponent:
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
self.text_input_component = TextInputComponent()
|
||||
|
||||
def create_tabbed_interface(self):
|
||||
"""Create tabbed interface for different data sources."""
|
||||
@@ -19,7 +17,6 @@ class DataSourceComponent:
|
||||
[
|
||||
dbc.Tab(label="File Upload", tab_id="file-tab"),
|
||||
dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
|
||||
dbc.Tab(label="Text Input", tab_id="text-input-tab"),
|
||||
],
|
||||
id="data-source-tabs",
|
||||
active_tab="file-tab",
|
||||
@@ -211,10 +208,6 @@ class DataSourceComponent:
|
||||
]
|
||||
)
|
||||
|
||||
def create_text_input_tab(self):
|
||||
"""Create text input tab content for browser-based embedding generation."""
|
||||
return html.Div([self.text_input_component.create_text_input_interface()])
|
||||
|
||||
def _create_opensearch_section(self, section_type):
|
||||
"""Create a complete OpenSearch section for either 'data' or 'prompts'."""
|
||||
section_id = section_type # 'data' or 'prompts'
|
||||
|
@@ -2,31 +2,26 @@ from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .upload import UploadComponent
|
||||
from .datasource import DataSourceComponent
|
||||
from .textinput import TextInputComponent
|
||||
|
||||
|
||||
class SidebarComponent:
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
self.datasource_component = DataSourceComponent()
|
||||
self.textinput_component = TextInputComponent()
|
||||
|
||||
def create_layout(self):
|
||||
return dbc.Col(
|
||||
[
|
||||
html.H5("Data Sources", className="mb-3"),
|
||||
self.datasource_component.create_error_alert(),
|
||||
self.datasource_component.create_success_alert(),
|
||||
self.datasource_component.create_tabbed_interface(),
|
||||
html.H5("Visualization Controls", className="mb-3 mt-4"),
|
||||
]
|
||||
+ self._create_method_dropdown()
|
||||
+ self._create_color_dropdown()
|
||||
+ self._create_dimension_toggle()
|
||||
+ self._create_prompts_toggle()
|
||||
+ [
|
||||
html.H5("Point Details", className="mb-3"),
|
||||
html.Div(
|
||||
id="point-details", children="Click on a point to see details"
|
||||
),
|
||||
dbc.Accordion(
|
||||
[
|
||||
self._create_data_sources_item(),
|
||||
self._create_generate_embeddings_item(),
|
||||
self._create_visualization_controls_item(),
|
||||
],
|
||||
always_open=True,
|
||||
)
|
||||
],
|
||||
width=3,
|
||||
style={"padding-right": "20px"},
|
||||
@@ -86,3 +81,63 @@ class SidebarComponent:
|
||||
style={"margin-bottom": "20px"},
|
||||
),
|
||||
]
|
||||
|
||||
def _create_generate_embeddings_item(self):
|
||||
return dbc.AccordionItem(
|
||||
[
|
||||
self.textinput_component.create_text_input_interface(),
|
||||
],
|
||||
title=html.Span(
|
||||
[
|
||||
"Generate Embeddings ",
|
||||
html.I(
|
||||
className="fas fa-info-circle text-muted",
|
||||
style={"cursor": "pointer"},
|
||||
id="generate-embeddings-info-icon",
|
||||
title="Create new embeddings from text input using various in-browser models",
|
||||
),
|
||||
]
|
||||
),
|
||||
item_id="generate-embeddings-accordion",
|
||||
)
|
||||
|
||||
def _create_data_sources_item(self):
|
||||
return dbc.AccordionItem(
|
||||
[
|
||||
self.datasource_component.create_error_alert(),
|
||||
self.datasource_component.create_success_alert(),
|
||||
self.datasource_component.create_tabbed_interface(),
|
||||
],
|
||||
title=html.Span(
|
||||
[
|
||||
"Load Embeddings ",
|
||||
html.I(
|
||||
className="fas fa-info-circle text-muted",
|
||||
style={"cursor": "pointer"},
|
||||
id="load-embeddings-info-icon",
|
||||
title="Load existing embeddings: upload files or read from OpenSearch",
|
||||
),
|
||||
]
|
||||
),
|
||||
item_id="data-sources-accordion",
|
||||
)
|
||||
|
||||
def _create_visualization_controls_item(self):
|
||||
return dbc.AccordionItem(
|
||||
self._create_method_dropdown()
|
||||
+ self._create_color_dropdown()
|
||||
+ self._create_dimension_toggle()
|
||||
+ self._create_prompts_toggle(),
|
||||
title=html.Span(
|
||||
[
|
||||
"Visualization Controls ",
|
||||
html.I(
|
||||
className="fas fa-info-circle text-muted",
|
||||
style={"cursor": "pointer"},
|
||||
id="visualization-controls-info-icon",
|
||||
title="Configure plot settings: select dimensionality reduction method, colors, and display options",
|
||||
),
|
||||
]
|
||||
),
|
||||
item_id="visualization-controls-accordion",
|
||||
)
|
||||
|
@@ -30,9 +30,6 @@ class TextInputComponent:
|
||||
# Generation controls
|
||||
self._create_generation_controls(),
|
||||
html.Hr(),
|
||||
# Progress indicators
|
||||
self._create_progress_indicators(),
|
||||
html.Hr(),
|
||||
# Status and results
|
||||
self._create_status_section(),
|
||||
# Hidden components for data flow
|
||||
@@ -297,65 +294,10 @@ class TextInputComponent:
|
||||
]
|
||||
)
|
||||
|
||||
def _create_progress_indicators(self):
|
||||
"""Create progress bars for model loading and embedding generation."""
|
||||
return html.Div(
|
||||
[
|
||||
# Model loading progress
|
||||
html.Div(
|
||||
[
|
||||
html.H6("Model Loading Progress", className="mb-2"),
|
||||
dbc.Progress(
|
||||
id="model-loading-progress",
|
||||
value=0,
|
||||
striped=True,
|
||||
animated=True,
|
||||
className="mb-2",
|
||||
),
|
||||
html.Small(
|
||||
id="model-loading-status",
|
||||
children="No model loading in progress",
|
||||
className="text-muted",
|
||||
),
|
||||
],
|
||||
id="model-loading-section",
|
||||
style={"display": "none"},
|
||||
),
|
||||
html.Br(),
|
||||
# Embedding generation progress
|
||||
html.Div(
|
||||
[
|
||||
html.H6("Embedding Generation Progress", className="mb-2"),
|
||||
dbc.Progress(
|
||||
id="embedding-progress",
|
||||
value=0,
|
||||
striped=True,
|
||||
animated=True,
|
||||
className="mb-2",
|
||||
),
|
||||
html.Small(
|
||||
id="embedding-status",
|
||||
children="No embedding generation in progress",
|
||||
className="text-muted",
|
||||
),
|
||||
],
|
||||
id="embedding-progress-section",
|
||||
style={"display": "none"},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_status_section(self):
|
||||
"""Create status alerts and results preview."""
|
||||
return html.Div(
|
||||
[
|
||||
# Immediate status (from client-side)
|
||||
dbc.Alert(
|
||||
id="text-input-status-immediate",
|
||||
children="Ready to generate embeddings",
|
||||
color="light",
|
||||
className="mb-3",
|
||||
),
|
||||
# Server-side status
|
||||
dbc.Alert(
|
||||
id="text-input-status",
|
||||
|
@@ -5,39 +5,75 @@ import dash_bootstrap_components as dbc
|
||||
class UploadComponent:
|
||||
@staticmethod
|
||||
def create_data_upload():
|
||||
return dcc.Upload(
|
||||
id="upload-data",
|
||||
children=html.Div(["Drag and Drop or ", html.A("Select Files")]),
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
},
|
||||
multiple=False,
|
||||
return html.Div(
|
||||
[
|
||||
dcc.Upload(
|
||||
id="upload-data",
|
||||
children=html.Div(
|
||||
[
|
||||
"Upload Data ",
|
||||
html.I(
|
||||
className="fas fa-info-circle",
|
||||
style={"color": "#6c757d", "fontSize": "14px"},
|
||||
id="data-upload-info",
|
||||
),
|
||||
]
|
||||
),
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
},
|
||||
multiple=False,
|
||||
),
|
||||
dbc.Tooltip(
|
||||
"Click here or drag and drop NDJSON files containing document embeddings",
|
||||
target="data-upload-info",
|
||||
placement="top",
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def create_prompts_upload():
|
||||
return dcc.Upload(
|
||||
id="upload-prompts",
|
||||
children=html.Div(["Drag and Drop Prompts or ", html.A("Select Files")]),
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
"borderColor": "#28a745",
|
||||
},
|
||||
multiple=False,
|
||||
return html.Div(
|
||||
[
|
||||
dcc.Upload(
|
||||
id="upload-prompts",
|
||||
children=html.Div(
|
||||
[
|
||||
"Upload Prompts ",
|
||||
html.I(
|
||||
className="fas fa-info-circle",
|
||||
style={"color": "#6c757d", "fontSize": "14px"},
|
||||
id="prompts-upload-info",
|
||||
),
|
||||
]
|
||||
),
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
"borderColor": "#28a745",
|
||||
},
|
||||
multiple=False,
|
||||
),
|
||||
dbc.Tooltip(
|
||||
"Click here or drag and drop NDJSON files containing prompt embeddings",
|
||||
target="prompts-upload-info",
|
||||
placement="top",
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
|
@@ -38,9 +38,9 @@ class PlotFactory:
|
||||
if dimensions == "3d":
|
||||
fig = px.scatter_3d(
|
||||
df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
z="dim_3",
|
||||
x="x",
|
||||
y="y",
|
||||
z="z",
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f"3D Embedding Visualization - {method} (colored by {color_by})",
|
||||
@@ -49,8 +49,8 @@ class PlotFactory:
|
||||
else:
|
||||
fig = px.scatter(
|
||||
df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
x="x",
|
||||
y="y",
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f"2D Embedding Visualization - {method} (colored by {color_by})",
|
||||
@@ -77,17 +77,17 @@ class PlotFactory:
|
||||
if dimensions == "3d":
|
||||
doc_fig = px.scatter_3d(
|
||||
doc_df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
z="dim_3",
|
||||
x="x",
|
||||
y="y",
|
||||
z="z",
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields,
|
||||
)
|
||||
else:
|
||||
doc_fig = px.scatter(
|
||||
doc_df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
x="x",
|
||||
y="y",
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields,
|
||||
)
|
||||
@@ -114,17 +114,17 @@ class PlotFactory:
|
||||
if dimensions == "3d":
|
||||
prompt_fig = px.scatter_3d(
|
||||
prompt_df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
z="dim_3",
|
||||
x="x",
|
||||
y="y",
|
||||
z="z",
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields,
|
||||
)
|
||||
else:
|
||||
prompt_fig = px.scatter(
|
||||
prompt_df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
x="x",
|
||||
y="y",
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields,
|
||||
)
|
||||
@@ -168,11 +168,11 @@ class PlotFactory:
|
||||
"category": doc.category,
|
||||
"subcategory": doc.subcategory,
|
||||
"tags_str": ", ".join(doc.tags) if doc.tags else "None",
|
||||
"dim_1": coordinates[i, 0],
|
||||
"dim_2": coordinates[i, 1],
|
||||
"x": coordinates[i, 0],
|
||||
"y": coordinates[i, 1],
|
||||
}
|
||||
if dimensions == "3d":
|
||||
row["dim_3"] = coordinates[i, 2]
|
||||
row["z"] = coordinates[i, 2]
|
||||
df_data.append(row)
|
||||
|
||||
return pd.DataFrame(df_data)
|
||||
|
Reference in New Issue
Block a user