Compare commits
9 Commits
Author | SHA1 | Date | |
---|---|---|---|
2f458884a2 | |||
89dcafd311 | |||
ea01ce596d | |||
8861b32ae5 | |||
302453d313 | |||
e022b26399 | |||
c29160c9e9 | |||
bd3ee6e35a | |||
6936bc5d97 |
@@ -4,7 +4,9 @@
|
|||||||
"Bash(mkdir:*)",
|
"Bash(mkdir:*)",
|
||||||
"Bash(uv run:*)",
|
"Bash(uv run:*)",
|
||||||
"Bash(uv add:*)",
|
"Bash(uv add:*)",
|
||||||
"Bash(uv sync:*)"
|
"Bash(uv sync:*)",
|
||||||
|
"Bash(tree:*)",
|
||||||
|
"WebFetch(domain:www.dash-bootstrap-components.com)"
|
||||||
],
|
],
|
||||||
"deny": [],
|
"deny": [],
|
||||||
"ask": [],
|
"ask": [],
|
||||||
|
@@ -22,11 +22,13 @@ uv sync
|
|||||||
**Run the application:**
|
**Run the application:**
|
||||||
|
|
||||||
Development mode (with auto-reload):
|
Development mode (with auto-reload):
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
uv run run_dev.py
|
uv run run_dev.py
|
||||||
```
|
```
|
||||||
|
|
||||||
Production mode (with Gunicorn WSGI server):
|
Production mode (with Gunicorn WSGI server):
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
# First install production dependencies
|
# First install production dependencies
|
||||||
uv sync --extra prod
|
uv sync --extra prod
|
||||||
@@ -36,11 +38,12 @@ uv run run_prod.py
|
|||||||
```
|
```
|
||||||
|
|
||||||
Legacy mode (basic Dash server):
|
Legacy mode (basic Dash server):
|
||||||
|
|
||||||
```bash
|
```bash
|
||||||
uv run main.py
|
uv run main.py
|
||||||
```
|
```
|
||||||
|
|
||||||
The app will be available at http://127.0.0.1:8050
|
The app will be available at <http://127.0.0.1:8050>
|
||||||
|
|
||||||
**Run tests:**
|
**Run tests:**
|
||||||
|
|
||||||
|
35
Dockerfile
35
Dockerfile
@@ -2,6 +2,9 @@
|
|||||||
# Stage 1: Builder
|
# Stage 1: Builder
|
||||||
FROM python:3.11-slim as builder
|
FROM python:3.11-slim as builder
|
||||||
|
|
||||||
|
# Create non-root user early in builder stage
|
||||||
|
RUN groupadd -r appuser && useradd -r -g appuser appuser
|
||||||
|
|
||||||
# Install system dependencies for building Python packages
|
# Install system dependencies for building Python packages
|
||||||
RUN apt-get update && apt-get install -y \
|
RUN apt-get update && apt-get install -y \
|
||||||
build-essential \
|
build-essential \
|
||||||
@@ -25,6 +28,15 @@ COPY wsgi.py .
|
|||||||
COPY run_prod.py .
|
COPY run_prod.py .
|
||||||
COPY assets/ assets/
|
COPY assets/ assets/
|
||||||
|
|
||||||
|
# Change ownership of source files before building (lighter I/O)
|
||||||
|
RUN chown -R appuser:appuser /app
|
||||||
|
|
||||||
|
# Create and set permissions for appuser home directory (needed for uv cache)
|
||||||
|
RUN mkdir -p /home/appuser && chown -R appuser:appuser /home/appuser
|
||||||
|
|
||||||
|
# Switch to non-root user before building
|
||||||
|
USER appuser
|
||||||
|
|
||||||
# Create virtual environment and install dependencies (including production extras)
|
# Create virtual environment and install dependencies (including production extras)
|
||||||
RUN uv venv .venv
|
RUN uv venv .venv
|
||||||
RUN uv sync --frozen --extra prod
|
RUN uv sync --frozen --extra prod
|
||||||
@@ -32,23 +44,28 @@ RUN uv sync --frozen --extra prod
|
|||||||
# Stage 2: Runtime
|
# Stage 2: Runtime
|
||||||
FROM python:3.11-slim as runtime
|
FROM python:3.11-slim as runtime
|
||||||
|
|
||||||
|
# Create non-root user in runtime stage
|
||||||
|
RUN groupadd -r appuser && useradd -r -g appuser appuser
|
||||||
|
|
||||||
# Install runtime dependencies for compiled packages
|
# Install runtime dependencies for compiled packages
|
||||||
RUN apt-get update && apt-get install -y \
|
RUN apt-get update && apt-get install -y \
|
||||||
libgomp1 \
|
libgomp1 \
|
||||||
&& rm -rf /var/lib/apt/lists/*
|
&& rm -rf /var/lib/apt/lists/*
|
||||||
|
|
||||||
# Set working directory
|
# Set working directory and change ownership (small directory)
|
||||||
WORKDIR /app
|
WORKDIR /app
|
||||||
|
RUN chown appuser:appuser /app
|
||||||
|
|
||||||
# Copy virtual environment from builder stage
|
# Copy files from builder with correct ownership
|
||||||
COPY --from=builder /app/.venv /app/.venv
|
COPY --from=builder --chown=appuser:appuser /app/.venv /app/.venv
|
||||||
|
COPY --from=builder --chown=appuser:appuser /app/src /app/src
|
||||||
|
COPY --from=builder --chown=appuser:appuser /app/main.py /app/main.py
|
||||||
|
COPY --from=builder --chown=appuser:appuser /app/assets /app/assets
|
||||||
|
COPY --from=builder --chown=appuser:appuser /app/wsgi.py /app/wsgi.py
|
||||||
|
COPY --from=builder --chown=appuser:appuser /app/run_prod.py /app/run_prod.py
|
||||||
|
|
||||||
# Copy application files from builder stage
|
# Switch to non-root user
|
||||||
COPY --from=builder /app/src /app/src
|
USER appuser
|
||||||
COPY --from=builder /app/main.py /app/main.py
|
|
||||||
COPY --from=builder /app/assets /app/assets
|
|
||||||
COPY --from=builder /app/wsgi.py /app/wsgi.py
|
|
||||||
COPY --from=builder /app/run_prod.py /app/run_prod.py
|
|
||||||
|
|
||||||
# Make sure the virtual environment is in PATH
|
# Make sure the virtual environment is in PATH
|
||||||
ENV PATH="/app/.venv/bin:$PATH"
|
ENV PATH="/app/.venv/bin:$PATH"
|
||||||
|
21
LICENSE
Normal file
21
LICENSE
Normal file
@@ -0,0 +1,21 @@
|
|||||||
|
MIT License
|
||||||
|
|
||||||
|
Copyright (c) 2025 Austin Godber - EmbeddingBuddy
|
||||||
|
|
||||||
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
||||||
|
of this software and associated documentation files (the "Software"), to deal
|
||||||
|
in the Software without restriction, including without limitation the rights
|
||||||
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
||||||
|
copies of the Software, and to permit persons to whom the Software is
|
||||||
|
furnished to do so, subject to the following conditions:
|
||||||
|
|
||||||
|
The above copyright notice and this permission notice shall be included in all
|
||||||
|
copies or substantial portions of the Software.
|
||||||
|
|
||||||
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
||||||
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
||||||
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
||||||
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
||||||
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
||||||
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
||||||
|
SOFTWARE.
|
48
README.md
48
README.md
@@ -152,22 +152,38 @@ The application follows a modular architecture for improved maintainability and
|
|||||||
|
|
||||||
```text
|
```text
|
||||||
src/embeddingbuddy/
|
src/embeddingbuddy/
|
||||||
├── config/ # Configuration management
|
├── app.py # Main application entry point and factory
|
||||||
│ └── settings.py # Centralized app settings
|
├── config/ # Configuration management
|
||||||
├── data/ # Data parsing and processing
|
│ └── settings.py # Centralized app settings
|
||||||
│ ├── parser.py # NDJSON parsing logic
|
├── data/ # Data parsing and processing
|
||||||
│ └── processor.py # Data transformation utilities
|
│ ├── parser.py # NDJSON parsing logic
|
||||||
├── models/ # Data schemas and algorithms
|
│ ├── processor.py # Data transformation utilities
|
||||||
│ ├── schemas.py # Pydantic data models
|
│ └── sources/ # Data source integrations
|
||||||
│ └── reducers.py # Dimensionality reduction algorithms
|
│ └── opensearch.py # OpenSearch data source
|
||||||
├── visualization/ # Plot creation and styling
|
├── models/ # Data schemas and algorithms
|
||||||
│ ├── plots.py # Plot factory and creation logic
|
│ ├── schemas.py # Pydantic data models
|
||||||
│ └── colors.py # Color mapping utilities
|
│ ├── reducers.py # Dimensionality reduction algorithms
|
||||||
├── ui/ # User interface components
|
│ └── field_mapper.py # Field mapping utilities
|
||||||
│ ├── layout.py # Main application layout
|
├── visualization/ # Plot creation and styling
|
||||||
│ ├── components/ # Reusable UI components
|
│ ├── plots.py # Plot factory and creation logic
|
||||||
│ └── callbacks/ # Organized callback functions
|
│ └── colors.py # Color mapping utilities
|
||||||
└── utils/ # Utility functions
|
├── ui/ # User interface components
|
||||||
|
│ ├── layout.py # Main application layout
|
||||||
|
│ ├── components/ # Reusable UI components
|
||||||
|
│ │ ├── sidebar.py # Sidebar component
|
||||||
|
│ │ ├── upload.py # Upload components
|
||||||
|
│ │ ├── textinput.py # Text input components
|
||||||
|
│ │ └── datasource.py # Data source components
|
||||||
|
│ └── callbacks/ # Organized callback functions
|
||||||
|
│ ├── data_processing.py # Data upload/processing callbacks
|
||||||
|
│ ├── visualization.py # Plot update callbacks
|
||||||
|
│ └── interactions.py # User interaction callbacks
|
||||||
|
└── utils/ # Utility functions
|
||||||
|
|
||||||
|
main.py # Application runner (at project root)
|
||||||
|
main.py # Application runner (at project root)
|
||||||
|
run_dev.py # Development server runner
|
||||||
|
run_prod.py # Production server runner
|
||||||
```
|
```
|
||||||
|
|
||||||
### Testing
|
### Testing
|
||||||
|
17
assets/custom.css
Normal file
17
assets/custom.css
Normal file
@@ -0,0 +1,17 @@
|
|||||||
|
/* CSS override for transparent hover boxes in Plotly plots */
|
||||||
|
|
||||||
|
/* Make hover boxes transparent while preserving text readability */
|
||||||
|
.hovertext {
|
||||||
|
fill-opacity: 0.8 !important;
|
||||||
|
stroke-opacity: 1 !important;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Alternative selector for different Plotly versions */
|
||||||
|
g.hovertext > path {
|
||||||
|
opacity: 0.8 !important;
|
||||||
|
}
|
||||||
|
|
||||||
|
/* Ensure text remains fully visible */
|
||||||
|
.hovertext text {
|
||||||
|
opacity: 1 !important;
|
||||||
|
}
|
@@ -45,28 +45,12 @@ class TransformersEmbedder {
|
|||||||
console.log('✅ Using globally loaded Transformers.js pipeline');
|
console.log('✅ Using globally loaded Transformers.js pipeline');
|
||||||
}
|
}
|
||||||
|
|
||||||
// Show loading progress to user
|
this.extractor = await window.transformers.pipeline('feature-extraction', modelName);
|
||||||
if (window.updateModelLoadingProgress) {
|
|
||||||
window.updateModelLoadingProgress(0, `Loading ${modelName}...`);
|
|
||||||
}
|
|
||||||
|
|
||||||
this.extractor = await window.transformers.pipeline('feature-extraction', modelName, {
|
|
||||||
progress_callback: (data) => {
|
|
||||||
if (window.updateModelLoadingProgress && data.progress !== undefined) {
|
|
||||||
const progress = Math.round(data.progress);
|
|
||||||
window.updateModelLoadingProgress(progress, data.status || 'Loading...');
|
|
||||||
}
|
|
||||||
}
|
|
||||||
});
|
|
||||||
|
|
||||||
this.modelCache.set(modelName, this.extractor);
|
this.modelCache.set(modelName, this.extractor);
|
||||||
this.currentModel = modelName;
|
this.currentModel = modelName;
|
||||||
this.isLoading = false;
|
this.isLoading = false;
|
||||||
|
|
||||||
if (window.updateModelLoadingProgress) {
|
|
||||||
window.updateModelLoadingProgress(100, 'Model loaded successfully');
|
|
||||||
}
|
|
||||||
|
|
||||||
return { success: true, model: modelName };
|
return { success: true, model: modelName };
|
||||||
} catch (error) {
|
} catch (error) {
|
||||||
this.isLoading = false;
|
this.isLoading = false;
|
||||||
@@ -116,17 +100,8 @@ class TransformersEmbedder {
|
|||||||
}
|
}
|
||||||
});
|
});
|
||||||
|
|
||||||
// Update progress
|
|
||||||
const progress = Math.min(100, ((i + batch.length) / texts.length) * 100);
|
|
||||||
if (window.updateEmbeddingProgress) {
|
|
||||||
window.updateEmbeddingProgress(progress, `Processing ${i + batch.length}/${texts.length} texts`);
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
if (window.updateEmbeddingProgress) {
|
|
||||||
window.updateEmbeddingProgress(100, `Generated ${embeddings.length} embeddings successfully`);
|
|
||||||
}
|
|
||||||
|
|
||||||
return embeddings;
|
return embeddings;
|
||||||
} catch (error) {
|
} catch (error) {
|
||||||
console.error('Embedding generation error:', error);
|
console.error('Embedding generation error:', error);
|
||||||
@@ -139,30 +114,6 @@ class TransformersEmbedder {
|
|||||||
window.transformersEmbedder = new TransformersEmbedder();
|
window.transformersEmbedder = new TransformersEmbedder();
|
||||||
console.log('📦 TransformersEmbedder instance created');
|
console.log('📦 TransformersEmbedder instance created');
|
||||||
|
|
||||||
// Global progress update functions
|
|
||||||
window.updateModelLoadingProgress = function(progress, status) {
|
|
||||||
const progressBar = document.getElementById('model-loading-progress');
|
|
||||||
const statusText = document.getElementById('model-loading-status');
|
|
||||||
if (progressBar) {
|
|
||||||
progressBar.style.width = progress + '%';
|
|
||||||
progressBar.setAttribute('aria-valuenow', progress);
|
|
||||||
}
|
|
||||||
if (statusText) {
|
|
||||||
statusText.textContent = status;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
window.updateEmbeddingProgress = function(progress, status) {
|
|
||||||
const progressBar = document.getElementById('embedding-progress');
|
|
||||||
const statusText = document.getElementById('embedding-status');
|
|
||||||
if (progressBar) {
|
|
||||||
progressBar.style.width = progress + '%';
|
|
||||||
progressBar.setAttribute('aria-valuenow', progress);
|
|
||||||
}
|
|
||||||
if (statusText) {
|
|
||||||
statusText.textContent = status;
|
|
||||||
}
|
|
||||||
};
|
|
||||||
|
|
||||||
// Dash clientside callback functions
|
// Dash clientside callback functions
|
||||||
window.dash_clientside = window.dash_clientside || {};
|
window.dash_clientside = window.dash_clientside || {};
|
||||||
@@ -170,31 +121,28 @@ console.log('🔧 Setting up window.dash_clientside.transformers');
|
|||||||
window.dash_clientside.transformers = {
|
window.dash_clientside.transformers = {
|
||||||
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
||||||
console.log('🚀 generateEmbeddings called with:', { nClicks, modelName, tokenizationMethod, textLength: textContent?.length });
|
console.log('🚀 generateEmbeddings called with:', { nClicks, modelName, tokenizationMethod, textLength: textContent?.length });
|
||||||
|
|
||||||
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
||||||
console.log('⚠️ Early return - missing required parameters');
|
console.log('⚠️ Early return - missing required parameters');
|
||||||
return window.dash_clientside.no_update;
|
return window.dash_clientside.no_update;
|
||||||
}
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
// Initialize model if needed
|
// Initialize model if needed
|
||||||
const initResult = await window.transformersEmbedder.initializeModel(modelName);
|
const initResult = await window.transformersEmbedder.initializeModel(modelName);
|
||||||
if (!initResult.success) {
|
if (!initResult.success) {
|
||||||
return [
|
return [
|
||||||
{ error: initResult.error },
|
{ error: `Model loading error: ${initResult.error}` },
|
||||||
`❌ Model loading error: ${initResult.error}`,
|
|
||||||
"danger",
|
|
||||||
false
|
false
|
||||||
];
|
];
|
||||||
}
|
}
|
||||||
|
|
||||||
// Tokenize text based on method
|
// Tokenize text based on method
|
||||||
let textChunks;
|
let textChunks;
|
||||||
const trimmedText = textContent.trim();
|
const trimmedText = textContent.trim();
|
||||||
|
|
||||||
switch (tokenizationMethod) {
|
switch (tokenizationMethod) {
|
||||||
case 'sentence':
|
case 'sentence':
|
||||||
// Simple sentence splitting - can be enhanced with proper NLP
|
|
||||||
textChunks = trimmedText
|
textChunks = trimmedText
|
||||||
.split(/[.!?]+/)
|
.split(/[.!?]+/)
|
||||||
.map(s => s.trim())
|
.map(s => s.trim())
|
||||||
@@ -215,28 +163,24 @@ window.dash_clientside.transformers = {
|
|||||||
default:
|
default:
|
||||||
textChunks = [trimmedText];
|
textChunks = [trimmedText];
|
||||||
}
|
}
|
||||||
|
|
||||||
if (textChunks.length === 0) {
|
if (textChunks.length === 0) {
|
||||||
return [
|
return [
|
||||||
{ error: 'No valid text chunks found after tokenization' },
|
{ error: 'No valid text chunks found after tokenization' },
|
||||||
'❌ Error: No valid text chunks found after tokenization',
|
|
||||||
"danger",
|
|
||||||
false
|
false
|
||||||
];
|
];
|
||||||
}
|
}
|
||||||
|
|
||||||
// Generate embeddings
|
// Generate embeddings
|
||||||
const embeddings = await window.transformersEmbedder.generateEmbeddings(textChunks);
|
const embeddings = await window.transformersEmbedder.generateEmbeddings(textChunks);
|
||||||
|
|
||||||
if (!embeddings || embeddings.length !== textChunks.length) {
|
if (!embeddings || embeddings.length !== textChunks.length) {
|
||||||
return [
|
return [
|
||||||
{ error: 'Embedding generation failed - mismatch in text chunks and embeddings' },
|
{ error: 'Embedding generation failed' },
|
||||||
'❌ Error: Embedding generation failed',
|
|
||||||
"danger",
|
|
||||||
false
|
false
|
||||||
];
|
];
|
||||||
}
|
}
|
||||||
|
|
||||||
// Create documents structure
|
// Create documents structure
|
||||||
const documents = textChunks.map((text, i) => ({
|
const documents = textChunks.map((text, i) => ({
|
||||||
id: `text_input_${Date.now()}_${i}`,
|
id: `text_input_${Date.now()}_${i}`,
|
||||||
@@ -246,33 +190,36 @@ window.dash_clientside.transformers = {
|
|||||||
subcategory: subcategory || "Generated",
|
subcategory: subcategory || "Generated",
|
||||||
tags: []
|
tags: []
|
||||||
}));
|
}));
|
||||||
|
|
||||||
|
// Return the successful embeddings data
|
||||||
|
const embeddingsData = {
|
||||||
|
documents: documents,
|
||||||
|
embeddings: embeddings
|
||||||
|
};
|
||||||
|
|
||||||
|
console.log('✅ Embeddings generated successfully:', embeddingsData);
|
||||||
|
|
||||||
return [
|
return [
|
||||||
{
|
embeddingsData,
|
||||||
documents: documents,
|
|
||||||
embeddings: embeddings
|
|
||||||
},
|
|
||||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
|
||||||
"success",
|
|
||||||
false
|
false
|
||||||
];
|
];
|
||||||
|
|
||||||
} catch (error) {
|
} catch (error) {
|
||||||
console.error('Client-side embedding error:', error);
|
console.error('Client-side embedding error:', error);
|
||||||
return [
|
return [
|
||||||
{ error: error.message },
|
{ error: error.message },
|
||||||
`❌ Error: ${error.message}`,
|
|
||||||
"danger",
|
|
||||||
false
|
false
|
||||||
];
|
];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
console.log('✅ Transformers.js client-side setup complete');
|
console.log('✅ Transformers.js client-side setup complete');
|
||||||
console.log('Available:', {
|
console.log('Available:', {
|
||||||
transformersEmbedder: !!window.transformersEmbedder,
|
transformersEmbedder: !!window.transformersEmbedder,
|
||||||
dashClientside: !!window.dash_clientside,
|
dashClientside: !!window.dash_clientside,
|
||||||
transformersModule: !!window.dash_clientside?.transformers,
|
transformersModule: !!window.dash_clientside?.transformers,
|
||||||
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings
|
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings,
|
||||||
|
processAsync: typeof window.processEmbeddingsAsync
|
||||||
});
|
});
|
@@ -104,17 +104,28 @@ window.dash_clientside = window.dash_clientside || {};
|
|||||||
window.dash_clientside.transformers = {
|
window.dash_clientside.transformers = {
|
||||||
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
||||||
console.log('🚀 Client-side generateEmbeddings called');
|
console.log('🚀 Client-side generateEmbeddings called');
|
||||||
|
|
||||||
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
||||||
console.log('⚠️ Missing required parameters');
|
console.log('⚠️ Missing required parameters');
|
||||||
return window.dash_clientside.no_update;
|
return window.dash_clientside.no_update;
|
||||||
}
|
}
|
||||||
|
|
||||||
try {
|
try {
|
||||||
|
// Ensure Transformers.js is loaded
|
||||||
|
if (!window.transformersLibraryLoaded) {
|
||||||
|
const loaded = await initializeTransformers();
|
||||||
|
if (!loaded) {
|
||||||
|
return [
|
||||||
|
{ error: 'Failed to load Transformers.js' },
|
||||||
|
false
|
||||||
|
];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
// Tokenize text
|
// Tokenize text
|
||||||
let textChunks;
|
let textChunks;
|
||||||
const trimmedText = textContent.trim();
|
const trimmedText = textContent.trim();
|
||||||
|
|
||||||
switch (tokenizationMethod) {
|
switch (tokenizationMethod) {
|
||||||
case 'sentence':
|
case 'sentence':
|
||||||
textChunks = trimmedText.split(/[.!?]+/).map(s => s.trim()).filter(s => s.length > 0);
|
textChunks = trimmedText.split(/[.!?]+/).map(s => s.trim()).filter(s => s.length > 0);
|
||||||
@@ -128,45 +139,50 @@ window.dash_clientside.transformers = {
|
|||||||
default:
|
default:
|
||||||
textChunks = [trimmedText];
|
textChunks = [trimmedText];
|
||||||
}
|
}
|
||||||
|
|
||||||
if (textChunks.length === 0) {
|
if (textChunks.length === 0) {
|
||||||
throw new Error('No valid text chunks after tokenization');
|
return [
|
||||||
|
{ error: 'No valid text chunks after tokenization' },
|
||||||
|
false
|
||||||
|
];
|
||||||
}
|
}
|
||||||
|
|
||||||
// Generate embeddings
|
// Generate embeddings
|
||||||
const embeddings = await window.simpleEmbedder.generateEmbeddings(textChunks, modelName);
|
const embeddings = await window.simpleEmbedder.generateEmbeddings(textChunks, modelName);
|
||||||
|
|
||||||
// Create documents
|
// Create documents
|
||||||
const documents = textChunks.map((text, i) => ({
|
const documents = textChunks.map((text, i) => ({
|
||||||
id: `text_input_${Date.now()}_${i}`,
|
id: `text_input_${Date.now()}_${i}`,
|
||||||
text: text,
|
text: text,
|
||||||
embedding: embeddings[i],
|
embedding: embeddings[i],
|
||||||
category: category || "Text Input",
|
category: category || "Text Input",
|
||||||
subcategory: subcategory || "Generated",
|
subcategory: subcategory || "Generated",
|
||||||
tags: []
|
tags: []
|
||||||
}));
|
}));
|
||||||
|
|
||||||
|
// Return the successful embeddings data
|
||||||
|
const embeddingsData = {
|
||||||
|
documents: documents,
|
||||||
|
embeddings: embeddings
|
||||||
|
};
|
||||||
|
|
||||||
|
console.log('✅ Embeddings generated successfully:', embeddingsData);
|
||||||
|
|
||||||
return [
|
return [
|
||||||
{
|
embeddingsData,
|
||||||
documents: documents,
|
|
||||||
embeddings: embeddings
|
|
||||||
},
|
|
||||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
|
||||||
"success",
|
|
||||||
false
|
false
|
||||||
];
|
];
|
||||||
|
|
||||||
} catch (error) {
|
} catch (error) {
|
||||||
console.error('❌ Error generating embeddings:', error);
|
console.error('❌ Error generating embeddings:', error);
|
||||||
return [
|
return [
|
||||||
{ error: error.message },
|
{ error: error.message },
|
||||||
`❌ Error: ${error.message}`,
|
|
||||||
"danger",
|
|
||||||
false
|
false
|
||||||
];
|
];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
console.log('✅ Simple Transformers.js setup complete');
|
console.log('✅ Simple Transformers.js setup complete');
|
||||||
console.log('Available functions:', Object.keys(window.dash_clientside.transformers));
|
console.log('Available functions:', Object.keys(window.dash_clientside.transformers));
|
Binary file not shown.
Before Width: | Height: | Size: 501 KiB After Width: | Height: | Size: 844 KiB |
@@ -1,6 +1,6 @@
|
|||||||
[project]
|
[project]
|
||||||
name = "embeddingbuddy"
|
name = "embeddingbuddy"
|
||||||
version = "0.4.0"
|
version = "0.6.0"
|
||||||
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
|
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
requires-python = ">=3.11"
|
requires-python = ">=3.11"
|
||||||
|
@@ -11,10 +11,16 @@ def main():
|
|||||||
# Force development settings
|
# Force development settings
|
||||||
os.environ["EMBEDDINGBUDDY_ENV"] = "development"
|
os.environ["EMBEDDINGBUDDY_ENV"] = "development"
|
||||||
os.environ["EMBEDDINGBUDDY_DEBUG"] = "true"
|
os.environ["EMBEDDINGBUDDY_DEBUG"] = "true"
|
||||||
|
|
||||||
|
# Check for OpenSearch disable flag (optional for testing)
|
||||||
|
# Set EMBEDDINGBUDDY_OPENSEARCH_ENABLED=false to test without OpenSearch
|
||||||
|
opensearch_status = os.getenv("EMBEDDINGBUDDY_OPENSEARCH_ENABLED", "true")
|
||||||
|
opensearch_enabled = opensearch_status.lower() == "true"
|
||||||
|
|
||||||
print("🚀 Starting EmbeddingBuddy in development mode...")
|
print("🚀 Starting EmbeddingBuddy in development mode...")
|
||||||
print("📁 Auto-reload enabled - changes will trigger restart")
|
print("📁 Auto-reload enabled - changes will trigger restart")
|
||||||
print("🌐 Server will be available at http://127.0.0.1:8050")
|
print("🌐 Server will be available at http://127.0.0.1:8050")
|
||||||
|
print(f"🔍 OpenSearch: {'Enabled' if opensearch_enabled else 'Disabled'}")
|
||||||
print("⏹️ Press Ctrl+C to stop")
|
print("⏹️ Press Ctrl+C to stop")
|
||||||
|
|
||||||
app = create_app()
|
app = create_app()
|
||||||
|
@@ -13,6 +13,9 @@ def main():
|
|||||||
# Force production settings
|
# Force production settings
|
||||||
os.environ["EMBEDDINGBUDDY_ENV"] = "production"
|
os.environ["EMBEDDINGBUDDY_ENV"] = "production"
|
||||||
os.environ["EMBEDDINGBUDDY_DEBUG"] = "false"
|
os.environ["EMBEDDINGBUDDY_DEBUG"] = "false"
|
||||||
|
# Disable OpenSearch by default in production (can be overridden by setting env var)
|
||||||
|
if "EMBEDDINGBUDDY_OPENSEARCH_ENABLED" not in os.environ:
|
||||||
|
os.environ["EMBEDDINGBUDDY_OPENSEARCH_ENABLED"] = "false"
|
||||||
|
|
||||||
print("🚀 Starting EmbeddingBuddy in production mode...")
|
print("🚀 Starting EmbeddingBuddy in production mode...")
|
||||||
print(f"⚙️ Workers: {AppSettings.GUNICORN_WORKERS}")
|
print(f"⚙️ Workers: {AppSettings.GUNICORN_WORKERS}")
|
||||||
|
@@ -15,7 +15,34 @@ def create_app():
|
|||||||
assets_path = os.path.join(project_root, "assets")
|
assets_path = os.path.join(project_root, "assets")
|
||||||
|
|
||||||
app = dash.Dash(
|
app = dash.Dash(
|
||||||
__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], assets_folder=assets_path
|
__name__,
|
||||||
|
title="EmbeddingBuddy",
|
||||||
|
external_stylesheets=[
|
||||||
|
dbc.themes.BOOTSTRAP,
|
||||||
|
"https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css",
|
||||||
|
],
|
||||||
|
assets_folder=assets_path,
|
||||||
|
meta_tags=[
|
||||||
|
{
|
||||||
|
"name": "description",
|
||||||
|
"content": "Interactive embedding visualization tool for exploring high-dimensional vectors through dimensionality reduction techniques like PCA, t-SNE, and UMAP.",
|
||||||
|
},
|
||||||
|
{"name": "author", "content": "EmbeddingBuddy"},
|
||||||
|
{
|
||||||
|
"name": "keywords",
|
||||||
|
"content": "embeddings, visualization, dimensionality reduction, PCA, t-SNE, UMAP, machine learning, data science",
|
||||||
|
},
|
||||||
|
{"name": "viewport", "content": "width=device-width, initial-scale=1.0"},
|
||||||
|
{
|
||||||
|
"property": "og:title",
|
||||||
|
"content": "EmbeddingBuddy - Interactive Embedding Visualization",
|
||||||
|
},
|
||||||
|
{
|
||||||
|
"property": "og:description",
|
||||||
|
"content": "Explore and visualize embedding vectors through interactive 2D/3D plots with multiple dimensionality reduction techniques.",
|
||||||
|
},
|
||||||
|
{"property": "og:type", "content": "website"},
|
||||||
|
],
|
||||||
)
|
)
|
||||||
|
|
||||||
# Allow callbacks to components that are dynamically created in tabs
|
# Allow callbacks to components that are dynamically created in tabs
|
||||||
@@ -45,22 +72,22 @@ def _register_client_side_callbacks(app):
|
|||||||
if (!nClicks || !textContent || !textContent.trim()) {
|
if (!nClicks || !textContent || !textContent.trim()) {
|
||||||
return window.dash_clientside.no_update;
|
return window.dash_clientside.no_update;
|
||||||
}
|
}
|
||||||
|
|
||||||
console.log('🔍 Checking for Transformers.js...');
|
console.log('🔍 Checking for Transformers.js...');
|
||||||
console.log('window.dash_clientside:', typeof window.dash_clientside);
|
console.log('window.dash_clientside:', typeof window.dash_clientside);
|
||||||
console.log('window.dash_clientside.transformers:', typeof window.dash_clientside?.transformers);
|
console.log('window.dash_clientside.transformers:', typeof window.dash_clientside?.transformers);
|
||||||
console.log('generateEmbeddings function:', typeof window.dash_clientside?.transformers?.generateEmbeddings);
|
console.log('generateEmbeddings function:', typeof window.dash_clientside?.transformers?.generateEmbeddings);
|
||||||
|
|
||||||
if (typeof window.dash_clientside !== 'undefined' &&
|
if (typeof window.dash_clientside !== 'undefined' &&
|
||||||
typeof window.dash_clientside.transformers !== 'undefined' &&
|
typeof window.dash_clientside.transformers !== 'undefined' &&
|
||||||
typeof window.dash_clientside.transformers.generateEmbeddings === 'function') {
|
typeof window.dash_clientside.transformers.generateEmbeddings === 'function') {
|
||||||
|
|
||||||
console.log('✅ Calling Transformers.js generateEmbeddings...');
|
console.log('✅ Calling Transformers.js generateEmbeddings...');
|
||||||
return window.dash_clientside.transformers.generateEmbeddings(
|
return window.dash_clientside.transformers.generateEmbeddings(
|
||||||
nClicks, textContent, modelName, tokenizationMethod, category, subcategory
|
nClicks, textContent, modelName, tokenizationMethod, category, subcategory
|
||||||
);
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
// More detailed error information
|
// More detailed error information
|
||||||
let errorMsg = '❌ Transformers.js not available. ';
|
let errorMsg = '❌ Transformers.js not available. ';
|
||||||
if (typeof window.dash_clientside === 'undefined') {
|
if (typeof window.dash_clientside === 'undefined') {
|
||||||
@@ -70,21 +97,17 @@ def _register_client_side_callbacks(app):
|
|||||||
} else if (typeof window.dash_clientside.transformers.generateEmbeddings !== 'function') {
|
} else if (typeof window.dash_clientside.transformers.generateEmbeddings !== 'function') {
|
||||||
errorMsg += 'generateEmbeddings function not found.';
|
errorMsg += 'generateEmbeddings function not found.';
|
||||||
}
|
}
|
||||||
|
|
||||||
console.error(errorMsg);
|
console.error(errorMsg);
|
||||||
|
|
||||||
return [
|
return [
|
||||||
{ error: 'Transformers.js not loaded. Please refresh the page and try again.' },
|
{ error: 'Transformers.js not loaded. Please refresh the page and try again.' },
|
||||||
errorMsg + ' Please refresh the page.',
|
|
||||||
'danger',
|
|
||||||
false
|
false
|
||||||
];
|
];
|
||||||
}
|
}
|
||||||
""",
|
""",
|
||||||
[
|
[
|
||||||
Output("embeddings-generated-trigger", "data"),
|
Output("embeddings-generated-trigger", "data"),
|
||||||
Output("text-input-status-immediate", "children"),
|
|
||||||
Output("text-input-status-immediate", "color"),
|
|
||||||
Output("generate-embeddings-btn", "disabled", allow_duplicate=True),
|
Output("generate-embeddings-btn", "disabled", allow_duplicate=True),
|
||||||
],
|
],
|
||||||
[Input("generate-embeddings-btn", "n_clicks")],
|
[Input("generate-embeddings-btn", "n_clicks")],
|
||||||
|
@@ -85,6 +85,9 @@ class AppSettings:
|
|||||||
GUNICORN_KEEPALIVE = int(os.getenv("GUNICORN_KEEPALIVE", "5"))
|
GUNICORN_KEEPALIVE = int(os.getenv("GUNICORN_KEEPALIVE", "5"))
|
||||||
|
|
||||||
# OpenSearch Configuration
|
# OpenSearch Configuration
|
||||||
|
OPENSEARCH_ENABLED = (
|
||||||
|
os.getenv("EMBEDDINGBUDDY_OPENSEARCH_ENABLED", "True").lower() == "true"
|
||||||
|
)
|
||||||
OPENSEARCH_DEFAULT_SIZE = 100
|
OPENSEARCH_DEFAULT_SIZE = 100
|
||||||
OPENSEARCH_SAMPLE_SIZE = 5
|
OPENSEARCH_SAMPLE_SIZE = 5
|
||||||
OPENSEARCH_CONNECTION_TIMEOUT = 30
|
OPENSEARCH_CONNECTION_TIMEOUT = 30
|
||||||
|
@@ -82,19 +82,23 @@ class DataProcessingCallbacks:
|
|||||||
)
|
)
|
||||||
def render_tab_content(active_tab):
|
def render_tab_content(active_tab):
|
||||||
from ...ui.components.datasource import DataSourceComponent
|
from ...ui.components.datasource import DataSourceComponent
|
||||||
|
from ...config.settings import AppSettings
|
||||||
|
|
||||||
datasource = DataSourceComponent()
|
datasource = DataSourceComponent()
|
||||||
|
|
||||||
if active_tab == "opensearch-tab":
|
if active_tab == "opensearch-tab" and AppSettings.OPENSEARCH_ENABLED:
|
||||||
return [datasource.create_opensearch_tab()]
|
return [datasource.create_opensearch_tab()]
|
||||||
elif active_tab == "text-input-tab":
|
elif active_tab == "text-input-tab":
|
||||||
return [datasource.create_text_input_tab()]
|
return [datasource.create_text_input_tab()]
|
||||||
else:
|
else:
|
||||||
return [datasource.create_file_upload_tab()]
|
return [datasource.create_file_upload_tab()]
|
||||||
|
|
||||||
# Register callbacks for both data and prompts sections
|
# Register callbacks for both data and prompts sections (only if OpenSearch is enabled)
|
||||||
self._register_opensearch_callbacks("data", self.opensearch_client_data)
|
if AppSettings.OPENSEARCH_ENABLED:
|
||||||
self._register_opensearch_callbacks("prompts", self.opensearch_client_prompts)
|
self._register_opensearch_callbacks("data", self.opensearch_client_data)
|
||||||
|
self._register_opensearch_callbacks(
|
||||||
|
"prompts", self.opensearch_client_prompts
|
||||||
|
)
|
||||||
|
|
||||||
# Register collapsible section callbacks
|
# Register collapsible section callbacks
|
||||||
self._register_collapse_callbacks()
|
self._register_collapse_callbacks()
|
||||||
@@ -621,6 +625,12 @@ class DataProcessingCallbacks:
|
|||||||
if not embeddings_data:
|
if not embeddings_data:
|
||||||
return no_update, no_update, no_update, no_update, no_update
|
return no_update, no_update, no_update, no_update, no_update
|
||||||
|
|
||||||
|
# Check if this is a request trigger (contains textContent) vs actual embeddings data
|
||||||
|
if isinstance(embeddings_data, dict) and "textContent" in embeddings_data:
|
||||||
|
# This is a processing request trigger, not the actual results
|
||||||
|
# The JavaScript will handle the async processing and update the UI directly
|
||||||
|
return no_update, no_update, no_update, no_update, no_update
|
||||||
|
|
||||||
processed_data = self.processor.process_client_embeddings(embeddings_data)
|
processed_data = self.processor.process_client_embeddings(embeddings_data)
|
||||||
|
|
||||||
if processed_data.error:
|
if processed_data.error:
|
||||||
|
@@ -1,6 +1,5 @@
|
|||||||
import dash
|
import dash
|
||||||
from dash import callback, Input, Output, State, html
|
from dash import callback, Input, Output
|
||||||
import dash_bootstrap_components as dbc
|
|
||||||
|
|
||||||
|
|
||||||
class InteractionCallbacks:
|
class InteractionCallbacks:
|
||||||
@@ -9,74 +8,25 @@ class InteractionCallbacks:
|
|||||||
|
|
||||||
def _register_callbacks(self):
|
def _register_callbacks(self):
|
||||||
@callback(
|
@callback(
|
||||||
Output("point-details", "children"),
|
Output("about-modal", "is_open"),
|
||||||
Input("embedding-plot", "clickData"),
|
[Input("about-button", "n_clicks"), Input("about-modal-close", "n_clicks")],
|
||||||
[State("processed-data", "data"), State("processed-prompts", "data")],
|
prevent_initial_call=True,
|
||||||
)
|
)
|
||||||
def display_click_data(clickData, data, prompts_data):
|
def toggle_about_modal(about_clicks, close_clicks):
|
||||||
if not clickData or not data:
|
if about_clicks or close_clicks:
|
||||||
return "Click on a point to see details"
|
return True if about_clicks else False
|
||||||
|
return False
|
||||||
point_data = clickData["points"][0]
|
|
||||||
trace_name = point_data.get("fullData", {}).get("name", "Documents")
|
|
||||||
|
|
||||||
if "pointIndex" in point_data:
|
|
||||||
point_index = point_data["pointIndex"]
|
|
||||||
elif "pointNumber" in point_data:
|
|
||||||
point_index = point_data["pointNumber"]
|
|
||||||
else:
|
|
||||||
return "Could not identify clicked point"
|
|
||||||
|
|
||||||
if (
|
|
||||||
trace_name.startswith("Prompts")
|
|
||||||
and prompts_data
|
|
||||||
and "prompts" in prompts_data
|
|
||||||
):
|
|
||||||
item = prompts_data["prompts"][point_index]
|
|
||||||
item_type = "Prompt"
|
|
||||||
else:
|
|
||||||
item = data["documents"][point_index]
|
|
||||||
item_type = "Document"
|
|
||||||
|
|
||||||
return self._create_detail_card(item, item_type)
|
|
||||||
|
|
||||||
@callback(
|
@callback(
|
||||||
[
|
[
|
||||||
Output("processed-data", "data", allow_duplicate=True),
|
Output("processed-data", "data", allow_duplicate=True),
|
||||||
Output("processed-prompts", "data", allow_duplicate=True),
|
Output("processed-prompts", "data", allow_duplicate=True),
|
||||||
Output("point-details", "children", allow_duplicate=True),
|
|
||||||
],
|
],
|
||||||
Input("reset-button", "n_clicks"),
|
Input("reset-button", "n_clicks"),
|
||||||
prevent_initial_call=True,
|
prevent_initial_call=True,
|
||||||
)
|
)
|
||||||
def reset_data(n_clicks):
|
def reset_data(n_clicks):
|
||||||
if n_clicks is None or n_clicks == 0:
|
if n_clicks is None or n_clicks == 0:
|
||||||
return dash.no_update, dash.no_update, dash.no_update
|
return dash.no_update, dash.no_update
|
||||||
|
|
||||||
return None, None, "Click on a point to see details"
|
return None, None
|
||||||
|
|
||||||
@staticmethod
|
|
||||||
def _create_detail_card(item, item_type):
|
|
||||||
return dbc.Card(
|
|
||||||
[
|
|
||||||
dbc.CardBody(
|
|
||||||
[
|
|
||||||
html.H5(f"{item_type}: {item['id']}", className="card-title"),
|
|
||||||
html.P(f"Text: {item['text']}", className="card-text"),
|
|
||||||
html.P(
|
|
||||||
f"Category: {item.get('category', 'Unknown')}",
|
|
||||||
className="card-text",
|
|
||||||
),
|
|
||||||
html.P(
|
|
||||||
f"Subcategory: {item.get('subcategory', 'Unknown')}",
|
|
||||||
className="card-text",
|
|
||||||
),
|
|
||||||
html.P(
|
|
||||||
f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}",
|
|
||||||
className="card-text",
|
|
||||||
),
|
|
||||||
html.P(f"Type: {item_type}", className="card-text text-muted"),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
90
src/embeddingbuddy/ui/components/about.py
Normal file
90
src/embeddingbuddy/ui/components/about.py
Normal file
@@ -0,0 +1,90 @@
|
|||||||
|
from dash import html, dcc
|
||||||
|
import dash_bootstrap_components as dbc
|
||||||
|
|
||||||
|
|
||||||
|
class AboutComponent:
|
||||||
|
def _get_about_content(self):
|
||||||
|
return """
|
||||||
|
# 🔍 Interactive Embedding Vector Visualization
|
||||||
|
|
||||||
|
EmbeddingBuddy is a web application for interactive exploration and
|
||||||
|
visualization of embedding vectors through dimensionality reduction techniques
|
||||||
|
(PCA, t-SNE, UMAP).
|
||||||
|
|
||||||
|
You have two ways to get started:
|
||||||
|
|
||||||
|
1. Generate embeddings directly in the browser if it supports WebGPU.
|
||||||
|
2. Upload your NDJSON file containing embedding vectors and metadata.
|
||||||
|
|
||||||
|
## Generating Embeddings in Browser
|
||||||
|
|
||||||
|
1. Expand the "Generate Embeddings" section.
|
||||||
|
2. Input your text data (one entry per line).
|
||||||
|
1. Optionally you can use the built in sample data by clicking "Load Sample Data" button.
|
||||||
|
3. Click "Generate Embeddings" to create vectors using a pre-trained model.
|
||||||
|
|
||||||
|
## NDJSON File Format
|
||||||
|
|
||||||
|
```json
|
||||||
|
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, ...], "text": "Sample text content", "category": "news", "subcategory": "politics", "tags": ["election", "politics"]}
|
||||||
|
{"id": "doc_002", "embedding": [0.2, -0.1, 0.9, ...], "text": "Another example", "category": "review", "subcategory": "product", "tags": ["tech", "gadget"]}
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
## ✨ Features
|
||||||
|
|
||||||
|
- Drag-and-drop NDJSON file upload
|
||||||
|
- Multiple dimensionality reduction algorithms
|
||||||
|
- 2D/3D interactive plots with Plotly
|
||||||
|
- Color coding by categories, subcategories, or tags
|
||||||
|
- In-browser embedding generation
|
||||||
|
- OpenSearch integration for data loading
|
||||||
|
|
||||||
|
## 🔧 Supported Algorithms
|
||||||
|
|
||||||
|
- **PCA** (Principal Component Analysis)
|
||||||
|
- **t-SNE** (t-Distributed Stochastic Neighbor Embedding)
|
||||||
|
- **UMAP** (Uniform Manifold Approximation and Projection)
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
📂 [View on GitHub](https://github.com/godber/EmbeddingBuddy)
|
||||||
|
|
||||||
|
*Built with: Python, Dash, Plotly, scikit-learn, OpenTSNE, UMAP*
|
||||||
|
""".strip()
|
||||||
|
|
||||||
|
def create_about_modal(self):
|
||||||
|
return dbc.Modal(
|
||||||
|
[
|
||||||
|
dbc.ModalHeader(
|
||||||
|
dbc.ModalTitle("Welcome to EmbeddingBuddy"),
|
||||||
|
close_button=True,
|
||||||
|
),
|
||||||
|
dbc.ModalBody(
|
||||||
|
[dcc.Markdown(self._get_about_content(), className="mb-0")]
|
||||||
|
),
|
||||||
|
dbc.ModalFooter(
|
||||||
|
[
|
||||||
|
dbc.Button(
|
||||||
|
"Close",
|
||||||
|
id="about-modal-close",
|
||||||
|
color="secondary",
|
||||||
|
n_clicks=0,
|
||||||
|
)
|
||||||
|
]
|
||||||
|
),
|
||||||
|
],
|
||||||
|
id="about-modal",
|
||||||
|
is_open=True,
|
||||||
|
size="lg",
|
||||||
|
)
|
||||||
|
|
||||||
|
def create_about_button(self):
|
||||||
|
return dbc.Button(
|
||||||
|
[html.I(className="fas fa-info-circle me-2"), "About"],
|
||||||
|
id="about-button",
|
||||||
|
color="outline-info",
|
||||||
|
size="sm",
|
||||||
|
n_clicks=0,
|
||||||
|
className="ms-2",
|
||||||
|
)
|
@@ -1,26 +1,27 @@
|
|||||||
from dash import dcc, html
|
from dash import dcc, html
|
||||||
import dash_bootstrap_components as dbc
|
import dash_bootstrap_components as dbc
|
||||||
from .upload import UploadComponent
|
from .upload import UploadComponent
|
||||||
from .textinput import TextInputComponent
|
from embeddingbuddy.config.settings import AppSettings
|
||||||
|
|
||||||
|
|
||||||
class DataSourceComponent:
|
class DataSourceComponent:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.upload_component = UploadComponent()
|
self.upload_component = UploadComponent()
|
||||||
self.text_input_component = TextInputComponent()
|
|
||||||
|
|
||||||
def create_tabbed_interface(self):
|
def create_tabbed_interface(self):
|
||||||
"""Create tabbed interface for different data sources."""
|
"""Create tabbed interface for different data sources."""
|
||||||
|
tabs = [dbc.Tab(label="File Upload", tab_id="file-tab")]
|
||||||
|
|
||||||
|
# Only add OpenSearch tab if enabled
|
||||||
|
if AppSettings.OPENSEARCH_ENABLED:
|
||||||
|
tabs.append(dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"))
|
||||||
|
|
||||||
return dbc.Card(
|
return dbc.Card(
|
||||||
[
|
[
|
||||||
dbc.CardHeader(
|
dbc.CardHeader(
|
||||||
[
|
[
|
||||||
dbc.Tabs(
|
dbc.Tabs(
|
||||||
[
|
tabs,
|
||||||
dbc.Tab(label="File Upload", tab_id="file-tab"),
|
|
||||||
dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
|
|
||||||
dbc.Tab(label="Text Input", tab_id="text-input-tab"),
|
|
||||||
],
|
|
||||||
id="data-source-tabs",
|
id="data-source-tabs",
|
||||||
active_tab="file-tab",
|
active_tab="file-tab",
|
||||||
)
|
)
|
||||||
@@ -211,10 +212,6 @@ class DataSourceComponent:
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
def create_text_input_tab(self):
|
|
||||||
"""Create text input tab content for browser-based embedding generation."""
|
|
||||||
return html.Div([self.text_input_component.create_text_input_interface()])
|
|
||||||
|
|
||||||
def _create_opensearch_section(self, section_type):
|
def _create_opensearch_section(self, section_type):
|
||||||
"""Create a complete OpenSearch section for either 'data' or 'prompts'."""
|
"""Create a complete OpenSearch section for either 'data' or 'prompts'."""
|
||||||
section_id = section_type # 'data' or 'prompts'
|
section_id = section_type # 'data' or 'prompts'
|
||||||
|
@@ -2,31 +2,27 @@ from dash import dcc, html
|
|||||||
import dash_bootstrap_components as dbc
|
import dash_bootstrap_components as dbc
|
||||||
from .upload import UploadComponent
|
from .upload import UploadComponent
|
||||||
from .datasource import DataSourceComponent
|
from .datasource import DataSourceComponent
|
||||||
|
from .textinput import TextInputComponent
|
||||||
|
from embeddingbuddy.config.settings import AppSettings
|
||||||
|
|
||||||
|
|
||||||
class SidebarComponent:
|
class SidebarComponent:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.upload_component = UploadComponent()
|
self.upload_component = UploadComponent()
|
||||||
self.datasource_component = DataSourceComponent()
|
self.datasource_component = DataSourceComponent()
|
||||||
|
self.textinput_component = TextInputComponent()
|
||||||
|
|
||||||
def create_layout(self):
|
def create_layout(self):
|
||||||
return dbc.Col(
|
return dbc.Col(
|
||||||
[
|
[
|
||||||
html.H5("Data Sources", className="mb-3"),
|
dbc.Accordion(
|
||||||
self.datasource_component.create_error_alert(),
|
[
|
||||||
self.datasource_component.create_success_alert(),
|
self._create_data_sources_item(),
|
||||||
self.datasource_component.create_tabbed_interface(),
|
self._create_generate_embeddings_item(),
|
||||||
html.H5("Visualization Controls", className="mb-3 mt-4"),
|
self._create_visualization_controls_item(),
|
||||||
]
|
],
|
||||||
+ self._create_method_dropdown()
|
always_open=True,
|
||||||
+ self._create_color_dropdown()
|
)
|
||||||
+ self._create_dimension_toggle()
|
|
||||||
+ self._create_prompts_toggle()
|
|
||||||
+ [
|
|
||||||
html.H5("Point Details", className="mb-3"),
|
|
||||||
html.Div(
|
|
||||||
id="point-details", children="Click on a point to see details"
|
|
||||||
),
|
|
||||||
],
|
],
|
||||||
width=3,
|
width=3,
|
||||||
style={"padding-right": "20px"},
|
style={"padding-right": "20px"},
|
||||||
@@ -86,3 +82,67 @@ class SidebarComponent:
|
|||||||
style={"margin-bottom": "20px"},
|
style={"margin-bottom": "20px"},
|
||||||
),
|
),
|
||||||
]
|
]
|
||||||
|
|
||||||
|
def _create_generate_embeddings_item(self):
|
||||||
|
return dbc.AccordionItem(
|
||||||
|
[
|
||||||
|
self.textinput_component.create_text_input_interface(),
|
||||||
|
],
|
||||||
|
title=html.Span(
|
||||||
|
[
|
||||||
|
"Generate Embeddings ",
|
||||||
|
html.I(
|
||||||
|
className="fas fa-info-circle text-muted",
|
||||||
|
style={"cursor": "pointer"},
|
||||||
|
id="generate-embeddings-info-icon",
|
||||||
|
title="Create new embeddings from text input using various in-browser models",
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
item_id="generate-embeddings-accordion",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _create_data_sources_item(self):
|
||||||
|
tooltip_text = "Load existing embeddings: upload files"
|
||||||
|
if AppSettings.OPENSEARCH_ENABLED:
|
||||||
|
tooltip_text += " or read from OpenSearch"
|
||||||
|
|
||||||
|
return dbc.AccordionItem(
|
||||||
|
[
|
||||||
|
self.datasource_component.create_error_alert(),
|
||||||
|
self.datasource_component.create_success_alert(),
|
||||||
|
self.datasource_component.create_tabbed_interface(),
|
||||||
|
],
|
||||||
|
title=html.Span(
|
||||||
|
[
|
||||||
|
"Load Embeddings ",
|
||||||
|
html.I(
|
||||||
|
className="fas fa-info-circle text-muted",
|
||||||
|
style={"cursor": "pointer"},
|
||||||
|
id="load-embeddings-info-icon",
|
||||||
|
title=tooltip_text,
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
item_id="data-sources-accordion",
|
||||||
|
)
|
||||||
|
|
||||||
|
def _create_visualization_controls_item(self):
|
||||||
|
return dbc.AccordionItem(
|
||||||
|
self._create_method_dropdown()
|
||||||
|
+ self._create_color_dropdown()
|
||||||
|
+ self._create_dimension_toggle()
|
||||||
|
+ self._create_prompts_toggle(),
|
||||||
|
title=html.Span(
|
||||||
|
[
|
||||||
|
"Visualization Controls ",
|
||||||
|
html.I(
|
||||||
|
className="fas fa-info-circle text-muted",
|
||||||
|
style={"cursor": "pointer"},
|
||||||
|
id="visualization-controls-info-icon",
|
||||||
|
title="Configure plot settings: select dimensionality reduction method, colors, and display options",
|
||||||
|
),
|
||||||
|
]
|
||||||
|
),
|
||||||
|
item_id="visualization-controls-accordion",
|
||||||
|
)
|
||||||
|
@@ -16,23 +16,20 @@ class TextInputComponent:
|
|||||||
"""Create the complete text input interface with model selection and processing options."""
|
"""Create the complete text input interface with model selection and processing options."""
|
||||||
return html.Div(
|
return html.Div(
|
||||||
[
|
[
|
||||||
# Model selection section
|
|
||||||
self._create_model_selection(),
|
|
||||||
html.Hr(),
|
|
||||||
# Text input section
|
# Text input section
|
||||||
self._create_text_input_area(),
|
self._create_text_input_area(),
|
||||||
# Text action buttons
|
# Text action buttons
|
||||||
self._create_text_action_buttons(),
|
self._create_text_action_buttons(),
|
||||||
html.Hr(),
|
html.Hr(),
|
||||||
|
# Model selection section
|
||||||
|
self._create_model_selection(),
|
||||||
|
html.Hr(),
|
||||||
# Processing options
|
# Processing options
|
||||||
self._create_processing_options(),
|
self._create_processing_options(),
|
||||||
html.Hr(),
|
html.Hr(),
|
||||||
# Generation controls
|
# Generation controls
|
||||||
self._create_generation_controls(),
|
self._create_generation_controls(),
|
||||||
html.Hr(),
|
html.Hr(),
|
||||||
# Progress indicators
|
|
||||||
self._create_progress_indicators(),
|
|
||||||
html.Hr(),
|
|
||||||
# Status and results
|
# Status and results
|
||||||
self._create_status_section(),
|
self._create_status_section(),
|
||||||
# Hidden components for data flow
|
# Hidden components for data flow
|
||||||
@@ -297,65 +294,10 @@ class TextInputComponent:
|
|||||||
]
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
def _create_progress_indicators(self):
|
|
||||||
"""Create progress bars for model loading and embedding generation."""
|
|
||||||
return html.Div(
|
|
||||||
[
|
|
||||||
# Model loading progress
|
|
||||||
html.Div(
|
|
||||||
[
|
|
||||||
html.H6("Model Loading Progress", className="mb-2"),
|
|
||||||
dbc.Progress(
|
|
||||||
id="model-loading-progress",
|
|
||||||
value=0,
|
|
||||||
striped=True,
|
|
||||||
animated=True,
|
|
||||||
className="mb-2",
|
|
||||||
),
|
|
||||||
html.Small(
|
|
||||||
id="model-loading-status",
|
|
||||||
children="No model loading in progress",
|
|
||||||
className="text-muted",
|
|
||||||
),
|
|
||||||
],
|
|
||||||
id="model-loading-section",
|
|
||||||
style={"display": "none"},
|
|
||||||
),
|
|
||||||
html.Br(),
|
|
||||||
# Embedding generation progress
|
|
||||||
html.Div(
|
|
||||||
[
|
|
||||||
html.H6("Embedding Generation Progress", className="mb-2"),
|
|
||||||
dbc.Progress(
|
|
||||||
id="embedding-progress",
|
|
||||||
value=0,
|
|
||||||
striped=True,
|
|
||||||
animated=True,
|
|
||||||
className="mb-2",
|
|
||||||
),
|
|
||||||
html.Small(
|
|
||||||
id="embedding-status",
|
|
||||||
children="No embedding generation in progress",
|
|
||||||
className="text-muted",
|
|
||||||
),
|
|
||||||
],
|
|
||||||
id="embedding-progress-section",
|
|
||||||
style={"display": "none"},
|
|
||||||
),
|
|
||||||
]
|
|
||||||
)
|
|
||||||
|
|
||||||
def _create_status_section(self):
|
def _create_status_section(self):
|
||||||
"""Create status alerts and results preview."""
|
"""Create status alerts and results preview."""
|
||||||
return html.Div(
|
return html.Div(
|
||||||
[
|
[
|
||||||
# Immediate status (from client-side)
|
|
||||||
dbc.Alert(
|
|
||||||
id="text-input-status-immediate",
|
|
||||||
children="Ready to generate embeddings",
|
|
||||||
color="light",
|
|
||||||
className="mb-3",
|
|
||||||
),
|
|
||||||
# Server-side status
|
# Server-side status
|
||||||
dbc.Alert(
|
dbc.Alert(
|
||||||
id="text-input-status",
|
id="text-input-status",
|
||||||
|
@@ -5,39 +5,75 @@ import dash_bootstrap_components as dbc
|
|||||||
class UploadComponent:
|
class UploadComponent:
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def create_data_upload():
|
def create_data_upload():
|
||||||
return dcc.Upload(
|
return html.Div(
|
||||||
id="upload-data",
|
[
|
||||||
children=html.Div(["Drag and Drop or ", html.A("Select Files")]),
|
dcc.Upload(
|
||||||
style={
|
id="upload-data",
|
||||||
"width": "100%",
|
children=html.Div(
|
||||||
"height": "60px",
|
[
|
||||||
"lineHeight": "60px",
|
"Upload Data ",
|
||||||
"borderWidth": "1px",
|
html.I(
|
||||||
"borderStyle": "dashed",
|
className="fas fa-info-circle",
|
||||||
"borderRadius": "5px",
|
style={"color": "#6c757d", "fontSize": "14px"},
|
||||||
"textAlign": "center",
|
id="data-upload-info",
|
||||||
"margin-bottom": "20px",
|
),
|
||||||
},
|
]
|
||||||
multiple=False,
|
),
|
||||||
|
style={
|
||||||
|
"width": "100%",
|
||||||
|
"height": "60px",
|
||||||
|
"lineHeight": "60px",
|
||||||
|
"borderWidth": "1px",
|
||||||
|
"borderStyle": "dashed",
|
||||||
|
"borderRadius": "5px",
|
||||||
|
"textAlign": "center",
|
||||||
|
"margin-bottom": "20px",
|
||||||
|
},
|
||||||
|
multiple=False,
|
||||||
|
),
|
||||||
|
dbc.Tooltip(
|
||||||
|
"Click here or drag and drop NDJSON files containing document embeddings",
|
||||||
|
target="data-upload-info",
|
||||||
|
placement="top",
|
||||||
|
),
|
||||||
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
def create_prompts_upload():
|
def create_prompts_upload():
|
||||||
return dcc.Upload(
|
return html.Div(
|
||||||
id="upload-prompts",
|
[
|
||||||
children=html.Div(["Drag and Drop Prompts or ", html.A("Select Files")]),
|
dcc.Upload(
|
||||||
style={
|
id="upload-prompts",
|
||||||
"width": "100%",
|
children=html.Div(
|
||||||
"height": "60px",
|
[
|
||||||
"lineHeight": "60px",
|
"Upload Prompts ",
|
||||||
"borderWidth": "1px",
|
html.I(
|
||||||
"borderStyle": "dashed",
|
className="fas fa-info-circle",
|
||||||
"borderRadius": "5px",
|
style={"color": "#6c757d", "fontSize": "14px"},
|
||||||
"textAlign": "center",
|
id="prompts-upload-info",
|
||||||
"margin-bottom": "20px",
|
),
|
||||||
"borderColor": "#28a745",
|
]
|
||||||
},
|
),
|
||||||
multiple=False,
|
style={
|
||||||
|
"width": "100%",
|
||||||
|
"height": "60px",
|
||||||
|
"lineHeight": "60px",
|
||||||
|
"borderWidth": "1px",
|
||||||
|
"borderStyle": "dashed",
|
||||||
|
"borderRadius": "5px",
|
||||||
|
"textAlign": "center",
|
||||||
|
"margin-bottom": "20px",
|
||||||
|
"borderColor": "#28a745",
|
||||||
|
},
|
||||||
|
multiple=False,
|
||||||
|
),
|
||||||
|
dbc.Tooltip(
|
||||||
|
"Click here or drag and drop NDJSON files containing prompt embeddings",
|
||||||
|
target="prompts-upload-info",
|
||||||
|
placement="top",
|
||||||
|
),
|
||||||
|
]
|
||||||
)
|
)
|
||||||
|
|
||||||
@staticmethod
|
@staticmethod
|
||||||
|
@@ -1,16 +1,19 @@
|
|||||||
from dash import dcc, html
|
from dash import dcc, html
|
||||||
import dash_bootstrap_components as dbc
|
import dash_bootstrap_components as dbc
|
||||||
from .components.sidebar import SidebarComponent
|
from .components.sidebar import SidebarComponent
|
||||||
|
from .components.about import AboutComponent
|
||||||
|
|
||||||
|
|
||||||
class AppLayout:
|
class AppLayout:
|
||||||
def __init__(self):
|
def __init__(self):
|
||||||
self.sidebar = SidebarComponent()
|
self.sidebar = SidebarComponent()
|
||||||
|
self.about = AboutComponent()
|
||||||
|
|
||||||
def create_layout(self):
|
def create_layout(self):
|
||||||
return dbc.Container(
|
return dbc.Container(
|
||||||
[self._create_header(), self._create_main_content()]
|
[self._create_header(), self._create_main_content()]
|
||||||
+ self._create_stores(),
|
+ self._create_stores()
|
||||||
|
+ [self.about.create_about_modal()],
|
||||||
fluid=True,
|
fluid=True,
|
||||||
)
|
)
|
||||||
|
|
||||||
@@ -19,7 +22,19 @@ class AppLayout:
|
|||||||
[
|
[
|
||||||
dbc.Col(
|
dbc.Col(
|
||||||
[
|
[
|
||||||
html.H1("EmbeddingBuddy", className="text-center mb-4"),
|
html.Div(
|
||||||
|
[
|
||||||
|
html.H1(
|
||||||
|
"EmbeddingBuddy",
|
||||||
|
className="text-center mb-4 d-inline",
|
||||||
|
),
|
||||||
|
html.Div(
|
||||||
|
[self.about.create_about_button()],
|
||||||
|
className="float-end",
|
||||||
|
),
|
||||||
|
],
|
||||||
|
className="d-flex justify-content-between align-items-center",
|
||||||
|
),
|
||||||
# Load Transformers.js from CDN
|
# Load Transformers.js from CDN
|
||||||
html.Script(
|
html.Script(
|
||||||
"""
|
"""
|
||||||
|
@@ -38,9 +38,9 @@ class PlotFactory:
|
|||||||
if dimensions == "3d":
|
if dimensions == "3d":
|
||||||
fig = px.scatter_3d(
|
fig = px.scatter_3d(
|
||||||
df,
|
df,
|
||||||
x="dim_1",
|
x="x",
|
||||||
y="dim_2",
|
y="y",
|
||||||
z="dim_3",
|
z="z",
|
||||||
color=color_values,
|
color=color_values,
|
||||||
hover_data=hover_fields,
|
hover_data=hover_fields,
|
||||||
title=f"3D Embedding Visualization - {method} (colored by {color_by})",
|
title=f"3D Embedding Visualization - {method} (colored by {color_by})",
|
||||||
@@ -49,8 +49,8 @@ class PlotFactory:
|
|||||||
else:
|
else:
|
||||||
fig = px.scatter(
|
fig = px.scatter(
|
||||||
df,
|
df,
|
||||||
x="dim_1",
|
x="x",
|
||||||
y="dim_2",
|
y="y",
|
||||||
color=color_values,
|
color=color_values,
|
||||||
hover_data=hover_fields,
|
hover_data=hover_fields,
|
||||||
title=f"2D Embedding Visualization - {method} (colored by {color_by})",
|
title=f"2D Embedding Visualization - {method} (colored by {color_by})",
|
||||||
@@ -77,17 +77,17 @@ class PlotFactory:
|
|||||||
if dimensions == "3d":
|
if dimensions == "3d":
|
||||||
doc_fig = px.scatter_3d(
|
doc_fig = px.scatter_3d(
|
||||||
doc_df,
|
doc_df,
|
||||||
x="dim_1",
|
x="x",
|
||||||
y="dim_2",
|
y="y",
|
||||||
z="dim_3",
|
z="z",
|
||||||
color=doc_color_values,
|
color=doc_color_values,
|
||||||
hover_data=hover_fields,
|
hover_data=hover_fields,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
doc_fig = px.scatter(
|
doc_fig = px.scatter(
|
||||||
doc_df,
|
doc_df,
|
||||||
x="dim_1",
|
x="x",
|
||||||
y="dim_2",
|
y="y",
|
||||||
color=doc_color_values,
|
color=doc_color_values,
|
||||||
hover_data=hover_fields,
|
hover_data=hover_fields,
|
||||||
)
|
)
|
||||||
@@ -114,17 +114,17 @@ class PlotFactory:
|
|||||||
if dimensions == "3d":
|
if dimensions == "3d":
|
||||||
prompt_fig = px.scatter_3d(
|
prompt_fig = px.scatter_3d(
|
||||||
prompt_df,
|
prompt_df,
|
||||||
x="dim_1",
|
x="x",
|
||||||
y="dim_2",
|
y="y",
|
||||||
z="dim_3",
|
z="z",
|
||||||
color=prompt_color_values,
|
color=prompt_color_values,
|
||||||
hover_data=hover_fields,
|
hover_data=hover_fields,
|
||||||
)
|
)
|
||||||
else:
|
else:
|
||||||
prompt_fig = px.scatter(
|
prompt_fig = px.scatter(
|
||||||
prompt_df,
|
prompt_df,
|
||||||
x="dim_1",
|
x="x",
|
||||||
y="dim_2",
|
y="y",
|
||||||
color=prompt_color_values,
|
color=prompt_color_values,
|
||||||
hover_data=hover_fields,
|
hover_data=hover_fields,
|
||||||
)
|
)
|
||||||
@@ -168,11 +168,11 @@ class PlotFactory:
|
|||||||
"category": doc.category,
|
"category": doc.category,
|
||||||
"subcategory": doc.subcategory,
|
"subcategory": doc.subcategory,
|
||||||
"tags_str": ", ".join(doc.tags) if doc.tags else "None",
|
"tags_str": ", ".join(doc.tags) if doc.tags else "None",
|
||||||
"dim_1": coordinates[i, 0],
|
"x": coordinates[i, 0],
|
||||||
"dim_2": coordinates[i, 1],
|
"y": coordinates[i, 1],
|
||||||
}
|
}
|
||||||
if dimensions == "3d":
|
if dimensions == "3d":
|
||||||
row["dim_3"] = coordinates[i, 2]
|
row["z"] = coordinates[i, 2]
|
||||||
df_data.append(row)
|
df_data.append(row)
|
||||||
|
|
||||||
return pd.DataFrame(df_data)
|
return pd.DataFrame(df_data)
|
||||||
|
Reference in New Issue
Block a user