All checks were successful
Security Scan / security (pull_request) Successful in 43s
Security Scan / dependency-check (pull_request) Successful in 45s
Test Suite / lint (pull_request) Successful in 30s
Test Suite / test (3.11) (pull_request) Successful in 1m29s
Test Suite / build (pull_request) Successful in 39s
159 lines
5.6 KiB
Python
159 lines
5.6 KiB
Python
"""Tests for client-side embedding processing functionality."""
|
|
|
|
import numpy as np
|
|
|
|
from src.embeddingbuddy.data.processor import DataProcessor
|
|
from src.embeddingbuddy.models.schemas import ProcessedData
|
|
|
|
|
|
class TestClientEmbeddingsProcessing:
|
|
"""Test client-side embeddings processing functionality."""
|
|
|
|
def setup_method(self):
|
|
"""Set up test instances."""
|
|
self.processor = DataProcessor()
|
|
|
|
def test_process_client_embeddings_success(self):
|
|
"""Test successful processing of client-side embeddings data."""
|
|
client_data = {
|
|
"documents": [
|
|
{
|
|
"id": "text_input_0",
|
|
"text": "First test document",
|
|
"category": "Text Input",
|
|
"subcategory": "Generated",
|
|
"tags": [],
|
|
},
|
|
{
|
|
"id": "text_input_1",
|
|
"text": "Second test document",
|
|
"category": "Text Input",
|
|
"subcategory": "Generated",
|
|
"tags": [],
|
|
},
|
|
],
|
|
"embeddings": [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]],
|
|
}
|
|
|
|
result = self.processor.process_client_embeddings(client_data)
|
|
|
|
assert isinstance(result, ProcessedData)
|
|
assert result.error is None
|
|
assert len(result.documents) == 2
|
|
assert result.embeddings.shape == (2, 4)
|
|
|
|
# Check document content
|
|
assert result.documents[0].text == "First test document"
|
|
assert result.documents[1].text == "Second test document"
|
|
|
|
# Check embeddings match
|
|
np.testing.assert_array_equal(result.embeddings[0], [0.1, 0.2, 0.3, 0.4])
|
|
np.testing.assert_array_equal(result.embeddings[1], [0.5, 0.6, 0.7, 0.8])
|
|
|
|
def test_process_client_embeddings_with_error(self):
|
|
"""Test processing client data with error."""
|
|
client_data = {"error": "Transformers.js not loaded"}
|
|
|
|
result = self.processor.process_client_embeddings(client_data)
|
|
|
|
assert isinstance(result, ProcessedData)
|
|
assert result.error == "Transformers.js not loaded"
|
|
assert len(result.documents) == 0
|
|
assert result.embeddings.size == 0
|
|
|
|
def test_process_client_embeddings_missing_data(self):
|
|
"""Test processing with missing documents or embeddings."""
|
|
client_data = {"documents": []}
|
|
|
|
result = self.processor.process_client_embeddings(client_data)
|
|
|
|
assert isinstance(result, ProcessedData)
|
|
assert "No documents or embeddings in client data" in result.error
|
|
assert len(result.documents) == 0
|
|
|
|
def test_process_client_embeddings_mismatch_count(self):
|
|
"""Test processing with mismatched document and embedding counts."""
|
|
client_data = {
|
|
"documents": [
|
|
{
|
|
"id": "test",
|
|
"text": "Test document",
|
|
"category": "Test",
|
|
"subcategory": "Test",
|
|
"tags": [],
|
|
}
|
|
],
|
|
"embeddings": [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]],
|
|
}
|
|
|
|
result = self.processor.process_client_embeddings(client_data)
|
|
|
|
assert isinstance(result, ProcessedData)
|
|
assert "Mismatch between number of documents and embeddings" in result.error
|
|
assert len(result.documents) == 0
|
|
|
|
def test_process_client_embeddings_invalid_document(self):
|
|
"""Test processing with invalid document data."""
|
|
client_data = {
|
|
"documents": [
|
|
{"text": ""}, # Empty text should be skipped
|
|
{
|
|
"id": "test2",
|
|
"text": "Valid document",
|
|
"category": "Test",
|
|
"subcategory": "Test",
|
|
"tags": [],
|
|
},
|
|
],
|
|
"embeddings": [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]],
|
|
}
|
|
|
|
result = self.processor.process_client_embeddings(client_data)
|
|
|
|
assert isinstance(result, ProcessedData)
|
|
assert result.error is None
|
|
assert len(result.documents) == 1 # Only valid document should be processed
|
|
assert result.documents[0].text == "Valid document"
|
|
|
|
def test_process_client_embeddings_auto_id_generation(self):
|
|
"""Test automatic ID generation for documents without IDs."""
|
|
client_data = {
|
|
"documents": [
|
|
{
|
|
"text": "Document without ID",
|
|
"category": "Test",
|
|
"subcategory": "Test",
|
|
"tags": [],
|
|
}
|
|
],
|
|
"embeddings": [[0.1, 0.2, 0.3, 0.4]],
|
|
}
|
|
|
|
result = self.processor.process_client_embeddings(client_data)
|
|
|
|
assert isinstance(result, ProcessedData)
|
|
assert result.error is None
|
|
assert len(result.documents) == 1
|
|
assert result.documents[0].id.startswith("text_input_")
|
|
|
|
def test_process_client_embeddings_invalid_embedding_format(self):
|
|
"""Test processing with invalid embedding format."""
|
|
client_data = {
|
|
"documents": [
|
|
{
|
|
"id": "test",
|
|
"text": "Test document",
|
|
"category": "Test",
|
|
"subcategory": "Test",
|
|
"tags": [],
|
|
}
|
|
],
|
|
"embeddings": 0.5, # Scalar instead of array
|
|
}
|
|
|
|
result = self.processor.process_client_embeddings(client_data)
|
|
|
|
assert isinstance(result, ProcessedData)
|
|
assert result.error is not None # Should have some error
|
|
assert len(result.documents) == 0
|