Files
embedding-buddy/app.py

238 lines
7.3 KiB
Python

import json
import uuid
from io import StringIO
import base64
import dash
from dash import dcc, html, Input, Output, State, callback
import dash_bootstrap_components as dbc
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import numpy as np
from sklearn.decomposition import PCA
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
def parse_ndjson(contents):
"""Parse NDJSON content and return list of documents."""
content_type, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
text_content = decoded.decode('utf-8')
documents = []
for line in text_content.strip().split('\n'):
if line.strip():
doc = json.loads(line)
if 'id' not in doc:
doc['id'] = str(uuid.uuid4())
documents.append(doc)
return documents
def apply_pca(embeddings, n_components=3):
"""Apply PCA to embeddings."""
pca = PCA(n_components=n_components)
reduced = pca.fit_transform(embeddings)
return reduced, pca.explained_variance_ratio_
def create_color_mapping(documents, color_by):
"""Create color mapping for documents based on specified field."""
if color_by == 'category':
values = [doc.get('category', 'Unknown') for doc in documents]
elif color_by == 'subcategory':
values = [doc.get('subcategory', 'Unknown') for doc in documents]
elif color_by == 'tags':
values = [', '.join(doc.get('tags', [])) if doc.get('tags') else 'No tags' for doc in documents]
else:
values = ['All'] * len(documents)
return values
def create_plot(df, dimensions='3d', color_by='category'):
"""Create plotly scatter plot."""
color_values = create_color_mapping(df.to_dict('records'), color_by)
if dimensions == '3d':
fig = px.scatter_3d(
df, x='pca_1', y='pca_2', z='pca_3',
color=color_values,
hover_data=['id', 'text'],
title=f'3D Embedding Visualization (colored by {color_by})'
)
fig.update_traces(marker=dict(size=5))
else:
fig = px.scatter(
df, x='pca_1', y='pca_2',
color=color_values,
hover_data=['id', 'text'],
title=f'2D Embedding Visualization (colored by {color_by})'
)
fig.update_traces(marker=dict(size=8))
fig.update_layout(height=600)
return fig
# Layout
app.layout = dbc.Container([
dbc.Row([
dbc.Col([
html.H1("EmbeddingBuddy", className="text-center mb-4"),
html.P("Upload NDJSON file with embeddings to visualize", className="text-center text-muted")
])
]),
dbc.Row([
dbc.Col([
dcc.Upload(
id='upload-data',
children=html.Div([
'Drag and Drop or ',
html.A('Select Files')
]),
style={
'width': '100%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
multiple=False
)
])
]),
dbc.Row([
dbc.Col([
dbc.Label("Color by:"),
dcc.Dropdown(
id='color-dropdown',
options=[
{'label': 'Category', 'value': 'category'},
{'label': 'Subcategory', 'value': 'subcategory'},
{'label': 'Tags', 'value': 'tags'}
],
value='category',
style={'margin-bottom': '10px'}
)
], width=6),
dbc.Col([
dbc.Label("Dimensions:"),
dcc.RadioItems(
id='dimension-toggle',
options=[
{'label': '2D', 'value': '2d'},
{'label': '3D', 'value': '3d'}
],
value='3d',
inline=True
)
], width=6)
], className="mb-3"),
dbc.Row([
dbc.Col([
dcc.Graph(id='embedding-plot')
])
]),
dbc.Row([
dbc.Col([
html.Div(id='point-details', style={'margin-top': '20px'})
])
]),
dcc.Store(id='processed-data')
], fluid=True)
@callback(
Output('processed-data', 'data'),
Input('upload-data', 'contents'),
State('upload-data', 'filename')
)
def process_uploaded_file(contents, filename):
if contents is None:
return None
try:
documents = parse_ndjson(contents)
embeddings = np.array([doc['embedding'] for doc in documents])
# Apply PCA
pca_2d, var_2d = apply_pca(embeddings, n_components=2)
pca_3d, var_3d = apply_pca(embeddings, n_components=3)
# Create dataframe
df_data = []
for i, doc in enumerate(documents):
df_data.append({
'id': doc['id'],
'text': doc['text'],
'category': doc.get('category', 'Unknown'),
'subcategory': doc.get('subcategory', 'Unknown'),
'tags': doc.get('tags', []),
'pca_1': pca_3d[i, 0],
'pca_2': pca_3d[i, 1],
'pca_3': pca_3d[i, 2],
'pca_1_2d': pca_2d[i, 0],
'pca_2_2d': pca_2d[i, 1]
})
return {
'documents': df_data,
'variance_explained_2d': var_2d.tolist(),
'variance_explained_3d': var_3d.tolist()
}
except Exception as e:
return {'error': str(e)}
@callback(
Output('embedding-plot', 'figure'),
[Input('processed-data', 'data'),
Input('color-dropdown', 'value'),
Input('dimension-toggle', 'value')]
)
def update_plot(data, color_by, dimensions):
if not data or 'error' in data:
return go.Figure().add_annotation(
text="Upload a valid NDJSON file to see visualization",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False, font=dict(size=16)
)
df = pd.DataFrame(data['documents'])
if dimensions == '2d':
df['pca_1'] = df['pca_1_2d']
df['pca_2'] = df['pca_2_2d']
return create_plot(df, dimensions, color_by)
@callback(
Output('point-details', 'children'),
Input('embedding-plot', 'clickData'),
State('processed-data', 'data')
)
def display_click_data(clickData, data):
if not clickData or not data:
return "Click on a point to see details"
point_index = clickData['points'][0]['pointIndex']
doc = data['documents'][point_index]
return dbc.Card([
dbc.CardBody([
html.H5(f"Document: {doc['id']}", className="card-title"),
html.P(f"Text: {doc['text']}", className="card-text"),
html.P(f"Category: {doc['category']}", className="card-text"),
html.P(f"Subcategory: {doc['subcategory']}", className="card-text"),
html.P(f"Tags: {', '.join(doc['tags']) if doc['tags'] else 'None'}", className="card-text")
])
])
if __name__ == '__main__':
app.run(debug=True)