10 Commits

Author SHA1 Message Date
2f458884a2 Add configurable OpenSearch feature and UI improvements
All checks were successful
Security Scan / security (pull_request) Successful in 49s
Security Scan / dependency-check (pull_request) Successful in 51s
Test Suite / lint (pull_request) Successful in 41s
Test Suite / test (3.11) (pull_request) Successful in 1m43s
Test Suite / build (pull_request) Successful in 37s
- Add MIT license with Austin Godber copyright
  - Implement optional OpenSearch feature toggle via EMBEDDINGBUDDY_OPENSEARCH_ENABLED
  - Disable OpenSearch by default in production for security
  - Add development environment flag to test OpenSearch disable state
  - Update about modal to open by default with improved content
  - Reorganize text input component: move model selection below text input
  - Conditionally show/hide OpenSearch tab and callbacks based on configuration
  - Update tooltips to reflect OpenSearch availability status
2025-09-17 19:01:51 -07:00
89dcafd311 ruff
All checks were successful
Security Scan / dependency-check (pull_request) Successful in 40s
Security Scan / security (pull_request) Successful in 46s
Test Suite / lint (pull_request) Successful in 40s
Test Suite / test (3.11) (pull_request) Successful in 1m40s
Test Suite / build (pull_request) Successful in 44s
2025-09-16 08:12:36 -07:00
ea01ce596d update version to 0.5.1
Some checks failed
Security Scan / security (pull_request) Successful in 41s
Security Scan / dependency-check (pull_request) Successful in 43s
Test Suite / lint (pull_request) Failing after 39s
Test Suite / test (3.11) (pull_request) Successful in 1m33s
Test Suite / build (pull_request) Has been skipped
2025-09-15 08:05:06 -07:00
8861b32ae5 add about modal 2025-09-15 08:03:39 -07:00
302453d313 improve dockerfile
All checks were successful
Security Scan / security (push) Successful in 46s
Security Scan / dependency-check (push) Successful in 52s
Test Suite / lint (push) Successful in 37s
Test Suite / test (3.11) (push) Successful in 1m34s
Test Suite / build (push) Successful in 39s
2025-09-14 18:32:56 -07:00
e022b26399 Merge pull request 'v0.5.0 - rework the sidebar' (#6) from restructure-sidebar into main
Some checks failed
Test Suite / lint (push) Successful in 30s
Test Suite / test (3.11) (push) Successful in 1m35s
Release / test (push) Successful in 1m6s
Test Suite / build (push) Successful in 48s
Release / build-and-release (push) Failing after 23s
Security Scan / security (push) Successful in 37s
Security Scan / dependency-check (push) Successful in 39s
Reviewed-on: #6
2025-09-13 14:59:48 -07:00
c29160c9e9 format
All checks were successful
Security Scan / security (pull_request) Successful in 37s
Security Scan / dependency-check (pull_request) Successful in 39s
Test Suite / lint (pull_request) Successful in 31s
Test Suite / test (3.11) (pull_request) Successful in 1m34s
Test Suite / build (pull_request) Successful in 39s
2025-09-13 14:43:09 -07:00
bd3ee6e35a update screenshot
Some checks failed
Security Scan / dependency-check (pull_request) Successful in 44s
Security Scan / security (pull_request) Successful in 44s
Test Suite / lint (pull_request) Failing after 31s
Test Suite / test (3.11) (pull_request) Successful in 1m28s
Test Suite / build (pull_request) Has been skipped
2025-09-13 14:38:52 -07:00
6936bc5d97 v0.5.0 - rework the sidebar
Some checks failed
Security Scan / security (pull_request) Successful in 32s
Security Scan / dependency-check (pull_request) Successful in 33s
Test Suite / test (3.11) (pull_request) Successful in 1m17s
Test Suite / lint (pull_request) Failing after 25s
Test Suite / build (pull_request) Has been skipped
This PR reworks the sidebar to be an accordian.
I also remove some of the progress feedback since it wasn't working right.
2025-09-13 14:34:02 -07:00
9a2e257b0d Merge pull request 'add-docker' (#5) from add-docker into main
Some checks failed
Security Scan / dependency-check (push) Successful in 39s
Security Scan / security (push) Successful in 44s
Test Suite / lint (push) Successful in 32s
Test Suite / test (3.11) (push) Successful in 1m36s
Test Suite / build (push) Successful in 45s
Release / test (push) Successful in 1m9s
Release / build-and-release (push) Failing after 24s
Reviewed-on: #5
2025-09-07 18:13:51 -07:00
24 changed files with 514 additions and 340 deletions

View File

@@ -4,7 +4,9 @@
"Bash(mkdir:*)",
"Bash(uv run:*)",
"Bash(uv add:*)",
"Bash(uv sync:*)"
"Bash(uv sync:*)",
"Bash(tree:*)",
"WebFetch(domain:www.dash-bootstrap-components.com)"
],
"deny": [],
"ask": [],

View File

@@ -22,11 +22,13 @@ uv sync
**Run the application:**
Development mode (with auto-reload):
```bash
uv run run_dev.py
```
Production mode (with Gunicorn WSGI server):
```bash
# First install production dependencies
uv sync --extra prod
@@ -36,11 +38,12 @@ uv run run_prod.py
```
Legacy mode (basic Dash server):
```bash
uv run main.py
```
The app will be available at http://127.0.0.1:8050
The app will be available at <http://127.0.0.1:8050>
**Run tests:**

View File

@@ -2,6 +2,9 @@
# Stage 1: Builder
FROM python:3.11-slim as builder
# Create non-root user early in builder stage
RUN groupadd -r appuser && useradd -r -g appuser appuser
# Install system dependencies for building Python packages
RUN apt-get update && apt-get install -y \
build-essential \
@@ -25,6 +28,15 @@ COPY wsgi.py .
COPY run_prod.py .
COPY assets/ assets/
# Change ownership of source files before building (lighter I/O)
RUN chown -R appuser:appuser /app
# Create and set permissions for appuser home directory (needed for uv cache)
RUN mkdir -p /home/appuser && chown -R appuser:appuser /home/appuser
# Switch to non-root user before building
USER appuser
# Create virtual environment and install dependencies (including production extras)
RUN uv venv .venv
RUN uv sync --frozen --extra prod
@@ -32,23 +44,28 @@ RUN uv sync --frozen --extra prod
# Stage 2: Runtime
FROM python:3.11-slim as runtime
# Create non-root user in runtime stage
RUN groupadd -r appuser && useradd -r -g appuser appuser
# Install runtime dependencies for compiled packages
RUN apt-get update && apt-get install -y \
libgomp1 \
&& rm -rf /var/lib/apt/lists/*
# Set working directory
# Set working directory and change ownership (small directory)
WORKDIR /app
RUN chown appuser:appuser /app
# Copy virtual environment from builder stage
COPY --from=builder /app/.venv /app/.venv
# Copy files from builder with correct ownership
COPY --from=builder --chown=appuser:appuser /app/.venv /app/.venv
COPY --from=builder --chown=appuser:appuser /app/src /app/src
COPY --from=builder --chown=appuser:appuser /app/main.py /app/main.py
COPY --from=builder --chown=appuser:appuser /app/assets /app/assets
COPY --from=builder --chown=appuser:appuser /app/wsgi.py /app/wsgi.py
COPY --from=builder --chown=appuser:appuser /app/run_prod.py /app/run_prod.py
# Copy application files from builder stage
COPY --from=builder /app/src /app/src
COPY --from=builder /app/main.py /app/main.py
COPY --from=builder /app/assets /app/assets
COPY --from=builder /app/wsgi.py /app/wsgi.py
COPY --from=builder /app/run_prod.py /app/run_prod.py
# Switch to non-root user
USER appuser
# Make sure the virtual environment is in PATH
ENV PATH="/app/.venv/bin:$PATH"

21
LICENSE Normal file
View File

@@ -0,0 +1,21 @@
MIT License
Copyright (c) 2025 Austin Godber - EmbeddingBuddy
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

View File

@@ -152,22 +152,38 @@ The application follows a modular architecture for improved maintainability and
```text
src/embeddingbuddy/
├── config/ # Configuration management
│ └── settings.py # Centralized app settings
├── data/ # Data parsing and processing
│ ├── parser.py # NDJSON parsing logic
── processor.py # Data transformation utilities
├── models/ # Data schemas and algorithms
── schemas.py # Pydantic data models
└── reducers.py # Dimensionality reduction algorithms
├── visualization/ # Plot creation and styling
│ ├── plots.py # Plot factory and creation logic
── colors.py # Color mapping utilities
├── ui/ # User interface components
│ ├── layout.py # Main application layout
│ ├── components/ # Reusable UI components
│ └── callbacks/ # Organized callback functions
── utils/ # Utility functions
├── app.py # Main application entry point and factory
├── config/ # Configuration management
│ └── settings.py # Centralized app settings
├── data/ # Data parsing and processing
── parser.py # NDJSON parsing logic
│ ├── processor.py # Data transformation utilities
── sources/ # Data source integrations
└── opensearch.py # OpenSearch data source
├── models/ # Data schemas and algorithms
│ ├── schemas.py # Pydantic data models
── reducers.py # Dimensionality reduction algorithms
│ └── field_mapper.py # Field mapping utilities
├── visualization/ # Plot creation and styling
│ ├── plots.py # Plot factory and creation logic
│ └── colors.py # Color mapping utilities
── ui/ # User interface components
│ ├── layout.py # Main application layout
│ ├── components/ # Reusable UI components
│ │ ├── sidebar.py # Sidebar component
│ │ ├── upload.py # Upload components
│ │ ├── textinput.py # Text input components
│ │ └── datasource.py # Data source components
│ └── callbacks/ # Organized callback functions
│ ├── data_processing.py # Data upload/processing callbacks
│ ├── visualization.py # Plot update callbacks
│ └── interactions.py # User interaction callbacks
└── utils/ # Utility functions
main.py # Application runner (at project root)
main.py # Application runner (at project root)
run_dev.py # Development server runner
run_prod.py # Production server runner
```
### Testing

17
assets/custom.css Normal file
View File

@@ -0,0 +1,17 @@
/* CSS override for transparent hover boxes in Plotly plots */
/* Make hover boxes transparent while preserving text readability */
.hovertext {
fill-opacity: 0.8 !important;
stroke-opacity: 1 !important;
}
/* Alternative selector for different Plotly versions */
g.hovertext > path {
opacity: 0.8 !important;
}
/* Ensure text remains fully visible */
.hovertext text {
opacity: 1 !important;
}

View File

@@ -45,28 +45,12 @@ class TransformersEmbedder {
console.log('✅ Using globally loaded Transformers.js pipeline');
}
// Show loading progress to user
if (window.updateModelLoadingProgress) {
window.updateModelLoadingProgress(0, `Loading ${modelName}...`);
}
this.extractor = await window.transformers.pipeline('feature-extraction', modelName, {
progress_callback: (data) => {
if (window.updateModelLoadingProgress && data.progress !== undefined) {
const progress = Math.round(data.progress);
window.updateModelLoadingProgress(progress, data.status || 'Loading...');
}
}
});
this.extractor = await window.transformers.pipeline('feature-extraction', modelName);
this.modelCache.set(modelName, this.extractor);
this.currentModel = modelName;
this.isLoading = false;
if (window.updateModelLoadingProgress) {
window.updateModelLoadingProgress(100, 'Model loaded successfully');
}
return { success: true, model: modelName };
} catch (error) {
this.isLoading = false;
@@ -116,15 +100,6 @@ class TransformersEmbedder {
}
});
// Update progress
const progress = Math.min(100, ((i + batch.length) / texts.length) * 100);
if (window.updateEmbeddingProgress) {
window.updateEmbeddingProgress(progress, `Processing ${i + batch.length}/${texts.length} texts`);
}
}
if (window.updateEmbeddingProgress) {
window.updateEmbeddingProgress(100, `Generated ${embeddings.length} embeddings successfully`);
}
return embeddings;
@@ -139,30 +114,6 @@ class TransformersEmbedder {
window.transformersEmbedder = new TransformersEmbedder();
console.log('📦 TransformersEmbedder instance created');
// Global progress update functions
window.updateModelLoadingProgress = function(progress, status) {
const progressBar = document.getElementById('model-loading-progress');
const statusText = document.getElementById('model-loading-status');
if (progressBar) {
progressBar.style.width = progress + '%';
progressBar.setAttribute('aria-valuenow', progress);
}
if (statusText) {
statusText.textContent = status;
}
};
window.updateEmbeddingProgress = function(progress, status) {
const progressBar = document.getElementById('embedding-progress');
const statusText = document.getElementById('embedding-status');
if (progressBar) {
progressBar.style.width = progress + '%';
progressBar.setAttribute('aria-valuenow', progress);
}
if (statusText) {
statusText.textContent = status;
}
};
// Dash clientside callback functions
window.dash_clientside = window.dash_clientside || {};
@@ -181,9 +132,7 @@ window.dash_clientside.transformers = {
const initResult = await window.transformersEmbedder.initializeModel(modelName);
if (!initResult.success) {
return [
{ error: initResult.error },
`❌ Model loading error: ${initResult.error}`,
"danger",
{ error: `Model loading error: ${initResult.error}` },
false
];
}
@@ -194,7 +143,6 @@ window.dash_clientside.transformers = {
switch (tokenizationMethod) {
case 'sentence':
// Simple sentence splitting - can be enhanced with proper NLP
textChunks = trimmedText
.split(/[.!?]+/)
.map(s => s.trim())
@@ -219,8 +167,6 @@ window.dash_clientside.transformers = {
if (textChunks.length === 0) {
return [
{ error: 'No valid text chunks found after tokenization' },
'❌ Error: No valid text chunks found after tokenization',
"danger",
false
];
}
@@ -230,9 +176,7 @@ window.dash_clientside.transformers = {
if (!embeddings || embeddings.length !== textChunks.length) {
return [
{ error: 'Embedding generation failed - mismatch in text chunks and embeddings' },
'❌ Error: Embedding generation failed',
"danger",
{ error: 'Embedding generation failed' },
false
];
}
@@ -247,13 +191,16 @@ window.dash_clientside.transformers = {
tags: []
}));
// Return the successful embeddings data
const embeddingsData = {
documents: documents,
embeddings: embeddings
};
console.log('✅ Embeddings generated successfully:', embeddingsData);
return [
{
documents: documents,
embeddings: embeddings
},
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
"success",
embeddingsData,
false
];
@@ -261,18 +208,18 @@ window.dash_clientside.transformers = {
console.error('Client-side embedding error:', error);
return [
{ error: error.message },
`❌ Error: ${error.message}`,
"danger",
false
];
}
}
};
console.log('✅ Transformers.js client-side setup complete');
console.log('Available:', {
transformersEmbedder: !!window.transformersEmbedder,
dashClientside: !!window.dash_clientside,
transformersModule: !!window.dash_clientside?.transformers,
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings,
processAsync: typeof window.processEmbeddingsAsync
});

View File

@@ -111,6 +111,17 @@ window.dash_clientside.transformers = {
}
try {
// Ensure Transformers.js is loaded
if (!window.transformersLibraryLoaded) {
const loaded = await initializeTransformers();
if (!loaded) {
return [
{ error: 'Failed to load Transformers.js' },
false
];
}
}
// Tokenize text
let textChunks;
const trimmedText = textContent.trim();
@@ -130,7 +141,10 @@ window.dash_clientside.transformers = {
}
if (textChunks.length === 0) {
throw new Error('No valid text chunks after tokenization');
return [
{ error: 'No valid text chunks after tokenization' },
false
];
}
// Generate embeddings
@@ -146,13 +160,16 @@ window.dash_clientside.transformers = {
tags: []
}));
// Return the successful embeddings data
const embeddingsData = {
documents: documents,
embeddings: embeddings
};
console.log('✅ Embeddings generated successfully:', embeddingsData);
return [
{
documents: documents,
embeddings: embeddings
},
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
"success",
embeddingsData,
false
];
@@ -160,13 +177,12 @@ window.dash_clientside.transformers = {
console.error('❌ Error generating embeddings:', error);
return [
{ error: error.message },
`❌ Error: ${error.message}`,
"danger",
false
];
}
}
};
console.log('✅ Simple Transformers.js setup complete');
console.log('Available functions:', Object.keys(window.dash_clientside.transformers));

Binary file not shown.

Before

Width:  |  Height:  |  Size: 501 KiB

After

Width:  |  Height:  |  Size: 844 KiB

View File

@@ -1,6 +1,6 @@
[project]
name = "embeddingbuddy"
version = "0.4.0"
version = "0.6.0"
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
readme = "README.md"
requires-python = ">=3.11"

View File

@@ -12,9 +12,15 @@ def main():
os.environ["EMBEDDINGBUDDY_ENV"] = "development"
os.environ["EMBEDDINGBUDDY_DEBUG"] = "true"
# Check for OpenSearch disable flag (optional for testing)
# Set EMBEDDINGBUDDY_OPENSEARCH_ENABLED=false to test without OpenSearch
opensearch_status = os.getenv("EMBEDDINGBUDDY_OPENSEARCH_ENABLED", "true")
opensearch_enabled = opensearch_status.lower() == "true"
print("🚀 Starting EmbeddingBuddy in development mode...")
print("📁 Auto-reload enabled - changes will trigger restart")
print("🌐 Server will be available at http://127.0.0.1:8050")
print(f"🔍 OpenSearch: {'Enabled' if opensearch_enabled else 'Disabled'}")
print("⏹️ Press Ctrl+C to stop")
app = create_app()

View File

@@ -13,6 +13,9 @@ def main():
# Force production settings
os.environ["EMBEDDINGBUDDY_ENV"] = "production"
os.environ["EMBEDDINGBUDDY_DEBUG"] = "false"
# Disable OpenSearch by default in production (can be overridden by setting env var)
if "EMBEDDINGBUDDY_OPENSEARCH_ENABLED" not in os.environ:
os.environ["EMBEDDINGBUDDY_OPENSEARCH_ENABLED"] = "false"
print("🚀 Starting EmbeddingBuddy in production mode...")
print(f"⚙️ Workers: {AppSettings.GUNICORN_WORKERS}")

View File

@@ -15,7 +15,34 @@ def create_app():
assets_path = os.path.join(project_root, "assets")
app = dash.Dash(
__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], assets_folder=assets_path
__name__,
title="EmbeddingBuddy",
external_stylesheets=[
dbc.themes.BOOTSTRAP,
"https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css",
],
assets_folder=assets_path,
meta_tags=[
{
"name": "description",
"content": "Interactive embedding visualization tool for exploring high-dimensional vectors through dimensionality reduction techniques like PCA, t-SNE, and UMAP.",
},
{"name": "author", "content": "EmbeddingBuddy"},
{
"name": "keywords",
"content": "embeddings, visualization, dimensionality reduction, PCA, t-SNE, UMAP, machine learning, data science",
},
{"name": "viewport", "content": "width=device-width, initial-scale=1.0"},
{
"property": "og:title",
"content": "EmbeddingBuddy - Interactive Embedding Visualization",
},
{
"property": "og:description",
"content": "Explore and visualize embedding vectors through interactive 2D/3D plots with multiple dimensionality reduction techniques.",
},
{"property": "og:type", "content": "website"},
],
)
# Allow callbacks to components that are dynamically created in tabs
@@ -75,16 +102,12 @@ def _register_client_side_callbacks(app):
return [
{ error: 'Transformers.js not loaded. Please refresh the page and try again.' },
errorMsg + ' Please refresh the page.',
'danger',
false
];
}
""",
[
Output("embeddings-generated-trigger", "data"),
Output("text-input-status-immediate", "children"),
Output("text-input-status-immediate", "color"),
Output("generate-embeddings-btn", "disabled", allow_duplicate=True),
],
[Input("generate-embeddings-btn", "n_clicks")],

View File

@@ -85,6 +85,9 @@ class AppSettings:
GUNICORN_KEEPALIVE = int(os.getenv("GUNICORN_KEEPALIVE", "5"))
# OpenSearch Configuration
OPENSEARCH_ENABLED = (
os.getenv("EMBEDDINGBUDDY_OPENSEARCH_ENABLED", "True").lower() == "true"
)
OPENSEARCH_DEFAULT_SIZE = 100
OPENSEARCH_SAMPLE_SIZE = 5
OPENSEARCH_CONNECTION_TIMEOUT = 30

View File

@@ -82,19 +82,23 @@ class DataProcessingCallbacks:
)
def render_tab_content(active_tab):
from ...ui.components.datasource import DataSourceComponent
from ...config.settings import AppSettings
datasource = DataSourceComponent()
if active_tab == "opensearch-tab":
if active_tab == "opensearch-tab" and AppSettings.OPENSEARCH_ENABLED:
return [datasource.create_opensearch_tab()]
elif active_tab == "text-input-tab":
return [datasource.create_text_input_tab()]
else:
return [datasource.create_file_upload_tab()]
# Register callbacks for both data and prompts sections
self._register_opensearch_callbacks("data", self.opensearch_client_data)
self._register_opensearch_callbacks("prompts", self.opensearch_client_prompts)
# Register callbacks for both data and prompts sections (only if OpenSearch is enabled)
if AppSettings.OPENSEARCH_ENABLED:
self._register_opensearch_callbacks("data", self.opensearch_client_data)
self._register_opensearch_callbacks(
"prompts", self.opensearch_client_prompts
)
# Register collapsible section callbacks
self._register_collapse_callbacks()
@@ -621,6 +625,12 @@ class DataProcessingCallbacks:
if not embeddings_data:
return no_update, no_update, no_update, no_update, no_update
# Check if this is a request trigger (contains textContent) vs actual embeddings data
if isinstance(embeddings_data, dict) and "textContent" in embeddings_data:
# This is a processing request trigger, not the actual results
# The JavaScript will handle the async processing and update the UI directly
return no_update, no_update, no_update, no_update, no_update
processed_data = self.processor.process_client_embeddings(embeddings_data)
if processed_data.error:

View File

@@ -1,6 +1,5 @@
import dash
from dash import callback, Input, Output, State, html
import dash_bootstrap_components as dbc
from dash import callback, Input, Output
class InteractionCallbacks:
@@ -9,74 +8,25 @@ class InteractionCallbacks:
def _register_callbacks(self):
@callback(
Output("point-details", "children"),
Input("embedding-plot", "clickData"),
[State("processed-data", "data"), State("processed-prompts", "data")],
Output("about-modal", "is_open"),
[Input("about-button", "n_clicks"), Input("about-modal-close", "n_clicks")],
prevent_initial_call=True,
)
def display_click_data(clickData, data, prompts_data):
if not clickData or not data:
return "Click on a point to see details"
point_data = clickData["points"][0]
trace_name = point_data.get("fullData", {}).get("name", "Documents")
if "pointIndex" in point_data:
point_index = point_data["pointIndex"]
elif "pointNumber" in point_data:
point_index = point_data["pointNumber"]
else:
return "Could not identify clicked point"
if (
trace_name.startswith("Prompts")
and prompts_data
and "prompts" in prompts_data
):
item = prompts_data["prompts"][point_index]
item_type = "Prompt"
else:
item = data["documents"][point_index]
item_type = "Document"
return self._create_detail_card(item, item_type)
def toggle_about_modal(about_clicks, close_clicks):
if about_clicks or close_clicks:
return True if about_clicks else False
return False
@callback(
[
Output("processed-data", "data", allow_duplicate=True),
Output("processed-prompts", "data", allow_duplicate=True),
Output("point-details", "children", allow_duplicate=True),
],
Input("reset-button", "n_clicks"),
prevent_initial_call=True,
)
def reset_data(n_clicks):
if n_clicks is None or n_clicks == 0:
return dash.no_update, dash.no_update, dash.no_update
return dash.no_update, dash.no_update
return None, None, "Click on a point to see details"
@staticmethod
def _create_detail_card(item, item_type):
return dbc.Card(
[
dbc.CardBody(
[
html.H5(f"{item_type}: {item['id']}", className="card-title"),
html.P(f"Text: {item['text']}", className="card-text"),
html.P(
f"Category: {item.get('category', 'Unknown')}",
className="card-text",
),
html.P(
f"Subcategory: {item.get('subcategory', 'Unknown')}",
className="card-text",
),
html.P(
f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}",
className="card-text",
),
html.P(f"Type: {item_type}", className="card-text text-muted"),
]
)
]
)
return None, None

View File

@@ -0,0 +1,90 @@
from dash import html, dcc
import dash_bootstrap_components as dbc
class AboutComponent:
def _get_about_content(self):
return """
# 🔍 Interactive Embedding Vector Visualization
EmbeddingBuddy is a web application for interactive exploration and
visualization of embedding vectors through dimensionality reduction techniques
(PCA, t-SNE, UMAP).
You have two ways to get started:
1. Generate embeddings directly in the browser if it supports WebGPU.
2. Upload your NDJSON file containing embedding vectors and metadata.
## Generating Embeddings in Browser
1. Expand the "Generate Embeddings" section.
2. Input your text data (one entry per line).
1. Optionally you can use the built in sample data by clicking "Load Sample Data" button.
3. Click "Generate Embeddings" to create vectors using a pre-trained model.
## NDJSON File Format
```json
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, ...], "text": "Sample text content", "category": "news", "subcategory": "politics", "tags": ["election", "politics"]}
{"id": "doc_002", "embedding": [0.2, -0.1, 0.9, ...], "text": "Another example", "category": "review", "subcategory": "product", "tags": ["tech", "gadget"]}
```
## ✨ Features
- Drag-and-drop NDJSON file upload
- Multiple dimensionality reduction algorithms
- 2D/3D interactive plots with Plotly
- Color coding by categories, subcategories, or tags
- In-browser embedding generation
- OpenSearch integration for data loading
## 🔧 Supported Algorithms
- **PCA** (Principal Component Analysis)
- **t-SNE** (t-Distributed Stochastic Neighbor Embedding)
- **UMAP** (Uniform Manifold Approximation and Projection)
---
📂 [View on GitHub](https://github.com/godber/EmbeddingBuddy)
*Built with: Python, Dash, Plotly, scikit-learn, OpenTSNE, UMAP*
""".strip()
def create_about_modal(self):
return dbc.Modal(
[
dbc.ModalHeader(
dbc.ModalTitle("Welcome to EmbeddingBuddy"),
close_button=True,
),
dbc.ModalBody(
[dcc.Markdown(self._get_about_content(), className="mb-0")]
),
dbc.ModalFooter(
[
dbc.Button(
"Close",
id="about-modal-close",
color="secondary",
n_clicks=0,
)
]
),
],
id="about-modal",
is_open=True,
size="lg",
)
def create_about_button(self):
return dbc.Button(
[html.I(className="fas fa-info-circle me-2"), "About"],
id="about-button",
color="outline-info",
size="sm",
n_clicks=0,
className="ms-2",
)

View File

@@ -1,26 +1,27 @@
from dash import dcc, html
import dash_bootstrap_components as dbc
from .upload import UploadComponent
from .textinput import TextInputComponent
from embeddingbuddy.config.settings import AppSettings
class DataSourceComponent:
def __init__(self):
self.upload_component = UploadComponent()
self.text_input_component = TextInputComponent()
def create_tabbed_interface(self):
"""Create tabbed interface for different data sources."""
tabs = [dbc.Tab(label="File Upload", tab_id="file-tab")]
# Only add OpenSearch tab if enabled
if AppSettings.OPENSEARCH_ENABLED:
tabs.append(dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"))
return dbc.Card(
[
dbc.CardHeader(
[
dbc.Tabs(
[
dbc.Tab(label="File Upload", tab_id="file-tab"),
dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
dbc.Tab(label="Text Input", tab_id="text-input-tab"),
],
tabs,
id="data-source-tabs",
active_tab="file-tab",
)
@@ -211,10 +212,6 @@ class DataSourceComponent:
]
)
def create_text_input_tab(self):
"""Create text input tab content for browser-based embedding generation."""
return html.Div([self.text_input_component.create_text_input_interface()])
def _create_opensearch_section(self, section_type):
"""Create a complete OpenSearch section for either 'data' or 'prompts'."""
section_id = section_type # 'data' or 'prompts'

View File

@@ -2,31 +2,27 @@ from dash import dcc, html
import dash_bootstrap_components as dbc
from .upload import UploadComponent
from .datasource import DataSourceComponent
from .textinput import TextInputComponent
from embeddingbuddy.config.settings import AppSettings
class SidebarComponent:
def __init__(self):
self.upload_component = UploadComponent()
self.datasource_component = DataSourceComponent()
self.textinput_component = TextInputComponent()
def create_layout(self):
return dbc.Col(
[
html.H5("Data Sources", className="mb-3"),
self.datasource_component.create_error_alert(),
self.datasource_component.create_success_alert(),
self.datasource_component.create_tabbed_interface(),
html.H5("Visualization Controls", className="mb-3 mt-4"),
]
+ self._create_method_dropdown()
+ self._create_color_dropdown()
+ self._create_dimension_toggle()
+ self._create_prompts_toggle()
+ [
html.H5("Point Details", className="mb-3"),
html.Div(
id="point-details", children="Click on a point to see details"
),
dbc.Accordion(
[
self._create_data_sources_item(),
self._create_generate_embeddings_item(),
self._create_visualization_controls_item(),
],
always_open=True,
)
],
width=3,
style={"padding-right": "20px"},
@@ -86,3 +82,67 @@ class SidebarComponent:
style={"margin-bottom": "20px"},
),
]
def _create_generate_embeddings_item(self):
return dbc.AccordionItem(
[
self.textinput_component.create_text_input_interface(),
],
title=html.Span(
[
"Generate Embeddings ",
html.I(
className="fas fa-info-circle text-muted",
style={"cursor": "pointer"},
id="generate-embeddings-info-icon",
title="Create new embeddings from text input using various in-browser models",
),
]
),
item_id="generate-embeddings-accordion",
)
def _create_data_sources_item(self):
tooltip_text = "Load existing embeddings: upload files"
if AppSettings.OPENSEARCH_ENABLED:
tooltip_text += " or read from OpenSearch"
return dbc.AccordionItem(
[
self.datasource_component.create_error_alert(),
self.datasource_component.create_success_alert(),
self.datasource_component.create_tabbed_interface(),
],
title=html.Span(
[
"Load Embeddings ",
html.I(
className="fas fa-info-circle text-muted",
style={"cursor": "pointer"},
id="load-embeddings-info-icon",
title=tooltip_text,
),
]
),
item_id="data-sources-accordion",
)
def _create_visualization_controls_item(self):
return dbc.AccordionItem(
self._create_method_dropdown()
+ self._create_color_dropdown()
+ self._create_dimension_toggle()
+ self._create_prompts_toggle(),
title=html.Span(
[
"Visualization Controls ",
html.I(
className="fas fa-info-circle text-muted",
style={"cursor": "pointer"},
id="visualization-controls-info-icon",
title="Configure plot settings: select dimensionality reduction method, colors, and display options",
),
]
),
item_id="visualization-controls-accordion",
)

View File

@@ -16,23 +16,20 @@ class TextInputComponent:
"""Create the complete text input interface with model selection and processing options."""
return html.Div(
[
# Model selection section
self._create_model_selection(),
html.Hr(),
# Text input section
self._create_text_input_area(),
# Text action buttons
self._create_text_action_buttons(),
html.Hr(),
# Model selection section
self._create_model_selection(),
html.Hr(),
# Processing options
self._create_processing_options(),
html.Hr(),
# Generation controls
self._create_generation_controls(),
html.Hr(),
# Progress indicators
self._create_progress_indicators(),
html.Hr(),
# Status and results
self._create_status_section(),
# Hidden components for data flow
@@ -297,65 +294,10 @@ class TextInputComponent:
]
)
def _create_progress_indicators(self):
"""Create progress bars for model loading and embedding generation."""
return html.Div(
[
# Model loading progress
html.Div(
[
html.H6("Model Loading Progress", className="mb-2"),
dbc.Progress(
id="model-loading-progress",
value=0,
striped=True,
animated=True,
className="mb-2",
),
html.Small(
id="model-loading-status",
children="No model loading in progress",
className="text-muted",
),
],
id="model-loading-section",
style={"display": "none"},
),
html.Br(),
# Embedding generation progress
html.Div(
[
html.H6("Embedding Generation Progress", className="mb-2"),
dbc.Progress(
id="embedding-progress",
value=0,
striped=True,
animated=True,
className="mb-2",
),
html.Small(
id="embedding-status",
children="No embedding generation in progress",
className="text-muted",
),
],
id="embedding-progress-section",
style={"display": "none"},
),
]
)
def _create_status_section(self):
"""Create status alerts and results preview."""
return html.Div(
[
# Immediate status (from client-side)
dbc.Alert(
id="text-input-status-immediate",
children="Ready to generate embeddings",
color="light",
className="mb-3",
),
# Server-side status
dbc.Alert(
id="text-input-status",

View File

@@ -5,39 +5,75 @@ import dash_bootstrap_components as dbc
class UploadComponent:
@staticmethod
def create_data_upload():
return dcc.Upload(
id="upload-data",
children=html.Div(["Drag and Drop or ", html.A("Select Files")]),
style={
"width": "100%",
"height": "60px",
"lineHeight": "60px",
"borderWidth": "1px",
"borderStyle": "dashed",
"borderRadius": "5px",
"textAlign": "center",
"margin-bottom": "20px",
},
multiple=False,
return html.Div(
[
dcc.Upload(
id="upload-data",
children=html.Div(
[
"Upload Data ",
html.I(
className="fas fa-info-circle",
style={"color": "#6c757d", "fontSize": "14px"},
id="data-upload-info",
),
]
),
style={
"width": "100%",
"height": "60px",
"lineHeight": "60px",
"borderWidth": "1px",
"borderStyle": "dashed",
"borderRadius": "5px",
"textAlign": "center",
"margin-bottom": "20px",
},
multiple=False,
),
dbc.Tooltip(
"Click here or drag and drop NDJSON files containing document embeddings",
target="data-upload-info",
placement="top",
),
]
)
@staticmethod
def create_prompts_upload():
return dcc.Upload(
id="upload-prompts",
children=html.Div(["Drag and Drop Prompts or ", html.A("Select Files")]),
style={
"width": "100%",
"height": "60px",
"lineHeight": "60px",
"borderWidth": "1px",
"borderStyle": "dashed",
"borderRadius": "5px",
"textAlign": "center",
"margin-bottom": "20px",
"borderColor": "#28a745",
},
multiple=False,
return html.Div(
[
dcc.Upload(
id="upload-prompts",
children=html.Div(
[
"Upload Prompts ",
html.I(
className="fas fa-info-circle",
style={"color": "#6c757d", "fontSize": "14px"},
id="prompts-upload-info",
),
]
),
style={
"width": "100%",
"height": "60px",
"lineHeight": "60px",
"borderWidth": "1px",
"borderStyle": "dashed",
"borderRadius": "5px",
"textAlign": "center",
"margin-bottom": "20px",
"borderColor": "#28a745",
},
multiple=False,
),
dbc.Tooltip(
"Click here or drag and drop NDJSON files containing prompt embeddings",
target="prompts-upload-info",
placement="top",
),
]
)
@staticmethod

View File

@@ -1,16 +1,19 @@
from dash import dcc, html
import dash_bootstrap_components as dbc
from .components.sidebar import SidebarComponent
from .components.about import AboutComponent
class AppLayout:
def __init__(self):
self.sidebar = SidebarComponent()
self.about = AboutComponent()
def create_layout(self):
return dbc.Container(
[self._create_header(), self._create_main_content()]
+ self._create_stores(),
+ self._create_stores()
+ [self.about.create_about_modal()],
fluid=True,
)
@@ -19,7 +22,19 @@ class AppLayout:
[
dbc.Col(
[
html.H1("EmbeddingBuddy", className="text-center mb-4"),
html.Div(
[
html.H1(
"EmbeddingBuddy",
className="text-center mb-4 d-inline",
),
html.Div(
[self.about.create_about_button()],
className="float-end",
),
],
className="d-flex justify-content-between align-items-center",
),
# Load Transformers.js from CDN
html.Script(
"""

View File

@@ -38,9 +38,9 @@ class PlotFactory:
if dimensions == "3d":
fig = px.scatter_3d(
df,
x="dim_1",
y="dim_2",
z="dim_3",
x="x",
y="y",
z="z",
color=color_values,
hover_data=hover_fields,
title=f"3D Embedding Visualization - {method} (colored by {color_by})",
@@ -49,8 +49,8 @@ class PlotFactory:
else:
fig = px.scatter(
df,
x="dim_1",
y="dim_2",
x="x",
y="y",
color=color_values,
hover_data=hover_fields,
title=f"2D Embedding Visualization - {method} (colored by {color_by})",
@@ -77,17 +77,17 @@ class PlotFactory:
if dimensions == "3d":
doc_fig = px.scatter_3d(
doc_df,
x="dim_1",
y="dim_2",
z="dim_3",
x="x",
y="y",
z="z",
color=doc_color_values,
hover_data=hover_fields,
)
else:
doc_fig = px.scatter(
doc_df,
x="dim_1",
y="dim_2",
x="x",
y="y",
color=doc_color_values,
hover_data=hover_fields,
)
@@ -114,17 +114,17 @@ class PlotFactory:
if dimensions == "3d":
prompt_fig = px.scatter_3d(
prompt_df,
x="dim_1",
y="dim_2",
z="dim_3",
x="x",
y="y",
z="z",
color=prompt_color_values,
hover_data=hover_fields,
)
else:
prompt_fig = px.scatter(
prompt_df,
x="dim_1",
y="dim_2",
x="x",
y="y",
color=prompt_color_values,
hover_data=hover_fields,
)
@@ -168,11 +168,11 @@ class PlotFactory:
"category": doc.category,
"subcategory": doc.subcategory,
"tags_str": ", ".join(doc.tags) if doc.tags else "None",
"dim_1": coordinates[i, 0],
"dim_2": coordinates[i, 1],
"x": coordinates[i, 0],
"y": coordinates[i, 1],
}
if dimensions == "3d":
row["dim_3"] = coordinates[i, 2]
row["z"] = coordinates[i, 2]
df_data.append(row)
return pd.DataFrame(df_data)

2
uv.lock generated
View File

@@ -412,7 +412,7 @@ wheels = [
[[package]]
name = "embeddingbuddy"
version = "0.4.0"
version = "0.5.1"
source = { editable = "." }
dependencies = [
{ name = "dash" },