Merge pull request 'add-os-load' (#3) from add-os-load into main
	
		
			
	
		
	
	
		
	
		
			Some checks failed
		
		
	
	
		
			
				
	
				Test Suite / lint (push) Successful in 25s
				
			
		
			
				
	
				Test Suite / test (3.11) (push) Successful in 1m29s
				
			
		
			
				
	
				Release / test (push) Successful in 1m2s
				
			
		
			
				
	
				Release / build-and-release (push) Failing after 32s
				
			
		
			
				
	
				Test Suite / build (push) Successful in 45s
				
			
		
			
				
	
				Security Scan / security (push) Successful in 46s
				
			
		
			
				
	
				Security Scan / dependency-check (push) Successful in 50s
				
			
		
		
	
	
				
					
				
			
		
			Some checks failed
		
		
	
	Test Suite / lint (push) Successful in 25s
				
			Test Suite / test (3.11) (push) Successful in 1m29s
				
			Release / test (push) Successful in 1m2s
				
			Release / build-and-release (push) Failing after 32s
				
			Test Suite / build (push) Successful in 45s
				
			Security Scan / security (push) Successful in 46s
				
			Security Scan / dependency-check (push) Successful in 50s
				
			This adds support for loading data from Opensearch. Reviewed-on: godber/embedding-buddy#3
This commit is contained in:
		
							
								
								
									
										157
									
								
								example/README_elasticsearch.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										157
									
								
								example/README_elasticsearch.md
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,157 @@
 | 
			
		||||
# Elasticsearch/OpenSearch Sample Data
 | 
			
		||||
 | 
			
		||||
This directory contains sample data files in Elasticsearch bulk index format for testing the OpenSearch integration in EmbeddingBuddy.
 | 
			
		||||
 | 
			
		||||
## Files
 | 
			
		||||
 | 
			
		||||
### Original NDJSON Files
 | 
			
		||||
 | 
			
		||||
- `sample_data.ndjson` - Original sample documents in EmbeddingBuddy format
 | 
			
		||||
- `sample_prompts.ndjson` - Original sample prompts in EmbeddingBuddy format
 | 
			
		||||
 | 
			
		||||
### Elasticsearch Bulk Files
 | 
			
		||||
 | 
			
		||||
- `sample_data_es_bulk.ndjson` - Documents in ES bulk format (index: "embeddings")
 | 
			
		||||
- `sample_prompts_es_bulk.ndjson` - Prompts in ES bulk format (index: "prompts")
 | 
			
		||||
 | 
			
		||||
## Usage
 | 
			
		||||
 | 
			
		||||
### 1. Index the data using curl
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
# Index main documents
 | 
			
		||||
curl -X POST "localhost:9200/_bulk" \
 | 
			
		||||
  -H "Content-Type: application/x-ndjson" \
 | 
			
		||||
  --data-binary @sample_data_es_bulk.ndjson
 | 
			
		||||
 | 
			
		||||
# Index prompts
 | 
			
		||||
curl -X POST "localhost:9200/_bulk" \
 | 
			
		||||
  -H "Content-Type: application/x-ndjson" \
 | 
			
		||||
  --data-binary @sample_prompts_es_bulk.ndjson
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### 2. Create proper mappings (recommended)
 | 
			
		||||
 | 
			
		||||
First create the index with proper dense_vector mapping:
 | 
			
		||||
 | 
			
		||||
```bash
 | 
			
		||||
# Create embeddings index with dense_vector mapping
 | 
			
		||||
curl -X PUT "localhost:9200/embeddings" \
 | 
			
		||||
  -H "Content-Type: application/json" \
 | 
			
		||||
  -d '{
 | 
			
		||||
    "settings": {
 | 
			
		||||
      "index.knn": true
 | 
			
		||||
    },
 | 
			
		||||
    "mappings": {
 | 
			
		||||
      "properties": {
 | 
			
		||||
        "id": {"type": "keyword"},
 | 
			
		||||
        "embedding": {
 | 
			
		||||
          "type": "knn_vector",
 | 
			
		||||
          "dimension": 8,
 | 
			
		||||
          "method": {
 | 
			
		||||
            "engine": "lucene",
 | 
			
		||||
            "space_type": "cosinesimil",
 | 
			
		||||
            "name": "hnsw",
 | 
			
		||||
            "parameters": {}
 | 
			
		||||
          }
 | 
			
		||||
        },
 | 
			
		||||
        "text": {"type": "text"},
 | 
			
		||||
        "category": {"type": "keyword"},
 | 
			
		||||
        "subcategory": {"type": "keyword"},
 | 
			
		||||
        "tags": {"type": "keyword"}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }'
 | 
			
		||||
 | 
			
		||||
# Create dense vector index with alternative field names
 | 
			
		||||
curl -X PUT "localhost:9200/prompts" \
 | 
			
		||||
  -H "Content-Type: application/json" \
 | 
			
		||||
  -d '{
 | 
			
		||||
    "settings": {
 | 
			
		||||
      "index.knn": true
 | 
			
		||||
    },
 | 
			
		||||
    "mappings": {
 | 
			
		||||
      "properties": {
 | 
			
		||||
        "id": {"type": "keyword"},
 | 
			
		||||
        "embedding": {
 | 
			
		||||
          "type": "knn_vector",
 | 
			
		||||
          "dimension": 8,
 | 
			
		||||
          "method": {
 | 
			
		||||
            "engine": "lucene",
 | 
			
		||||
            "space_type": "cosinesimil",
 | 
			
		||||
            "name": "hnsw",
 | 
			
		||||
            "parameters": {}
 | 
			
		||||
          }
 | 
			
		||||
        },
 | 
			
		||||
        "text": {"type": "text"},
 | 
			
		||||
        "category": {"type": "keyword"},
 | 
			
		||||
        "subcategory": {"type": "keyword"},
 | 
			
		||||
        "tags": {"type": "keyword"}
 | 
			
		||||
      }
 | 
			
		||||
    }
 | 
			
		||||
  }'
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
Then index the data using the bulk files above.
 | 
			
		||||
 | 
			
		||||
### 3. Test in EmbeddingBuddy
 | 
			
		||||
 | 
			
		||||
#### For "embeddings" index
 | 
			
		||||
 | 
			
		||||
- **OpenSearch URL**: `http://localhost:9200`
 | 
			
		||||
- **Index Name**: `embeddings`
 | 
			
		||||
- **Field Mapping**:
 | 
			
		||||
  - Embedding Field: `embedding`
 | 
			
		||||
  - Text Field: `text`
 | 
			
		||||
  - ID Field: `id`
 | 
			
		||||
  - Category Field: `category`
 | 
			
		||||
  - Subcategory Field: `subcategory`
 | 
			
		||||
  - Tags Field: `tags`
 | 
			
		||||
 | 
			
		||||
#### For "embeddings-dense" index (alternative field names)
 | 
			
		||||
 | 
			
		||||
- **OpenSearch URL**: `http://localhost:9200`
 | 
			
		||||
- **Index Name**: `embeddings-dense`
 | 
			
		||||
- **Field Mapping**:
 | 
			
		||||
  - Embedding Field: `vector`
 | 
			
		||||
  - Text Field: `content`
 | 
			
		||||
  - ID Field: `doc_id`
 | 
			
		||||
  - Category Field: `type`
 | 
			
		||||
  - Subcategory Field: `subtopic`
 | 
			
		||||
  - Tags Field: `keywords`
 | 
			
		||||
 | 
			
		||||
## Data Structure
 | 
			
		||||
 | 
			
		||||
### Original Format (from NDJSON files)
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{
 | 
			
		||||
  "id": "doc_001",
 | 
			
		||||
  "embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3],
 | 
			
		||||
  "text": "Machine learning algorithms are transforming healthcare...",
 | 
			
		||||
  "category": "technology",
 | 
			
		||||
  "subcategory": "healthcare",
 | 
			
		||||
  "tags": ["ai", "medicine", "prediction"]
 | 
			
		||||
}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### ES Bulk Format
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_001"}}
 | 
			
		||||
{"id": "doc_001", "embedding": [...], "text": "...", "category": "...", ...}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
### Alternative Field Names (dense vector format)
 | 
			
		||||
 | 
			
		||||
```json
 | 
			
		||||
{"index": {"_index": "embeddings-dense", "_id": "doc_001"}}
 | 
			
		||||
{"doc_id": "doc_001", "vector": [...], "content": "...", "type": "...", ...}
 | 
			
		||||
```
 | 
			
		||||
 | 
			
		||||
## Notes
 | 
			
		||||
 | 
			
		||||
- All embedding vectors are 8-dimensional for these sample files
 | 
			
		||||
- The alternative format demonstrates how EmbeddingBuddy's field mapping handles different field names
 | 
			
		||||
- For production use, you may want larger embedding dimensions (e.g., 384, 768, 1536)
 | 
			
		||||
- The `dense_vector` field type in Elasticsearch/OpenSearch enables vector similarity search
 | 
			
		||||
							
								
								
									
										40
									
								
								example/sample_data_es_bulk.ndjson
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										40
									
								
								example/sample_data_es_bulk.ndjson
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,40 @@
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_001"}}
 | 
			
		||||
{"id": "doc_001", "embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3], "text": "Machine learning algorithms are transforming healthcare by enabling predictive analytics and personalized medicine.", "category": "technology", "subcategory": "healthcare", "tags": ["ai", "medicine", "prediction"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_002"}}
 | 
			
		||||
{"id": "doc_002", "embedding": [0.1, 0.4, -0.2, 0.6, 0.3, -0.4, 0.8, 0.2], "text": "Climate change poses significant challenges to global food security and agricultural sustainability.", "category": "environment", "subcategory": "agriculture", "tags": ["climate", "food", "sustainability"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_003"}}
 | 
			
		||||
{"id": "doc_003", "embedding": [-0.3, 0.7, 0.1, -0.2, 0.9, 0.4, -0.1, 0.5], "text": "The rise of electric vehicles is reshaping the automotive industry and urban transportation systems.", "category": "technology", "subcategory": "automotive", "tags": ["electric", "transport", "urban"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_004"}}
 | 
			
		||||
{"id": "doc_004", "embedding": [0.5, -0.6, 0.3, 0.8, -0.2, 0.1, 0.7, -0.4], "text": "Renewable energy sources like solar and wind are becoming increasingly cost-competitive with fossil fuels.", "category": "environment", "subcategory": "energy", "tags": ["renewable", "solar", "wind"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_005"}}
 | 
			
		||||
{"id": "doc_005", "embedding": [0.8, 0.2, -0.5, 0.1, 0.6, -0.3, 0.4, 0.9], "text": "Financial markets are experiencing volatility due to geopolitical tensions and inflation concerns.", "category": "finance", "subcategory": "markets", "tags": ["volatility", "inflation", "geopolitics"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_006"}}
 | 
			
		||||
{"id": "doc_006", "embedding": [-0.1, 0.5, 0.7, -0.4, 0.2, 0.8, -0.6, 0.3], "text": "Quantum computing research is advancing rapidly with potential applications in cryptography and drug discovery.", "category": "technology", "subcategory": "research", "tags": ["quantum", "cryptography", "research"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_007"}}
 | 
			
		||||
{"id": "doc_007", "embedding": [0.4, -0.3, 0.6, 0.7, -0.8, 0.2, 0.5, -0.1], "text": "Ocean pollution from plastic waste is threatening marine ecosystems and biodiversity worldwide.", "category": "environment", "subcategory": "marine", "tags": ["pollution", "plastic", "marine"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_008"}}
 | 
			
		||||
{"id": "doc_008", "embedding": [0.3, 0.8, -0.2, 0.5, 0.1, -0.7, 0.6, 0.4], "text": "Artificial intelligence is revolutionizing customer service through chatbots and automated support systems.", "category": "technology", "subcategory": "customer_service", "tags": ["ai", "chatbots", "automation"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_009"}}
 | 
			
		||||
{"id": "doc_009", "embedding": [-0.5, 0.3, 0.9, -0.1, 0.7, 0.4, -0.2, 0.8], "text": "Global supply chains are being redesigned for resilience after pandemic-related disruptions.", "category": "business", "subcategory": "logistics", "tags": ["supply_chain", "pandemic", "resilience"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_010"}}
 | 
			
		||||
{"id": "doc_010", "embedding": [0.7, -0.4, 0.2, 0.9, -0.3, 0.6, 0.1, -0.8], "text": "Space exploration missions are expanding our understanding of the solar system and potential for life.", "category": "science", "subcategory": "space", "tags": ["space", "exploration", "life"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_011"}}
 | 
			
		||||
{"id": "doc_011", "embedding": [-0.2, 0.6, 0.4, -0.7, 0.8, 0.3, -0.5, 0.1], "text": "Cryptocurrency adoption is growing among institutional investors despite regulatory uncertainties.", "category": "finance", "subcategory": "crypto", "tags": ["cryptocurrency", "institutional", "regulation"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_012"}}
 | 
			
		||||
{"id": "doc_012", "embedding": [0.6, 0.1, -0.8, 0.4, 0.5, -0.2, 0.9, -0.3], "text": "Remote work technologies are transforming traditional office environments and work-life balance.", "category": "technology", "subcategory": "workplace", "tags": ["remote", "work", "balance"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_013"}}
 | 
			
		||||
{"id": "doc_013", "embedding": [0.1, -0.7, 0.5, 0.8, -0.4, 0.3, 0.2, 0.6], "text": "Gene therapy breakthroughs are offering new hope for treating previously incurable genetic diseases.", "category": "science", "subcategory": "medicine", "tags": ["gene_therapy", "genetics", "medicine"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_014"}}
 | 
			
		||||
{"id": "doc_014", "embedding": [-0.4, 0.2, 0.7, -0.1, 0.9, -0.6, 0.3, 0.5], "text": "Urban planning is evolving to create more sustainable and livable cities for growing populations.", "category": "environment", "subcategory": "urban", "tags": ["urban_planning", "sustainability", "cities"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_015"}}
 | 
			
		||||
{"id": "doc_015", "embedding": [0.9, -0.1, 0.3, 0.6, -0.5, 0.8, -0.2, 0.4], "text": "Social media platforms are implementing new policies to combat misinformation and protect user privacy.", "category": "technology", "subcategory": "social_media", "tags": ["social_media", "misinformation", "privacy"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_016"}}
 | 
			
		||||
{"id": "doc_016", "embedding": [-0.3, 0.8, -0.1, 0.4, 0.7, -0.5, 0.6, -0.9], "text": "Educational technology is personalizing learning experiences and improving student outcomes.", "category": "education", "subcategory": "technology", "tags": ["education", "personalization", "technology"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_017"}}
 | 
			
		||||
{"id": "doc_017", "embedding": [0.5, 0.3, -0.6, 0.2, 0.8, 0.1, -0.4, 0.7], "text": "Biodiversity conservation efforts are critical for maintaining ecosystem balance and preventing species extinction.", "category": "environment", "subcategory": "conservation", "tags": ["biodiversity", "conservation", "extinction"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_018"}}
 | 
			
		||||
{"id": "doc_018", "embedding": [0.2, -0.8, 0.4, 0.7, -0.1, 0.5, 0.9, -0.3], "text": "Healthcare systems are adopting telemedicine to improve access and reduce costs for patients.", "category": "technology", "subcategory": "healthcare", "tags": ["telemedicine", "healthcare", "access"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_019"}}
 | 
			
		||||
{"id": "doc_019", "embedding": [-0.7, 0.4, 0.8, -0.2, 0.3, 0.6, -0.1, 0.9], "text": "Autonomous vehicles are being tested extensively with promises of safer and more efficient transportation.", "category": "technology", "subcategory": "automotive", "tags": ["autonomous", "safety", "efficiency"]}
 | 
			
		||||
{"index": {"_index": "embeddings", "_id": "doc_020"}}
 | 
			
		||||
{"id": "doc_020", "embedding": [0.4, 0.7, -0.3, 0.9, -0.6, 0.2, 0.5, -0.1], "text": "Mental health awareness is increasing with new approaches to therapy and workplace wellness programs.", "category": "health", "subcategory": "mental", "tags": ["mental_health", "therapy", "wellness"]}
 | 
			
		||||
							
								
								
									
										20
									
								
								example/sample_prompts_es_bulk.ndjson
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										20
									
								
								example/sample_prompts_es_bulk.ndjson
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,20 @@
 | 
			
		||||
{"index": {"_index": "prompts", "_id": "prompt_001"}}
 | 
			
		||||
{"id": "prompt_001", "embedding": [0.15, -0.28, 0.65, 0.42, -0.11, 0.33, 0.78, -0.52], "text": "Find articles about machine learning applications", "category": "search", "subcategory": "technology", "tags": ["AI", "research"]}
 | 
			
		||||
{"index": {"_index": "prompts", "_id": "prompt_002"}}
 | 
			
		||||
{"id": "prompt_002", "embedding": [0.72, 0.18, -0.35, 0.51, 0.09, -0.44, 0.27, 0.63], "text": "Show me product reviews for smartphones", "category": "search", "subcategory": "product", "tags": ["mobile", "reviews"]}
 | 
			
		||||
{"index": {"_index": "prompts", "_id": "prompt_003"}}
 | 
			
		||||
{"id": "prompt_003", "embedding": [-0.21, 0.59, 0.34, -0.67, 0.45, 0.12, -0.38, 0.76], "text": "What are the latest political developments?", "category": "search", "subcategory": "news", "tags": ["politics", "current events"]}
 | 
			
		||||
{"index": {"_index": "prompts", "_id": "prompt_004"}}
 | 
			
		||||
{"id": "prompt_004", "embedding": [0.48, -0.15, 0.72, 0.31, -0.58, 0.24, 0.67, -0.39], "text": "Summarize recent tech industry trends", "category": "analysis", "subcategory": "technology", "tags": ["tech", "trends", "summary"]}
 | 
			
		||||
{"index": {"_index": "prompts", "_id": "prompt_005"}}
 | 
			
		||||
{"id": "prompt_005", "embedding": [-0.33, 0.47, -0.62, 0.28, 0.71, -0.18, 0.54, 0.35], "text": "Compare different smartphone models", "category": "analysis", "subcategory": "product", "tags": ["comparison", "mobile", "evaluation"]}
 | 
			
		||||
{"index": {"_index": "prompts", "_id": "prompt_006"}}
 | 
			
		||||
{"id": "prompt_006", "embedding": [0.64, 0.21, 0.39, -0.45, 0.13, 0.58, -0.27, 0.74], "text": "Analyze voter sentiment on recent policies", "category": "analysis", "subcategory": "politics", "tags": ["sentiment", "politics", "analysis"]}
 | 
			
		||||
{"index": {"_index": "prompts", "_id": "prompt_007"}}
 | 
			
		||||
{"id": "prompt_007", "embedding": [0.29, -0.43, 0.56, 0.68, -0.22, 0.37, 0.14, -0.61], "text": "Generate a summary of machine learning research", "category": "generation", "subcategory": "technology", "tags": ["AI", "research", "summary"]}
 | 
			
		||||
{"index": {"_index": "prompts", "_id": "prompt_008"}}
 | 
			
		||||
{"id": "prompt_008", "embedding": [-0.17, 0.52, -0.48, 0.36, 0.74, -0.29, 0.61, 0.18], "text": "Create a product recommendation report", "category": "generation", "subcategory": "product", "tags": ["recommendation", "report", "analysis"]}
 | 
			
		||||
{"index": {"_index": "prompts", "_id": "prompt_009"}}
 | 
			
		||||
{"id": "prompt_009", "embedding": [0.55, 0.08, 0.41, -0.37, 0.26, 0.69, -0.14, 0.58], "text": "Write a news brief on election updates", "category": "generation", "subcategory": "news", "tags": ["election", "news", "brief"]}
 | 
			
		||||
{"index": {"_index": "prompts", "_id": "prompt_010"}}
 | 
			
		||||
{"id": "prompt_010", "embedding": [0.23, -0.59, 0.47, 0.61, -0.35, 0.18, 0.72, -0.26], "text": "Explain how neural networks work", "category": "explanation", "subcategory": "technology", "tags": ["AI", "education", "neural networks"]}
 | 
			
		||||
@@ -1,6 +1,6 @@
 | 
			
		||||
[project]
 | 
			
		||||
name = "embeddingbuddy"
 | 
			
		||||
version = "0.2.0"
 | 
			
		||||
version = "0.3.0"
 | 
			
		||||
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
 | 
			
		||||
readme = "README.md"
 | 
			
		||||
requires-python = ">=3.11"
 | 
			
		||||
@@ -15,6 +15,7 @@ dependencies = [
 | 
			
		||||
    "numba>=0.56.4",
 | 
			
		||||
    "openTSNE>=1.0.0",
 | 
			
		||||
    "mypy>=1.17.1",
 | 
			
		||||
    "opensearch-py>=3.0.0",
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
[project.optional-dependencies]
 | 
			
		||||
 
 | 
			
		||||
@@ -10,6 +10,9 @@ from .ui.callbacks.interactions import InteractionCallbacks
 | 
			
		||||
def create_app():
 | 
			
		||||
    app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
 | 
			
		||||
 | 
			
		||||
    # Allow callbacks to components that are dynamically created in tabs
 | 
			
		||||
    app.config.suppress_callback_exceptions = True
 | 
			
		||||
 | 
			
		||||
    layout_manager = AppLayout()
 | 
			
		||||
    app.layout = layout_manager.create_layout()
 | 
			
		||||
 | 
			
		||||
 
 | 
			
		||||
@@ -73,6 +73,12 @@ class AppSettings:
 | 
			
		||||
    HOST = os.getenv("EMBEDDINGBUDDY_HOST", "127.0.0.1")
 | 
			
		||||
    PORT = int(os.getenv("EMBEDDINGBUDDY_PORT", "8050"))
 | 
			
		||||
 | 
			
		||||
    # OpenSearch Configuration
 | 
			
		||||
    OPENSEARCH_DEFAULT_SIZE = 100
 | 
			
		||||
    OPENSEARCH_SAMPLE_SIZE = 5
 | 
			
		||||
    OPENSEARCH_CONNECTION_TIMEOUT = 30
 | 
			
		||||
    OPENSEARCH_VERIFY_CERTS = True
 | 
			
		||||
 | 
			
		||||
    # Bootstrap Theme
 | 
			
		||||
    EXTERNAL_STYLESHEETS = [
 | 
			
		||||
        "https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"
 | 
			
		||||
 
 | 
			
		||||
@@ -1,6 +1,7 @@
 | 
			
		||||
import numpy as np
 | 
			
		||||
from typing import List, Optional, Tuple
 | 
			
		||||
from ..models.schemas import Document, ProcessedData
 | 
			
		||||
from ..models.field_mapper import FieldMapper
 | 
			
		||||
from .parser import NDJSONParser
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@@ -26,6 +27,42 @@ class DataProcessor:
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
 | 
			
		||||
 | 
			
		||||
    def process_opensearch_data(
 | 
			
		||||
        self, raw_documents: List[dict], field_mapping
 | 
			
		||||
    ) -> ProcessedData:
 | 
			
		||||
        """Process raw OpenSearch documents using field mapping."""
 | 
			
		||||
        try:
 | 
			
		||||
            # Transform documents using field mapping
 | 
			
		||||
            transformed_docs = FieldMapper.transform_documents(
 | 
			
		||||
                raw_documents, field_mapping
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            # Parse transformed documents
 | 
			
		||||
            documents = []
 | 
			
		||||
            for doc_dict in transformed_docs:
 | 
			
		||||
                try:
 | 
			
		||||
                    # Ensure required fields are present with defaults if needed
 | 
			
		||||
                    if "id" not in doc_dict or not doc_dict["id"]:
 | 
			
		||||
                        doc_dict["id"] = f"doc_{len(documents)}"
 | 
			
		||||
 | 
			
		||||
                    doc = Document(**doc_dict)
 | 
			
		||||
                    documents.append(doc)
 | 
			
		||||
                except Exception:
 | 
			
		||||
                    continue  # Skip invalid documents
 | 
			
		||||
 | 
			
		||||
            if not documents:
 | 
			
		||||
                return ProcessedData(
 | 
			
		||||
                    documents=[],
 | 
			
		||||
                    embeddings=np.array([]),
 | 
			
		||||
                    error="No valid documents after transformation",
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
            embeddings = self._extract_embeddings(documents)
 | 
			
		||||
            return ProcessedData(documents=documents, embeddings=embeddings)
 | 
			
		||||
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
 | 
			
		||||
 | 
			
		||||
    def _extract_embeddings(self, documents: List[Document]) -> np.ndarray:
 | 
			
		||||
        if not documents:
 | 
			
		||||
            return np.array([])
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										0
									
								
								src/embeddingbuddy/data/sources/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										0
									
								
								src/embeddingbuddy/data/sources/__init__.py
									
									
									
									
									
										Normal file
									
								
							
							
								
								
									
										189
									
								
								src/embeddingbuddy/data/sources/opensearch.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										189
									
								
								src/embeddingbuddy/data/sources/opensearch.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,189 @@
 | 
			
		||||
from typing import Dict, List, Optional, Any, Tuple
 | 
			
		||||
import logging
 | 
			
		||||
from opensearchpy import OpenSearch
 | 
			
		||||
from opensearchpy.exceptions import OpenSearchException
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class OpenSearchClient:
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.client: Optional[OpenSearch] = None
 | 
			
		||||
        self.connection_info: Optional[Dict[str, Any]] = None
 | 
			
		||||
 | 
			
		||||
    def connect(
 | 
			
		||||
        self,
 | 
			
		||||
        url: str,
 | 
			
		||||
        username: Optional[str] = None,
 | 
			
		||||
        password: Optional[str] = None,
 | 
			
		||||
        api_key: Optional[str] = None,
 | 
			
		||||
        verify_certs: bool = True,
 | 
			
		||||
    ) -> Tuple[bool, str]:
 | 
			
		||||
        """
 | 
			
		||||
        Connect to OpenSearch instance.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            Tuple of (success: bool, message: str)
 | 
			
		||||
        """
 | 
			
		||||
        try:
 | 
			
		||||
            # Parse URL to extract host and port
 | 
			
		||||
            if url.startswith("http://") or url.startswith("https://"):
 | 
			
		||||
                host = url
 | 
			
		||||
            else:
 | 
			
		||||
                host = f"https://{url}"
 | 
			
		||||
 | 
			
		||||
            # Build auth configuration
 | 
			
		||||
            auth_config = {}
 | 
			
		||||
            if username and password:
 | 
			
		||||
                auth_config["http_auth"] = (username, password)
 | 
			
		||||
            elif api_key:
 | 
			
		||||
                auth_config["api_key"] = api_key
 | 
			
		||||
 | 
			
		||||
            # Create client
 | 
			
		||||
            self.client = OpenSearch([host], verify_certs=verify_certs, **auth_config)
 | 
			
		||||
 | 
			
		||||
            # Test connection
 | 
			
		||||
            info = self.client.info()
 | 
			
		||||
            self.connection_info = {
 | 
			
		||||
                "url": host,
 | 
			
		||||
                "cluster_name": info.get("cluster_name", "Unknown"),
 | 
			
		||||
                "version": info.get("version", {}).get("number", "Unknown"),
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            return (
 | 
			
		||||
                True,
 | 
			
		||||
                f"Connected to {info.get('cluster_name', 'OpenSearch cluster')}",
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        except OpenSearchException as e:
 | 
			
		||||
            logger.error(f"OpenSearch connection error: {e}")
 | 
			
		||||
            return False, f"Connection failed: {str(e)}"
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Unexpected error connecting to OpenSearch: {e}")
 | 
			
		||||
            return False, f"Unexpected error: {str(e)}"
 | 
			
		||||
 | 
			
		||||
    def get_index_mapping(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
 | 
			
		||||
        """
 | 
			
		||||
        Get the mapping for a specific index.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            Tuple of (success: bool, mapping: Dict or None, message: str)
 | 
			
		||||
        """
 | 
			
		||||
        if not self.client:
 | 
			
		||||
            return False, None, "Not connected to OpenSearch"
 | 
			
		||||
 | 
			
		||||
        try:
 | 
			
		||||
            mapping = self.client.indices.get_mapping(index=index_name)
 | 
			
		||||
            return True, mapping, "Mapping retrieved successfully"
 | 
			
		||||
        except OpenSearchException as e:
 | 
			
		||||
            logger.error(f"Error getting mapping for index {index_name}: {e}")
 | 
			
		||||
            return False, None, f"Failed to get mapping: {str(e)}"
 | 
			
		||||
 | 
			
		||||
    def analyze_fields(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
 | 
			
		||||
        """
 | 
			
		||||
        Analyze index fields to detect potential embedding and text fields.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            Tuple of (success: bool, analysis: Dict or None, message: str)
 | 
			
		||||
        """
 | 
			
		||||
        success, mapping, message = self.get_index_mapping(index_name)
 | 
			
		||||
        if not success:
 | 
			
		||||
            return False, None, message
 | 
			
		||||
 | 
			
		||||
        try:
 | 
			
		||||
            # Extract field information from mapping
 | 
			
		||||
            index_mapping = mapping[index_name]["mappings"]["properties"]
 | 
			
		||||
 | 
			
		||||
            analysis = {
 | 
			
		||||
                "vector_fields": [],
 | 
			
		||||
                "text_fields": [],
 | 
			
		||||
                "keyword_fields": [],
 | 
			
		||||
                "numeric_fields": [],
 | 
			
		||||
                "all_fields": [],
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            for field_name, field_info in index_mapping.items():
 | 
			
		||||
                field_type = field_info.get("type", "unknown")
 | 
			
		||||
                analysis["all_fields"].append(field_name)
 | 
			
		||||
 | 
			
		||||
                if field_type == "dense_vector":
 | 
			
		||||
                    analysis["vector_fields"].append(
 | 
			
		||||
                        {
 | 
			
		||||
                            "name": field_name,
 | 
			
		||||
                            "dimension": field_info.get("dimension", "unknown"),
 | 
			
		||||
                        }
 | 
			
		||||
                    )
 | 
			
		||||
                elif field_type == "text":
 | 
			
		||||
                    analysis["text_fields"].append(field_name)
 | 
			
		||||
                elif field_type == "keyword":
 | 
			
		||||
                    analysis["keyword_fields"].append(field_name)
 | 
			
		||||
                elif field_type in ["integer", "long", "float", "double"]:
 | 
			
		||||
                    analysis["numeric_fields"].append(field_name)
 | 
			
		||||
 | 
			
		||||
            return True, analysis, "Field analysis completed"
 | 
			
		||||
 | 
			
		||||
        except Exception as e:
 | 
			
		||||
            logger.error(f"Error analyzing fields: {e}")
 | 
			
		||||
            return False, None, f"Field analysis failed: {str(e)}"
 | 
			
		||||
 | 
			
		||||
    def fetch_sample_data(
 | 
			
		||||
        self, index_name: str, size: int = 5
 | 
			
		||||
    ) -> Tuple[bool, List[Dict], str]:
 | 
			
		||||
        """
 | 
			
		||||
        Fetch sample documents from the index.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            Tuple of (success: bool, documents: List[Dict], message: str)
 | 
			
		||||
        """
 | 
			
		||||
        if not self.client:
 | 
			
		||||
            return False, [], "Not connected to OpenSearch"
 | 
			
		||||
 | 
			
		||||
        try:
 | 
			
		||||
            response = self.client.search(
 | 
			
		||||
                index=index_name, body={"query": {"match_all": {}}, "size": size}
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            documents = [hit["_source"] for hit in response["hits"]["hits"]]
 | 
			
		||||
            return True, documents, f"Retrieved {len(documents)} sample documents"
 | 
			
		||||
 | 
			
		||||
        except OpenSearchException as e:
 | 
			
		||||
            logger.error(f"Error fetching sample data: {e}")
 | 
			
		||||
            return False, [], f"Failed to fetch sample data: {str(e)}"
 | 
			
		||||
 | 
			
		||||
    def fetch_data(
 | 
			
		||||
        self, index_name: str, size: int = 100
 | 
			
		||||
    ) -> Tuple[bool, List[Dict], str]:
 | 
			
		||||
        """
 | 
			
		||||
        Fetch documents from the index.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            Tuple of (success: bool, documents: List[Dict], message: str)
 | 
			
		||||
        """
 | 
			
		||||
        if not self.client:
 | 
			
		||||
            return False, [], "Not connected to OpenSearch"
 | 
			
		||||
 | 
			
		||||
        try:
 | 
			
		||||
            response = self.client.search(
 | 
			
		||||
                index=index_name, body={"query": {"match_all": {}}, "size": size}
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            documents = [hit["_source"] for hit in response["hits"]["hits"]]
 | 
			
		||||
            total_hits = response["hits"]["total"]["value"]
 | 
			
		||||
 | 
			
		||||
            message = f"Retrieved {len(documents)} documents from {total_hits} total"
 | 
			
		||||
            return True, documents, message
 | 
			
		||||
 | 
			
		||||
        except OpenSearchException as e:
 | 
			
		||||
            logger.error(f"Error fetching data: {e}")
 | 
			
		||||
            return False, [], f"Failed to fetch data: {str(e)}"
 | 
			
		||||
 | 
			
		||||
    def disconnect(self):
 | 
			
		||||
        """Disconnect from OpenSearch."""
 | 
			
		||||
        if self.client:
 | 
			
		||||
            self.client = None
 | 
			
		||||
            self.connection_info = None
 | 
			
		||||
 | 
			
		||||
    def is_connected(self) -> bool:
 | 
			
		||||
        """Check if connected to OpenSearch."""
 | 
			
		||||
        return self.client is not None
 | 
			
		||||
							
								
								
									
										254
									
								
								src/embeddingbuddy/models/field_mapper.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										254
									
								
								src/embeddingbuddy/models/field_mapper.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,254 @@
 | 
			
		||||
from dataclasses import dataclass
 | 
			
		||||
from typing import Dict, List, Optional, Any
 | 
			
		||||
import logging
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
logger = logging.getLogger(__name__)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
@dataclass
 | 
			
		||||
class FieldMapping:
 | 
			
		||||
    """Configuration for mapping OpenSearch fields to standard format."""
 | 
			
		||||
 | 
			
		||||
    embedding_field: str
 | 
			
		||||
    text_field: str
 | 
			
		||||
    id_field: Optional[str] = None
 | 
			
		||||
    category_field: Optional[str] = None
 | 
			
		||||
    subcategory_field: Optional[str] = None
 | 
			
		||||
    tags_field: Optional[str] = None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class FieldMapper:
 | 
			
		||||
    """Handles field mapping and data transformation from OpenSearch to standard format."""
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def suggest_mappings(field_analysis: Dict) -> Dict[str, List[str]]:
 | 
			
		||||
        """
 | 
			
		||||
        Suggest field mappings based on field analysis.
 | 
			
		||||
 | 
			
		||||
        Each dropdown will show ALL available fields, but ordered by relevance
 | 
			
		||||
        with the most likely candidates first.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            field_analysis: Analysis results from OpenSearchClient.analyze_fields
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            Dictionary with suggested fields for each mapping (ordered by relevance)
 | 
			
		||||
        """
 | 
			
		||||
        all_fields = field_analysis.get("all_fields", [])
 | 
			
		||||
        vector_fields = [vf["name"] for vf in field_analysis.get("vector_fields", [])]
 | 
			
		||||
        text_fields = field_analysis.get("text_fields", [])
 | 
			
		||||
        keyword_fields = field_analysis.get("keyword_fields", [])
 | 
			
		||||
 | 
			
		||||
        # Helper function to create ordered suggestions
 | 
			
		||||
        def create_ordered_suggestions(primary_candidates, all_available_fields):
 | 
			
		||||
            # Start with primary candidates, then add all other fields
 | 
			
		||||
            ordered = []
 | 
			
		||||
            # Add primary candidates first
 | 
			
		||||
            for field in primary_candidates:
 | 
			
		||||
                if field in all_available_fields and field not in ordered:
 | 
			
		||||
                    ordered.append(field)
 | 
			
		||||
            # Add remaining fields
 | 
			
		||||
            for field in all_available_fields:
 | 
			
		||||
                if field not in ordered:
 | 
			
		||||
                    ordered.append(field)
 | 
			
		||||
            return ordered
 | 
			
		||||
 | 
			
		||||
        suggestions = {}
 | 
			
		||||
 | 
			
		||||
        # Embedding field suggestions (vector fields first, then name-based candidates, then all fields)
 | 
			
		||||
        embedding_candidates = vector_fields.copy()
 | 
			
		||||
        # Add fields that likely contain embeddings based on name
 | 
			
		||||
        embedding_name_candidates = [
 | 
			
		||||
            f
 | 
			
		||||
            for f in all_fields
 | 
			
		||||
            if any(
 | 
			
		||||
                keyword in f.lower()
 | 
			
		||||
                for keyword in ["embedding", "embeddings", "vector", "vectors", "embed"]
 | 
			
		||||
            )
 | 
			
		||||
        ]
 | 
			
		||||
        # Add name-based candidates that aren't already in vector_fields
 | 
			
		||||
        for candidate in embedding_name_candidates:
 | 
			
		||||
            if candidate not in embedding_candidates:
 | 
			
		||||
                embedding_candidates.append(candidate)
 | 
			
		||||
        suggestions["embedding"] = create_ordered_suggestions(
 | 
			
		||||
            embedding_candidates, all_fields
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # Text field suggestions (text fields first, then all fields)
 | 
			
		||||
        text_candidates = text_fields.copy()
 | 
			
		||||
        suggestions["text"] = create_ordered_suggestions(text_candidates, all_fields)
 | 
			
		||||
 | 
			
		||||
        # ID field suggestions (ID-like fields first, then all fields)
 | 
			
		||||
        id_candidates = [
 | 
			
		||||
            f
 | 
			
		||||
            for f in keyword_fields
 | 
			
		||||
            if any(keyword in f.lower() for keyword in ["id", "_id", "doc", "document"])
 | 
			
		||||
        ]
 | 
			
		||||
        id_candidates.append("_id")  # _id is always available
 | 
			
		||||
        suggestions["id"] = create_ordered_suggestions(id_candidates, all_fields)
 | 
			
		||||
 | 
			
		||||
        # Category field suggestions (category-like fields first, then all fields)
 | 
			
		||||
        category_candidates = [
 | 
			
		||||
            f
 | 
			
		||||
            for f in keyword_fields
 | 
			
		||||
            if any(
 | 
			
		||||
                keyword in f.lower()
 | 
			
		||||
                for keyword in ["category", "class", "type", "label"]
 | 
			
		||||
            )
 | 
			
		||||
        ]
 | 
			
		||||
        suggestions["category"] = create_ordered_suggestions(
 | 
			
		||||
            category_candidates, all_fields
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # Subcategory field suggestions (subcategory-like fields first, then all fields)
 | 
			
		||||
        subcategory_candidates = [
 | 
			
		||||
            f
 | 
			
		||||
            for f in keyword_fields
 | 
			
		||||
            if any(
 | 
			
		||||
                keyword in f.lower()
 | 
			
		||||
                for keyword in ["subcategory", "subclass", "subtype", "subtopic"]
 | 
			
		||||
            )
 | 
			
		||||
        ]
 | 
			
		||||
        suggestions["subcategory"] = create_ordered_suggestions(
 | 
			
		||||
            subcategory_candidates, all_fields
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # Tags field suggestions (tag-like fields first, then all fields)
 | 
			
		||||
        tags_candidates = [
 | 
			
		||||
            f
 | 
			
		||||
            for f in keyword_fields
 | 
			
		||||
            if any(
 | 
			
		||||
                keyword in f.lower()
 | 
			
		||||
                for keyword in ["tag", "tags", "keyword", "keywords"]
 | 
			
		||||
            )
 | 
			
		||||
        ]
 | 
			
		||||
        suggestions["tags"] = create_ordered_suggestions(tags_candidates, all_fields)
 | 
			
		||||
 | 
			
		||||
        return suggestions
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def validate_mapping(
 | 
			
		||||
        mapping: FieldMapping, available_fields: List[str]
 | 
			
		||||
    ) -> List[str]:
 | 
			
		||||
        """
 | 
			
		||||
        Validate that the field mapping is correct.
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            List of validation errors (empty if valid)
 | 
			
		||||
        """
 | 
			
		||||
        errors = []
 | 
			
		||||
 | 
			
		||||
        # Required fields validation
 | 
			
		||||
        if not mapping.embedding_field:
 | 
			
		||||
            errors.append("Embedding field is required")
 | 
			
		||||
        elif mapping.embedding_field not in available_fields:
 | 
			
		||||
            errors.append(
 | 
			
		||||
                f"Embedding field '{mapping.embedding_field}' not found in index"
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        if not mapping.text_field:
 | 
			
		||||
            errors.append("Text field is required")
 | 
			
		||||
        elif mapping.text_field not in available_fields:
 | 
			
		||||
            errors.append(f"Text field '{mapping.text_field}' not found in index")
 | 
			
		||||
 | 
			
		||||
        # Optional fields validation
 | 
			
		||||
        optional_fields = {
 | 
			
		||||
            "id_field": mapping.id_field,
 | 
			
		||||
            "category_field": mapping.category_field,
 | 
			
		||||
            "subcategory_field": mapping.subcategory_field,
 | 
			
		||||
            "tags_field": mapping.tags_field,
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        for field_name, field_value in optional_fields.items():
 | 
			
		||||
            if field_value and field_value not in available_fields:
 | 
			
		||||
                errors.append(
 | 
			
		||||
                    f"Field '{field_value}' for {field_name} not found in index"
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
        return errors
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def transform_documents(
 | 
			
		||||
        documents: List[Dict[str, Any]], mapping: FieldMapping
 | 
			
		||||
    ) -> List[Dict[str, Any]]:
 | 
			
		||||
        """
 | 
			
		||||
        Transform OpenSearch documents to standard format using field mapping.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            documents: Raw documents from OpenSearch
 | 
			
		||||
            mapping: Field mapping configuration
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            List of transformed documents in standard format
 | 
			
		||||
        """
 | 
			
		||||
        transformed = []
 | 
			
		||||
 | 
			
		||||
        for doc in documents:
 | 
			
		||||
            try:
 | 
			
		||||
                # Build standard format document
 | 
			
		||||
                standard_doc = {}
 | 
			
		||||
 | 
			
		||||
                # Required fields
 | 
			
		||||
                if mapping.embedding_field in doc:
 | 
			
		||||
                    standard_doc["embedding"] = doc[mapping.embedding_field]
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.warning(
 | 
			
		||||
                        f"Missing embedding field '{mapping.embedding_field}' in document"
 | 
			
		||||
                    )
 | 
			
		||||
                    continue
 | 
			
		||||
 | 
			
		||||
                if mapping.text_field in doc:
 | 
			
		||||
                    standard_doc["text"] = str(doc[mapping.text_field])
 | 
			
		||||
                else:
 | 
			
		||||
                    logger.warning(
 | 
			
		||||
                        f"Missing text field '{mapping.text_field}' in document"
 | 
			
		||||
                    )
 | 
			
		||||
                    continue
 | 
			
		||||
 | 
			
		||||
                # Optional fields
 | 
			
		||||
                if mapping.id_field and mapping.id_field in doc:
 | 
			
		||||
                    standard_doc["id"] = str(doc[mapping.id_field])
 | 
			
		||||
 | 
			
		||||
                if mapping.category_field and mapping.category_field in doc:
 | 
			
		||||
                    standard_doc["category"] = str(doc[mapping.category_field])
 | 
			
		||||
 | 
			
		||||
                if mapping.subcategory_field and mapping.subcategory_field in doc:
 | 
			
		||||
                    standard_doc["subcategory"] = str(doc[mapping.subcategory_field])
 | 
			
		||||
 | 
			
		||||
                if mapping.tags_field and mapping.tags_field in doc:
 | 
			
		||||
                    tags = doc[mapping.tags_field]
 | 
			
		||||
                    # Handle both string and list tags
 | 
			
		||||
                    if isinstance(tags, list):
 | 
			
		||||
                        standard_doc["tags"] = [str(tag) for tag in tags]
 | 
			
		||||
                    else:
 | 
			
		||||
                        standard_doc["tags"] = [str(tags)]
 | 
			
		||||
 | 
			
		||||
                transformed.append(standard_doc)
 | 
			
		||||
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                logger.error(f"Error transforming document: {e}")
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
        logger.info(f"Transformed {len(transformed)} documents out of {len(documents)}")
 | 
			
		||||
        return transformed
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def create_mapping_from_dict(mapping_dict: Dict[str, str]) -> FieldMapping:
 | 
			
		||||
        """
 | 
			
		||||
        Create a FieldMapping from a dictionary.
 | 
			
		||||
 | 
			
		||||
        Args:
 | 
			
		||||
            mapping_dict: Dictionary with field mappings
 | 
			
		||||
 | 
			
		||||
        Returns:
 | 
			
		||||
            FieldMapping instance
 | 
			
		||||
        """
 | 
			
		||||
        return FieldMapping(
 | 
			
		||||
            embedding_field=mapping_dict.get("embedding", ""),
 | 
			
		||||
            text_field=mapping_dict.get("text", ""),
 | 
			
		||||
            id_field=mapping_dict.get("id") or None,
 | 
			
		||||
            category_field=mapping_dict.get("category") or None,
 | 
			
		||||
            subcategory_field=mapping_dict.get("subcategory") or None,
 | 
			
		||||
            tags_field=mapping_dict.get("tags") or None,
 | 
			
		||||
        )
 | 
			
		||||
@@ -1,10 +1,15 @@
 | 
			
		||||
from dash import callback, Input, Output, State
 | 
			
		||||
from dash import callback, Input, Output, State, no_update
 | 
			
		||||
from ...data.processor import DataProcessor
 | 
			
		||||
from ...data.sources.opensearch import OpenSearchClient
 | 
			
		||||
from ...models.field_mapper import FieldMapper
 | 
			
		||||
from ...config.settings import AppSettings
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DataProcessingCallbacks:
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.processor = DataProcessor()
 | 
			
		||||
        self.opensearch_client_data = OpenSearchClient()  # For data/documents
 | 
			
		||||
        self.opensearch_client_prompts = OpenSearchClient()  # For prompts
 | 
			
		||||
        self._register_callbacks()
 | 
			
		||||
 | 
			
		||||
    def _register_callbacks(self):
 | 
			
		||||
@@ -67,6 +72,397 @@ class DataProcessingCallbacks:
 | 
			
		||||
                "embeddings": processed_data.embeddings.tolist(),
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
        # OpenSearch callbacks
 | 
			
		||||
        @callback(
 | 
			
		||||
            [
 | 
			
		||||
                Output("tab-content", "children"),
 | 
			
		||||
            ],
 | 
			
		||||
            [Input("data-source-tabs", "active_tab")],
 | 
			
		||||
            prevent_initial_call=False,
 | 
			
		||||
        )
 | 
			
		||||
        def render_tab_content(active_tab):
 | 
			
		||||
            from ...ui.components.datasource import DataSourceComponent
 | 
			
		||||
 | 
			
		||||
            datasource = DataSourceComponent()
 | 
			
		||||
 | 
			
		||||
            if active_tab == "opensearch-tab":
 | 
			
		||||
                return [datasource.create_opensearch_tab()]
 | 
			
		||||
            else:
 | 
			
		||||
                return [datasource.create_file_upload_tab()]
 | 
			
		||||
 | 
			
		||||
        # Register callbacks for both data and prompts sections
 | 
			
		||||
        self._register_opensearch_callbacks("data", self.opensearch_client_data)
 | 
			
		||||
        self._register_opensearch_callbacks("prompts", self.opensearch_client_prompts)
 | 
			
		||||
 | 
			
		||||
        # Register collapsible section callbacks
 | 
			
		||||
        self._register_collapse_callbacks()
 | 
			
		||||
 | 
			
		||||
    def _register_opensearch_callbacks(self, section_type, opensearch_client):
 | 
			
		||||
        """Register callbacks for a specific section (data or prompts)."""
 | 
			
		||||
 | 
			
		||||
        @callback(
 | 
			
		||||
            Output(f"{section_type}-auth-collapse", "is_open"),
 | 
			
		||||
            [Input(f"{section_type}-auth-toggle", "n_clicks")],
 | 
			
		||||
            [State(f"{section_type}-auth-collapse", "is_open")],
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def toggle_auth(n_clicks, is_open):
 | 
			
		||||
            if n_clicks:
 | 
			
		||||
                return not is_open
 | 
			
		||||
            return is_open
 | 
			
		||||
 | 
			
		||||
        @callback(
 | 
			
		||||
            Output(f"{section_type}-auth-toggle", "children"),
 | 
			
		||||
            [Input(f"{section_type}-auth-collapse", "is_open")],
 | 
			
		||||
            prevent_initial_call=False,
 | 
			
		||||
        )
 | 
			
		||||
        def update_auth_button_text(is_open):
 | 
			
		||||
            return "Hide Authentication" if is_open else "Show Authentication"
 | 
			
		||||
 | 
			
		||||
        @callback(
 | 
			
		||||
            [
 | 
			
		||||
                Output(f"{section_type}-connection-status", "children"),
 | 
			
		||||
                Output(f"{section_type}-field-mapping-section", "children"),
 | 
			
		||||
                Output(f"{section_type}-field-mapping-section", "style"),
 | 
			
		||||
                Output(f"{section_type}-load-data-section", "style"),
 | 
			
		||||
                Output(f"{section_type}-load-opensearch-data-btn", "disabled"),
 | 
			
		||||
                Output(f"{section_type}-embedding-field-dropdown", "options"),
 | 
			
		||||
                Output(f"{section_type}-text-field-dropdown", "options"),
 | 
			
		||||
                Output(f"{section_type}-id-field-dropdown", "options"),
 | 
			
		||||
                Output(f"{section_type}-category-field-dropdown", "options"),
 | 
			
		||||
                Output(f"{section_type}-subcategory-field-dropdown", "options"),
 | 
			
		||||
                Output(f"{section_type}-tags-field-dropdown", "options"),
 | 
			
		||||
            ],
 | 
			
		||||
            [Input(f"{section_type}-test-connection-btn", "n_clicks")],
 | 
			
		||||
            [
 | 
			
		||||
                State(f"{section_type}-opensearch-url", "value"),
 | 
			
		||||
                State(f"{section_type}-opensearch-index", "value"),
 | 
			
		||||
                State(f"{section_type}-opensearch-username", "value"),
 | 
			
		||||
                State(f"{section_type}-opensearch-password", "value"),
 | 
			
		||||
                State(f"{section_type}-opensearch-api-key", "value"),
 | 
			
		||||
            ],
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def test_opensearch_connection(
 | 
			
		||||
            n_clicks, url, index_name, username, password, api_key
 | 
			
		||||
        ):
 | 
			
		||||
            if not n_clicks or not url or not index_name:
 | 
			
		||||
                return (
 | 
			
		||||
                    no_update,
 | 
			
		||||
                    no_update,
 | 
			
		||||
                    no_update,
 | 
			
		||||
                    no_update,
 | 
			
		||||
                    no_update,
 | 
			
		||||
                    no_update,
 | 
			
		||||
                    no_update,
 | 
			
		||||
                    no_update,
 | 
			
		||||
                    no_update,
 | 
			
		||||
                    no_update,
 | 
			
		||||
                    no_update,
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
            # Test connection
 | 
			
		||||
            success, message = opensearch_client.connect(
 | 
			
		||||
                url=url,
 | 
			
		||||
                username=username,
 | 
			
		||||
                password=password,
 | 
			
		||||
                api_key=api_key,
 | 
			
		||||
                verify_certs=AppSettings.OPENSEARCH_VERIFY_CERTS,
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            if not success:
 | 
			
		||||
                return (
 | 
			
		||||
                    self._create_status_alert(f"❌ {message}", "danger"),
 | 
			
		||||
                    [],
 | 
			
		||||
                    {"display": "none"},
 | 
			
		||||
                    {"display": "none"},
 | 
			
		||||
                    True,
 | 
			
		||||
                    [],  # empty options for hidden dropdowns
 | 
			
		||||
                    [],
 | 
			
		||||
                    [],
 | 
			
		||||
                    [],
 | 
			
		||||
                    [],
 | 
			
		||||
                    [],
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
            # Analyze fields
 | 
			
		||||
            success, field_analysis, analysis_message = (
 | 
			
		||||
                opensearch_client.analyze_fields(index_name)
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            if not success:
 | 
			
		||||
                return (
 | 
			
		||||
                    self._create_status_alert(f"❌ {analysis_message}", "danger"),
 | 
			
		||||
                    [],
 | 
			
		||||
                    {"display": "none"},
 | 
			
		||||
                    {"display": "none"},
 | 
			
		||||
                    True,
 | 
			
		||||
                    [],  # empty options for hidden dropdowns
 | 
			
		||||
                    [],
 | 
			
		||||
                    [],
 | 
			
		||||
                    [],
 | 
			
		||||
                    [],
 | 
			
		||||
                    [],
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
            # Generate field suggestions
 | 
			
		||||
            field_suggestions = FieldMapper.suggest_mappings(field_analysis)
 | 
			
		||||
 | 
			
		||||
            from ...ui.components.datasource import DataSourceComponent
 | 
			
		||||
 | 
			
		||||
            datasource = DataSourceComponent()
 | 
			
		||||
            field_mapping_ui = datasource.create_field_mapping_interface(
 | 
			
		||||
                field_suggestions, section_type
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
            return (
 | 
			
		||||
                self._create_status_alert(f"✅ {message}", "success"),
 | 
			
		||||
                field_mapping_ui,
 | 
			
		||||
                {"display": "block"},
 | 
			
		||||
                {"display": "block"},
 | 
			
		||||
                False,
 | 
			
		||||
                [
 | 
			
		||||
                    {"label": field, "value": field}
 | 
			
		||||
                    for field in field_suggestions.get("embedding", [])
 | 
			
		||||
                ],
 | 
			
		||||
                [
 | 
			
		||||
                    {"label": field, "value": field}
 | 
			
		||||
                    for field in field_suggestions.get("text", [])
 | 
			
		||||
                ],
 | 
			
		||||
                [
 | 
			
		||||
                    {"label": field, "value": field}
 | 
			
		||||
                    for field in field_suggestions.get("id", [])
 | 
			
		||||
                ],
 | 
			
		||||
                [
 | 
			
		||||
                    {"label": field, "value": field}
 | 
			
		||||
                    for field in field_suggestions.get("category", [])
 | 
			
		||||
                ],
 | 
			
		||||
                [
 | 
			
		||||
                    {"label": field, "value": field}
 | 
			
		||||
                    for field in field_suggestions.get("subcategory", [])
 | 
			
		||||
                ],
 | 
			
		||||
                [
 | 
			
		||||
                    {"label": field, "value": field}
 | 
			
		||||
                    for field in field_suggestions.get("tags", [])
 | 
			
		||||
                ],
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
        # Determine output target based on section type
 | 
			
		||||
        output_target = (
 | 
			
		||||
            "processed-data" if section_type == "data" else "processed-prompts"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        @callback(
 | 
			
		||||
            [
 | 
			
		||||
                Output(output_target, "data", allow_duplicate=True),
 | 
			
		||||
                Output("opensearch-success-alert", "children", allow_duplicate=True),
 | 
			
		||||
                Output("opensearch-success-alert", "is_open", allow_duplicate=True),
 | 
			
		||||
                Output("opensearch-error-alert", "children", allow_duplicate=True),
 | 
			
		||||
                Output("opensearch-error-alert", "is_open", allow_duplicate=True),
 | 
			
		||||
            ],
 | 
			
		||||
            [Input(f"{section_type}-load-opensearch-data-btn", "n_clicks")],
 | 
			
		||||
            [
 | 
			
		||||
                State(f"{section_type}-opensearch-index", "value"),
 | 
			
		||||
                State(f"{section_type}-opensearch-query-size", "value"),
 | 
			
		||||
                State(f"{section_type}-embedding-field-dropdown-ui", "value"),
 | 
			
		||||
                State(f"{section_type}-text-field-dropdown-ui", "value"),
 | 
			
		||||
                State(f"{section_type}-id-field-dropdown-ui", "value"),
 | 
			
		||||
                State(f"{section_type}-category-field-dropdown-ui", "value"),
 | 
			
		||||
                State(f"{section_type}-subcategory-field-dropdown-ui", "value"),
 | 
			
		||||
                State(f"{section_type}-tags-field-dropdown-ui", "value"),
 | 
			
		||||
            ],
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def load_opensearch_data(
 | 
			
		||||
            n_clicks,
 | 
			
		||||
            index_name,
 | 
			
		||||
            query_size,
 | 
			
		||||
            embedding_field,
 | 
			
		||||
            text_field,
 | 
			
		||||
            id_field,
 | 
			
		||||
            category_field,
 | 
			
		||||
            subcategory_field,
 | 
			
		||||
            tags_field,
 | 
			
		||||
        ):
 | 
			
		||||
            if not n_clicks or not index_name or not embedding_field or not text_field:
 | 
			
		||||
                return no_update, no_update, no_update, no_update, no_update
 | 
			
		||||
 | 
			
		||||
            try:
 | 
			
		||||
                # Validate and set query size
 | 
			
		||||
                if not query_size or query_size < 1:
 | 
			
		||||
                    query_size = AppSettings.OPENSEARCH_DEFAULT_SIZE
 | 
			
		||||
                elif query_size > 1000:
 | 
			
		||||
                    query_size = 1000  # Cap at reasonable maximum
 | 
			
		||||
 | 
			
		||||
                # Create field mapping
 | 
			
		||||
                field_mapping = FieldMapper.create_mapping_from_dict(
 | 
			
		||||
                    {
 | 
			
		||||
                        "embedding": embedding_field,
 | 
			
		||||
                        "text": text_field,
 | 
			
		||||
                        "id": id_field,
 | 
			
		||||
                        "category": category_field,
 | 
			
		||||
                        "subcategory": subcategory_field,
 | 
			
		||||
                        "tags": tags_field,
 | 
			
		||||
                    }
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
                # Fetch data from OpenSearch
 | 
			
		||||
                success, raw_documents, message = opensearch_client.fetch_data(
 | 
			
		||||
                    index_name, size=query_size
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
                if not success:
 | 
			
		||||
                    return (
 | 
			
		||||
                        no_update,
 | 
			
		||||
                        "",
 | 
			
		||||
                        False,
 | 
			
		||||
                        f"❌ Failed to fetch {section_type}: {message}",
 | 
			
		||||
                        True,
 | 
			
		||||
                    )
 | 
			
		||||
 | 
			
		||||
                # Process the data
 | 
			
		||||
                processed_data = self.processor.process_opensearch_data(
 | 
			
		||||
                    raw_documents, field_mapping
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
                if processed_data.error:
 | 
			
		||||
                    return (
 | 
			
		||||
                        {"error": processed_data.error},
 | 
			
		||||
                        "",
 | 
			
		||||
                        False,
 | 
			
		||||
                        f"❌ {section_type.title()} processing error: {processed_data.error}",
 | 
			
		||||
                        True,
 | 
			
		||||
                    )
 | 
			
		||||
 | 
			
		||||
                success_message = f"✅ Successfully loaded {len(processed_data.documents)} {section_type} from OpenSearch"
 | 
			
		||||
 | 
			
		||||
                # Format for appropriate target (data vs prompts)
 | 
			
		||||
                if section_type == "data":
 | 
			
		||||
                    return (
 | 
			
		||||
                        {
 | 
			
		||||
                            "documents": [
 | 
			
		||||
                                self._document_to_dict(doc)
 | 
			
		||||
                                for doc in processed_data.documents
 | 
			
		||||
                            ],
 | 
			
		||||
                            "embeddings": processed_data.embeddings.tolist(),
 | 
			
		||||
                        },
 | 
			
		||||
                        success_message,
 | 
			
		||||
                        True,
 | 
			
		||||
                        "",
 | 
			
		||||
                        False,
 | 
			
		||||
                    )
 | 
			
		||||
                else:  # prompts
 | 
			
		||||
                    return (
 | 
			
		||||
                        {
 | 
			
		||||
                            "prompts": [
 | 
			
		||||
                                self._document_to_dict(doc)
 | 
			
		||||
                                for doc in processed_data.documents
 | 
			
		||||
                            ],
 | 
			
		||||
                            "embeddings": processed_data.embeddings.tolist(),
 | 
			
		||||
                        },
 | 
			
		||||
                        success_message,
 | 
			
		||||
                        True,
 | 
			
		||||
                        "",
 | 
			
		||||
                        False,
 | 
			
		||||
                    )
 | 
			
		||||
 | 
			
		||||
            except Exception as e:
 | 
			
		||||
                return (no_update, "", False, f"❌ Unexpected error: {str(e)}", True)
 | 
			
		||||
 | 
			
		||||
        # Sync callbacks to update hidden dropdowns from UI dropdowns
 | 
			
		||||
        @callback(
 | 
			
		||||
            Output(f"{section_type}-embedding-field-dropdown", "value"),
 | 
			
		||||
            Input(f"{section_type}-embedding-field-dropdown-ui", "value"),
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def sync_embedding_dropdown(value):
 | 
			
		||||
            return value
 | 
			
		||||
 | 
			
		||||
        @callback(
 | 
			
		||||
            Output(f"{section_type}-text-field-dropdown", "value"),
 | 
			
		||||
            Input(f"{section_type}-text-field-dropdown-ui", "value"),
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def sync_text_dropdown(value):
 | 
			
		||||
            return value
 | 
			
		||||
 | 
			
		||||
        @callback(
 | 
			
		||||
            Output(f"{section_type}-id-field-dropdown", "value"),
 | 
			
		||||
            Input(f"{section_type}-id-field-dropdown-ui", "value"),
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def sync_id_dropdown(value):
 | 
			
		||||
            return value
 | 
			
		||||
 | 
			
		||||
        @callback(
 | 
			
		||||
            Output(f"{section_type}-category-field-dropdown", "value"),
 | 
			
		||||
            Input(f"{section_type}-category-field-dropdown-ui", "value"),
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def sync_category_dropdown(value):
 | 
			
		||||
            return value
 | 
			
		||||
 | 
			
		||||
        @callback(
 | 
			
		||||
            Output(f"{section_type}-subcategory-field-dropdown", "value"),
 | 
			
		||||
            Input(f"{section_type}-subcategory-field-dropdown-ui", "value"),
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def sync_subcategory_dropdown(value):
 | 
			
		||||
            return value
 | 
			
		||||
 | 
			
		||||
        @callback(
 | 
			
		||||
            Output(f"{section_type}-tags-field-dropdown", "value"),
 | 
			
		||||
            Input(f"{section_type}-tags-field-dropdown-ui", "value"),
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def sync_tags_dropdown(value):
 | 
			
		||||
            return value
 | 
			
		||||
 | 
			
		||||
    def _register_collapse_callbacks(self):
 | 
			
		||||
        """Register callbacks for collapsible sections."""
 | 
			
		||||
 | 
			
		||||
        # Data section collapse callback
 | 
			
		||||
        @callback(
 | 
			
		||||
            [
 | 
			
		||||
                Output("data-collapse", "is_open"),
 | 
			
		||||
                Output("data-collapse-icon", "className"),
 | 
			
		||||
            ],
 | 
			
		||||
            [Input("data-collapse-toggle", "n_clicks")],
 | 
			
		||||
            [State("data-collapse", "is_open")],
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def toggle_data_collapse(n_clicks, is_open):
 | 
			
		||||
            if n_clicks:
 | 
			
		||||
                new_state = not is_open
 | 
			
		||||
                icon_class = (
 | 
			
		||||
                    "fas fa-chevron-down me-2"
 | 
			
		||||
                    if new_state
 | 
			
		||||
                    else "fas fa-chevron-right me-2"
 | 
			
		||||
                )
 | 
			
		||||
                return new_state, icon_class
 | 
			
		||||
            return is_open, "fas fa-chevron-down me-2"
 | 
			
		||||
 | 
			
		||||
        # Prompts section collapse callback
 | 
			
		||||
        @callback(
 | 
			
		||||
            [
 | 
			
		||||
                Output("prompts-collapse", "is_open"),
 | 
			
		||||
                Output("prompts-collapse-icon", "className"),
 | 
			
		||||
            ],
 | 
			
		||||
            [Input("prompts-collapse-toggle", "n_clicks")],
 | 
			
		||||
            [State("prompts-collapse", "is_open")],
 | 
			
		||||
            prevent_initial_call=True,
 | 
			
		||||
        )
 | 
			
		||||
        def toggle_prompts_collapse(n_clicks, is_open):
 | 
			
		||||
            if n_clicks:
 | 
			
		||||
                new_state = not is_open
 | 
			
		||||
                icon_class = (
 | 
			
		||||
                    "fas fa-chevron-down me-2"
 | 
			
		||||
                    if new_state
 | 
			
		||||
                    else "fas fa-chevron-right me-2"
 | 
			
		||||
                )
 | 
			
		||||
                return new_state, icon_class
 | 
			
		||||
            return is_open, "fas fa-chevron-down me-2"
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def _document_to_dict(doc):
 | 
			
		||||
        return {
 | 
			
		||||
@@ -118,3 +514,10 @@ class DataProcessingCallbacks:
 | 
			
		||||
                f"❌ Error processing file{file_part}: {error}. "
 | 
			
		||||
                "Please check that your file is valid NDJSON with required 'text' and 'embedding' fields."
 | 
			
		||||
            )
 | 
			
		||||
 | 
			
		||||
    @staticmethod
 | 
			
		||||
    def _create_status_alert(message: str, color: str):
 | 
			
		||||
        """Create a status alert component."""
 | 
			
		||||
        import dash_bootstrap_components as dbc
 | 
			
		||||
 | 
			
		||||
        return dbc.Alert(message, color=color, className="mb-2")
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										519
									
								
								src/embeddingbuddy/ui/components/datasource.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										519
									
								
								src/embeddingbuddy/ui/components/datasource.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,519 @@
 | 
			
		||||
from dash import dcc, html
 | 
			
		||||
import dash_bootstrap_components as dbc
 | 
			
		||||
from .upload import UploadComponent
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class DataSourceComponent:
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.upload_component = UploadComponent()
 | 
			
		||||
 | 
			
		||||
    def create_tabbed_interface(self):
 | 
			
		||||
        """Create tabbed interface for different data sources."""
 | 
			
		||||
        return dbc.Card(
 | 
			
		||||
            [
 | 
			
		||||
                dbc.CardHeader(
 | 
			
		||||
                    [
 | 
			
		||||
                        dbc.Tabs(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Tab(label="File Upload", tab_id="file-tab"),
 | 
			
		||||
                                dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
 | 
			
		||||
                            ],
 | 
			
		||||
                            id="data-source-tabs",
 | 
			
		||||
                            active_tab="file-tab",
 | 
			
		||||
                        )
 | 
			
		||||
                    ]
 | 
			
		||||
                ),
 | 
			
		||||
                dbc.CardBody([html.Div(id="tab-content")]),
 | 
			
		||||
            ]
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def create_file_upload_tab(self):
 | 
			
		||||
        """Create file upload tab content."""
 | 
			
		||||
        return html.Div(
 | 
			
		||||
            [
 | 
			
		||||
                self.upload_component.create_error_alert(),
 | 
			
		||||
                self.upload_component.create_data_upload(),
 | 
			
		||||
                self.upload_component.create_prompts_upload(),
 | 
			
		||||
                self.upload_component.create_reset_button(),
 | 
			
		||||
            ]
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def create_opensearch_tab(self):
 | 
			
		||||
        """Create OpenSearch tab content with separate Data and Prompts sections."""
 | 
			
		||||
        return html.Div(
 | 
			
		||||
            [
 | 
			
		||||
                # Data Section
 | 
			
		||||
                dbc.Card(
 | 
			
		||||
                    [
 | 
			
		||||
                        dbc.CardHeader(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Button(
 | 
			
		||||
                                    [
 | 
			
		||||
                                        html.I(
 | 
			
		||||
                                            className="fas fa-chevron-down me-2",
 | 
			
		||||
                                            id="data-collapse-icon",
 | 
			
		||||
                                        ),
 | 
			
		||||
                                        "📄 Documents/Data",
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    id="data-collapse-toggle",
 | 
			
		||||
                                    color="link",
 | 
			
		||||
                                    className="text-start p-0 w-100 text-decoration-none",
 | 
			
		||||
                                    style={
 | 
			
		||||
                                        "border": "none",
 | 
			
		||||
                                        "font-size": "1.25rem",
 | 
			
		||||
                                        "font-weight": "500",
 | 
			
		||||
                                    },
 | 
			
		||||
                                ),
 | 
			
		||||
                            ]
 | 
			
		||||
                        ),
 | 
			
		||||
                        dbc.Collapse(
 | 
			
		||||
                            [dbc.CardBody([self._create_opensearch_section("data")])],
 | 
			
		||||
                            id="data-collapse",
 | 
			
		||||
                            is_open=True,
 | 
			
		||||
                        ),
 | 
			
		||||
                    ],
 | 
			
		||||
                    className="mb-4",
 | 
			
		||||
                ),
 | 
			
		||||
                # Prompts Section
 | 
			
		||||
                dbc.Card(
 | 
			
		||||
                    [
 | 
			
		||||
                        dbc.CardHeader(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Button(
 | 
			
		||||
                                    [
 | 
			
		||||
                                        html.I(
 | 
			
		||||
                                            className="fas fa-chevron-down me-2",
 | 
			
		||||
                                            id="prompts-collapse-icon",
 | 
			
		||||
                                        ),
 | 
			
		||||
                                        "💬 Prompts",
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    id="prompts-collapse-toggle",
 | 
			
		||||
                                    color="link",
 | 
			
		||||
                                    className="text-start p-0 w-100 text-decoration-none",
 | 
			
		||||
                                    style={
 | 
			
		||||
                                        "border": "none",
 | 
			
		||||
                                        "font-size": "1.25rem",
 | 
			
		||||
                                        "font-weight": "500",
 | 
			
		||||
                                    },
 | 
			
		||||
                                ),
 | 
			
		||||
                            ]
 | 
			
		||||
                        ),
 | 
			
		||||
                        dbc.Collapse(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.CardBody(
 | 
			
		||||
                                    [self._create_opensearch_section("prompts")]
 | 
			
		||||
                                )
 | 
			
		||||
                            ],
 | 
			
		||||
                            id="prompts-collapse",
 | 
			
		||||
                            is_open=True,
 | 
			
		||||
                        ),
 | 
			
		||||
                    ],
 | 
			
		||||
                    className="mb-4",
 | 
			
		||||
                ),
 | 
			
		||||
                # Hidden dropdowns to prevent callback errors (for both sections)
 | 
			
		||||
                html.Div(
 | 
			
		||||
                    [
 | 
			
		||||
                        # Data dropdowns (hidden sync targets)
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-embedding-field-dropdown",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-text-field-dropdown", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-id-field-dropdown", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-category-field-dropdown", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-subcategory-field-dropdown",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-tags-field-dropdown", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        # Data UI dropdowns (hidden placeholders)
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-embedding-field-dropdown-ui",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-text-field-dropdown-ui", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-id-field-dropdown-ui", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-category-field-dropdown-ui",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-subcategory-field-dropdown-ui",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="data-tags-field-dropdown-ui", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        # Prompts dropdowns (hidden sync targets)
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-embedding-field-dropdown",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-text-field-dropdown", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-id-field-dropdown", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-category-field-dropdown",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-subcategory-field-dropdown",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-tags-field-dropdown", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        # Prompts UI dropdowns (hidden placeholders)
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-embedding-field-dropdown-ui",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-text-field-dropdown-ui",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-id-field-dropdown-ui", style={"display": "none"}
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-category-field-dropdown-ui",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-subcategory-field-dropdown-ui",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                        dcc.Dropdown(
 | 
			
		||||
                            id="prompts-tags-field-dropdown-ui",
 | 
			
		||||
                            style={"display": "none"},
 | 
			
		||||
                        ),
 | 
			
		||||
                    ],
 | 
			
		||||
                    style={"display": "none"},
 | 
			
		||||
                ),
 | 
			
		||||
            ]
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def _create_opensearch_section(self, section_type):
 | 
			
		||||
        """Create a complete OpenSearch section for either 'data' or 'prompts'."""
 | 
			
		||||
        section_id = section_type  # 'data' or 'prompts'
 | 
			
		||||
 | 
			
		||||
        return html.Div(
 | 
			
		||||
            [
 | 
			
		||||
                # Connection section
 | 
			
		||||
                html.H6("Connection", className="mb-2"),
 | 
			
		||||
                dbc.Row(
 | 
			
		||||
                    [
 | 
			
		||||
                        dbc.Col(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Label("OpenSearch URL:"),
 | 
			
		||||
                                dbc.Input(
 | 
			
		||||
                                    id=f"{section_id}-opensearch-url",
 | 
			
		||||
                                    type="text",
 | 
			
		||||
                                    placeholder="https://opensearch.example.com:9200",
 | 
			
		||||
                                    className="mb-2",
 | 
			
		||||
                                ),
 | 
			
		||||
                            ],
 | 
			
		||||
                            width=12,
 | 
			
		||||
                        ),
 | 
			
		||||
                    ]
 | 
			
		||||
                ),
 | 
			
		||||
                dbc.Row(
 | 
			
		||||
                    [
 | 
			
		||||
                        dbc.Col(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Label("Index Name:"),
 | 
			
		||||
                                dbc.Input(
 | 
			
		||||
                                    id=f"{section_id}-opensearch-index",
 | 
			
		||||
                                    type="text",
 | 
			
		||||
                                    placeholder="my-embeddings-index",
 | 
			
		||||
                                    className="mb-2",
 | 
			
		||||
                                ),
 | 
			
		||||
                            ],
 | 
			
		||||
                            width=6,
 | 
			
		||||
                        ),
 | 
			
		||||
                        dbc.Col(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Label("Query Size:"),
 | 
			
		||||
                                dbc.Input(
 | 
			
		||||
                                    id=f"{section_id}-opensearch-query-size",
 | 
			
		||||
                                    type="number",
 | 
			
		||||
                                    value=100,
 | 
			
		||||
                                    min=1,
 | 
			
		||||
                                    max=1000,
 | 
			
		||||
                                    placeholder="100",
 | 
			
		||||
                                    className="mb-2",
 | 
			
		||||
                                ),
 | 
			
		||||
                            ],
 | 
			
		||||
                            width=6,
 | 
			
		||||
                        ),
 | 
			
		||||
                    ]
 | 
			
		||||
                ),
 | 
			
		||||
                dbc.Row(
 | 
			
		||||
                    [
 | 
			
		||||
                        dbc.Col(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Button(
 | 
			
		||||
                                    "Test Connection",
 | 
			
		||||
                                    id=f"{section_id}-test-connection-btn",
 | 
			
		||||
                                    color="primary",
 | 
			
		||||
                                    className="mb-3",
 | 
			
		||||
                                ),
 | 
			
		||||
                            ],
 | 
			
		||||
                            width=12,
 | 
			
		||||
                        ),
 | 
			
		||||
                    ]
 | 
			
		||||
                ),
 | 
			
		||||
                # Authentication section (collapsible)
 | 
			
		||||
                dbc.Collapse(
 | 
			
		||||
                    [
 | 
			
		||||
                        html.Hr(),
 | 
			
		||||
                        html.H6("Authentication (Optional)", className="mb-2"),
 | 
			
		||||
                        dbc.Row(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Col(
 | 
			
		||||
                                    [
 | 
			
		||||
                                        dbc.Label("Username:"),
 | 
			
		||||
                                        dbc.Input(
 | 
			
		||||
                                            id=f"{section_id}-opensearch-username",
 | 
			
		||||
                                            type="text",
 | 
			
		||||
                                            className="mb-2",
 | 
			
		||||
                                        ),
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    width=6,
 | 
			
		||||
                                ),
 | 
			
		||||
                                dbc.Col(
 | 
			
		||||
                                    [
 | 
			
		||||
                                        dbc.Label("Password:"),
 | 
			
		||||
                                        dbc.Input(
 | 
			
		||||
                                            id=f"{section_id}-opensearch-password",
 | 
			
		||||
                                            type="password",
 | 
			
		||||
                                            className="mb-2",
 | 
			
		||||
                                        ),
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    width=6,
 | 
			
		||||
                                ),
 | 
			
		||||
                            ]
 | 
			
		||||
                        ),
 | 
			
		||||
                        dbc.Label("OR"),
 | 
			
		||||
                        dbc.Input(
 | 
			
		||||
                            id=f"{section_id}-opensearch-api-key",
 | 
			
		||||
                            type="text",
 | 
			
		||||
                            placeholder="API Key",
 | 
			
		||||
                            className="mb-2",
 | 
			
		||||
                        ),
 | 
			
		||||
                    ],
 | 
			
		||||
                    id=f"{section_id}-auth-collapse",
 | 
			
		||||
                    is_open=False,
 | 
			
		||||
                ),
 | 
			
		||||
                dbc.Button(
 | 
			
		||||
                    "Show Authentication",
 | 
			
		||||
                    id=f"{section_id}-auth-toggle",
 | 
			
		||||
                    color="link",
 | 
			
		||||
                    size="sm",
 | 
			
		||||
                    className="p-0 mb-3",
 | 
			
		||||
                ),
 | 
			
		||||
                # Connection status
 | 
			
		||||
                html.Div(id=f"{section_id}-connection-status", className="mb-3"),
 | 
			
		||||
                # Field mapping section (hidden initially)
 | 
			
		||||
                html.Div(
 | 
			
		||||
                    id=f"{section_id}-field-mapping-section", style={"display": "none"}
 | 
			
		||||
                ),
 | 
			
		||||
                # Load data button (hidden initially)
 | 
			
		||||
                html.Div(
 | 
			
		||||
                    [
 | 
			
		||||
                        dbc.Button(
 | 
			
		||||
                            f"Load {section_type.title()}",
 | 
			
		||||
                            id=f"{section_id}-load-opensearch-data-btn",
 | 
			
		||||
                            color="success",
 | 
			
		||||
                            className="mb-2",
 | 
			
		||||
                            disabled=True,
 | 
			
		||||
                        ),
 | 
			
		||||
                    ],
 | 
			
		||||
                    id=f"{section_id}-load-data-section",
 | 
			
		||||
                    style={"display": "none"},
 | 
			
		||||
                ),
 | 
			
		||||
                # OpenSearch status/results
 | 
			
		||||
                html.Div(id=f"{section_id}-opensearch-status", className="mb-3"),
 | 
			
		||||
            ]
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def create_field_mapping_interface(self, field_suggestions, section_type="data"):
 | 
			
		||||
        """Create field mapping interface based on detected fields."""
 | 
			
		||||
        return html.Div(
 | 
			
		||||
            [
 | 
			
		||||
                html.Hr(),
 | 
			
		||||
                html.H6("Field Mapping", className="mb-2"),
 | 
			
		||||
                html.P(
 | 
			
		||||
                    "Map your OpenSearch fields to the required format:",
 | 
			
		||||
                    className="text-muted small",
 | 
			
		||||
                ),
 | 
			
		||||
                # Required fields
 | 
			
		||||
                dbc.Row(
 | 
			
		||||
                    [
 | 
			
		||||
                        dbc.Col(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Label(
 | 
			
		||||
                                    "Embedding Field (required):", className="fw-bold"
 | 
			
		||||
                                ),
 | 
			
		||||
                                dcc.Dropdown(
 | 
			
		||||
                                    id=f"{section_type}-embedding-field-dropdown-ui",
 | 
			
		||||
                                    options=[
 | 
			
		||||
                                        {"label": field, "value": field}
 | 
			
		||||
                                        for field in field_suggestions.get(
 | 
			
		||||
                                            "embedding", []
 | 
			
		||||
                                        )
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    value=field_suggestions.get("embedding", [None])[
 | 
			
		||||
                                        0
 | 
			
		||||
                                    ],  # Default to first suggestion
 | 
			
		||||
                                    placeholder="Select embedding field...",
 | 
			
		||||
                                    className="mb-2",
 | 
			
		||||
                                ),
 | 
			
		||||
                            ],
 | 
			
		||||
                            width=6,
 | 
			
		||||
                        ),
 | 
			
		||||
                        dbc.Col(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Label(
 | 
			
		||||
                                    "Text Field (required):", className="fw-bold"
 | 
			
		||||
                                ),
 | 
			
		||||
                                dcc.Dropdown(
 | 
			
		||||
                                    id=f"{section_type}-text-field-dropdown-ui",
 | 
			
		||||
                                    options=[
 | 
			
		||||
                                        {"label": field, "value": field}
 | 
			
		||||
                                        for field in field_suggestions.get("text", [])
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    value=field_suggestions.get("text", [None])[
 | 
			
		||||
                                        0
 | 
			
		||||
                                    ],  # Default to first suggestion
 | 
			
		||||
                                    placeholder="Select text field...",
 | 
			
		||||
                                    className="mb-2",
 | 
			
		||||
                                ),
 | 
			
		||||
                            ],
 | 
			
		||||
                            width=6,
 | 
			
		||||
                        ),
 | 
			
		||||
                    ]
 | 
			
		||||
                ),
 | 
			
		||||
                # Optional fields
 | 
			
		||||
                html.H6("Optional Fields", className="mb-2 mt-3"),
 | 
			
		||||
                dbc.Row(
 | 
			
		||||
                    [
 | 
			
		||||
                        dbc.Col(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Label("ID Field:"),
 | 
			
		||||
                                dcc.Dropdown(
 | 
			
		||||
                                    id=f"{section_type}-id-field-dropdown-ui",
 | 
			
		||||
                                    options=[
 | 
			
		||||
                                        {"label": field, "value": field}
 | 
			
		||||
                                        for field in field_suggestions.get("id", [])
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    value=field_suggestions.get("id", [None])[
 | 
			
		||||
                                        0
 | 
			
		||||
                                    ],  # Default to first suggestion
 | 
			
		||||
                                    placeholder="Select ID field...",
 | 
			
		||||
                                    className="mb-2",
 | 
			
		||||
                                ),
 | 
			
		||||
                            ],
 | 
			
		||||
                            width=6,
 | 
			
		||||
                        ),
 | 
			
		||||
                        dbc.Col(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Label("Category Field:"),
 | 
			
		||||
                                dcc.Dropdown(
 | 
			
		||||
                                    id=f"{section_type}-category-field-dropdown-ui",
 | 
			
		||||
                                    options=[
 | 
			
		||||
                                        {"label": field, "value": field}
 | 
			
		||||
                                        for field in field_suggestions.get(
 | 
			
		||||
                                            "category", []
 | 
			
		||||
                                        )
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    value=field_suggestions.get("category", [None])[
 | 
			
		||||
                                        0
 | 
			
		||||
                                    ],  # Default to first suggestion
 | 
			
		||||
                                    placeholder="Select category field...",
 | 
			
		||||
                                    className="mb-2",
 | 
			
		||||
                                ),
 | 
			
		||||
                            ],
 | 
			
		||||
                            width=6,
 | 
			
		||||
                        ),
 | 
			
		||||
                    ]
 | 
			
		||||
                ),
 | 
			
		||||
                dbc.Row(
 | 
			
		||||
                    [
 | 
			
		||||
                        dbc.Col(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Label("Subcategory Field:"),
 | 
			
		||||
                                dcc.Dropdown(
 | 
			
		||||
                                    id=f"{section_type}-subcategory-field-dropdown-ui",
 | 
			
		||||
                                    options=[
 | 
			
		||||
                                        {"label": field, "value": field}
 | 
			
		||||
                                        for field in field_suggestions.get(
 | 
			
		||||
                                            "subcategory", []
 | 
			
		||||
                                        )
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    value=field_suggestions.get("subcategory", [None])[
 | 
			
		||||
                                        0
 | 
			
		||||
                                    ],  # Default to first suggestion
 | 
			
		||||
                                    placeholder="Select subcategory field...",
 | 
			
		||||
                                    className="mb-2",
 | 
			
		||||
                                ),
 | 
			
		||||
                            ],
 | 
			
		||||
                            width=6,
 | 
			
		||||
                        ),
 | 
			
		||||
                        dbc.Col(
 | 
			
		||||
                            [
 | 
			
		||||
                                dbc.Label("Tags Field:"),
 | 
			
		||||
                                dcc.Dropdown(
 | 
			
		||||
                                    id=f"{section_type}-tags-field-dropdown-ui",
 | 
			
		||||
                                    options=[
 | 
			
		||||
                                        {"label": field, "value": field}
 | 
			
		||||
                                        for field in field_suggestions.get("tags", [])
 | 
			
		||||
                                    ],
 | 
			
		||||
                                    value=field_suggestions.get("tags", [None])[
 | 
			
		||||
                                        0
 | 
			
		||||
                                    ],  # Default to first suggestion
 | 
			
		||||
                                    placeholder="Select tags field...",
 | 
			
		||||
                                    className="mb-2",
 | 
			
		||||
                                ),
 | 
			
		||||
                            ],
 | 
			
		||||
                            width=6,
 | 
			
		||||
                        ),
 | 
			
		||||
                    ]
 | 
			
		||||
                ),
 | 
			
		||||
            ]
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def create_error_alert(self):
 | 
			
		||||
        """Create error alert component for OpenSearch issues."""
 | 
			
		||||
        return dbc.Alert(
 | 
			
		||||
            id="opensearch-error-alert",
 | 
			
		||||
            dismissable=True,
 | 
			
		||||
            is_open=False,
 | 
			
		||||
            color="danger",
 | 
			
		||||
            className="mb-3",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
    def create_success_alert(self):
 | 
			
		||||
        """Create success alert component for OpenSearch operations."""
 | 
			
		||||
        return dbc.Alert(
 | 
			
		||||
            id="opensearch-success-alert",
 | 
			
		||||
            dismissable=True,
 | 
			
		||||
            is_open=False,
 | 
			
		||||
            color="success",
 | 
			
		||||
            className="mb-3",
 | 
			
		||||
        )
 | 
			
		||||
@@ -1,21 +1,22 @@
 | 
			
		||||
from dash import dcc, html
 | 
			
		||||
import dash_bootstrap_components as dbc
 | 
			
		||||
from .upload import UploadComponent
 | 
			
		||||
from .datasource import DataSourceComponent
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class SidebarComponent:
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.upload_component = UploadComponent()
 | 
			
		||||
        self.datasource_component = DataSourceComponent()
 | 
			
		||||
 | 
			
		||||
    def create_layout(self):
 | 
			
		||||
        return dbc.Col(
 | 
			
		||||
            [
 | 
			
		||||
                html.H5("Upload Data", className="mb-3"),
 | 
			
		||||
                self.upload_component.create_error_alert(),
 | 
			
		||||
                self.upload_component.create_data_upload(),
 | 
			
		||||
                self.upload_component.create_prompts_upload(),
 | 
			
		||||
                self.upload_component.create_reset_button(),
 | 
			
		||||
                html.H5("Visualization Controls", className="mb-3"),
 | 
			
		||||
                html.H5("Data Sources", className="mb-3"),
 | 
			
		||||
                self.datasource_component.create_error_alert(),
 | 
			
		||||
                self.datasource_component.create_success_alert(),
 | 
			
		||||
                self.datasource_component.create_tabbed_interface(),
 | 
			
		||||
                html.H5("Visualization Controls", className="mb-3 mt-4"),
 | 
			
		||||
            ]
 | 
			
		||||
            + self._create_method_dropdown()
 | 
			
		||||
            + self._create_color_dropdown()
 | 
			
		||||
 
 | 
			
		||||
							
								
								
									
										155
									
								
								tests/test_data_processor_opensearch.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										155
									
								
								tests/test_data_processor_opensearch.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,155 @@
 | 
			
		||||
from unittest.mock import patch
 | 
			
		||||
from src.embeddingbuddy.data.processor import DataProcessor
 | 
			
		||||
from src.embeddingbuddy.models.field_mapper import FieldMapping
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestDataProcessorOpenSearch:
 | 
			
		||||
    def test_process_opensearch_data_success(self):
 | 
			
		||||
        processor = DataProcessor()
 | 
			
		||||
 | 
			
		||||
        # Mock raw OpenSearch documents
 | 
			
		||||
        raw_documents = [
 | 
			
		||||
            {
 | 
			
		||||
                "vector": [0.1, 0.2, 0.3],
 | 
			
		||||
                "content": "Test document 1",
 | 
			
		||||
                "doc_id": "doc1",
 | 
			
		||||
                "type": "news",
 | 
			
		||||
            },
 | 
			
		||||
            {
 | 
			
		||||
                "vector": [0.4, 0.5, 0.6],
 | 
			
		||||
                "content": "Test document 2",
 | 
			
		||||
                "doc_id": "doc2",
 | 
			
		||||
                "type": "blog",
 | 
			
		||||
            },
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        # Create field mapping
 | 
			
		||||
        field_mapping = FieldMapping(
 | 
			
		||||
            embedding_field="vector",
 | 
			
		||||
            text_field="content",
 | 
			
		||||
            id_field="doc_id",
 | 
			
		||||
            category_field="type",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # Process the data
 | 
			
		||||
        processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
 | 
			
		||||
 | 
			
		||||
        # Assertions
 | 
			
		||||
        assert processed_data.error is None
 | 
			
		||||
        assert len(processed_data.documents) == 2
 | 
			
		||||
        assert processed_data.embeddings.shape == (2, 3)
 | 
			
		||||
 | 
			
		||||
        # Check first document
 | 
			
		||||
        doc1 = processed_data.documents[0]
 | 
			
		||||
        assert doc1.text == "Test document 1"
 | 
			
		||||
        assert doc1.embedding == [0.1, 0.2, 0.3]
 | 
			
		||||
        assert doc1.id == "doc1"
 | 
			
		||||
        assert doc1.category == "news"
 | 
			
		||||
 | 
			
		||||
        # Check second document
 | 
			
		||||
        doc2 = processed_data.documents[1]
 | 
			
		||||
        assert doc2.text == "Test document 2"
 | 
			
		||||
        assert doc2.embedding == [0.4, 0.5, 0.6]
 | 
			
		||||
        assert doc2.id == "doc2"
 | 
			
		||||
        assert doc2.category == "blog"
 | 
			
		||||
 | 
			
		||||
    def test_process_opensearch_data_with_tags(self):
 | 
			
		||||
        processor = DataProcessor()
 | 
			
		||||
 | 
			
		||||
        # Mock raw OpenSearch documents with tags
 | 
			
		||||
        raw_documents = [
 | 
			
		||||
            {
 | 
			
		||||
                "vector": [0.1, 0.2, 0.3],
 | 
			
		||||
                "content": "Test document with tags",
 | 
			
		||||
                "keywords": ["tag1", "tag2"],
 | 
			
		||||
            }
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        # Create field mapping
 | 
			
		||||
        field_mapping = FieldMapping(
 | 
			
		||||
            embedding_field="vector", text_field="content", tags_field="keywords"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
 | 
			
		||||
 | 
			
		||||
        assert processed_data.error is None
 | 
			
		||||
        assert len(processed_data.documents) == 1
 | 
			
		||||
        doc = processed_data.documents[0]
 | 
			
		||||
        assert doc.tags == ["tag1", "tag2"]
 | 
			
		||||
 | 
			
		||||
    def test_process_opensearch_data_invalid_documents(self):
 | 
			
		||||
        processor = DataProcessor()
 | 
			
		||||
 | 
			
		||||
        # Mock raw documents with missing required fields
 | 
			
		||||
        raw_documents = [
 | 
			
		||||
            {
 | 
			
		||||
                "vector": [0.1, 0.2, 0.3],
 | 
			
		||||
                # Missing text field
 | 
			
		||||
            }
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        field_mapping = FieldMapping(embedding_field="vector", text_field="content")
 | 
			
		||||
 | 
			
		||||
        processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
 | 
			
		||||
 | 
			
		||||
        # Should return error since no valid documents
 | 
			
		||||
        assert processed_data.error is not None
 | 
			
		||||
        assert "No valid documents" in processed_data.error
 | 
			
		||||
        assert len(processed_data.documents) == 0
 | 
			
		||||
 | 
			
		||||
    def test_process_opensearch_data_partial_success(self):
 | 
			
		||||
        processor = DataProcessor()
 | 
			
		||||
 | 
			
		||||
        # Mix of valid and invalid documents
 | 
			
		||||
        raw_documents = [
 | 
			
		||||
            {
 | 
			
		||||
                "vector": [0.1, 0.2, 0.3],
 | 
			
		||||
                "content": "Valid document",
 | 
			
		||||
            },
 | 
			
		||||
            {
 | 
			
		||||
                "vector": [0.4, 0.5, 0.6],
 | 
			
		||||
                # Missing content field - should be skipped
 | 
			
		||||
            },
 | 
			
		||||
            {
 | 
			
		||||
                "vector": [0.7, 0.8, 0.9],
 | 
			
		||||
                "content": "Another valid document",
 | 
			
		||||
            },
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        field_mapping = FieldMapping(embedding_field="vector", text_field="content")
 | 
			
		||||
 | 
			
		||||
        processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
 | 
			
		||||
 | 
			
		||||
        # Should process valid documents only
 | 
			
		||||
        assert processed_data.error is None
 | 
			
		||||
        assert len(processed_data.documents) == 2
 | 
			
		||||
        assert processed_data.documents[0].text == "Valid document"
 | 
			
		||||
        assert processed_data.documents[1].text == "Another valid document"
 | 
			
		||||
 | 
			
		||||
    @patch("src.embeddingbuddy.models.field_mapper.FieldMapper.transform_documents")
 | 
			
		||||
    def test_process_opensearch_data_transformation_error(self, mock_transform):
 | 
			
		||||
        processor = DataProcessor()
 | 
			
		||||
 | 
			
		||||
        # Mock transformation error
 | 
			
		||||
        mock_transform.side_effect = Exception("Transformation failed")
 | 
			
		||||
 | 
			
		||||
        raw_documents = [{"vector": [0.1], "content": "test"}]
 | 
			
		||||
        field_mapping = FieldMapping(embedding_field="vector", text_field="content")
 | 
			
		||||
 | 
			
		||||
        processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
 | 
			
		||||
 | 
			
		||||
        assert processed_data.error is not None
 | 
			
		||||
        assert "Transformation failed" in processed_data.error
 | 
			
		||||
        assert len(processed_data.documents) == 0
 | 
			
		||||
 | 
			
		||||
    def test_process_opensearch_data_empty_input(self):
 | 
			
		||||
        processor = DataProcessor()
 | 
			
		||||
 | 
			
		||||
        raw_documents = []
 | 
			
		||||
        field_mapping = FieldMapping(embedding_field="vector", text_field="content")
 | 
			
		||||
 | 
			
		||||
        processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
 | 
			
		||||
 | 
			
		||||
        assert processed_data.error is not None
 | 
			
		||||
        assert "No valid documents" in processed_data.error
 | 
			
		||||
        assert len(processed_data.documents) == 0
 | 
			
		||||
							
								
								
									
										310
									
								
								tests/test_opensearch.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										310
									
								
								tests/test_opensearch.py
									
									
									
									
									
										Normal file
									
								
							@@ -0,0 +1,310 @@
 | 
			
		||||
from unittest.mock import Mock, patch
 | 
			
		||||
from src.embeddingbuddy.data.sources.opensearch import OpenSearchClient
 | 
			
		||||
from src.embeddingbuddy.models.field_mapper import FieldMapper, FieldMapping
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestOpenSearchClient:
 | 
			
		||||
    def test_init(self):
 | 
			
		||||
        client = OpenSearchClient()
 | 
			
		||||
        assert client.client is None
 | 
			
		||||
        assert client.connection_info is None
 | 
			
		||||
 | 
			
		||||
    @patch("src.embeddingbuddy.data.sources.opensearch.OpenSearch")
 | 
			
		||||
    def test_connect_success(self, mock_opensearch):
 | 
			
		||||
        # Mock the OpenSearch client
 | 
			
		||||
        mock_client_instance = Mock()
 | 
			
		||||
        mock_client_instance.info.return_value = {
 | 
			
		||||
            "cluster_name": "test-cluster",
 | 
			
		||||
            "version": {"number": "2.0.0"},
 | 
			
		||||
        }
 | 
			
		||||
        mock_opensearch.return_value = mock_client_instance
 | 
			
		||||
 | 
			
		||||
        client = OpenSearchClient()
 | 
			
		||||
        success, message = client.connect("https://localhost:9200")
 | 
			
		||||
 | 
			
		||||
        assert success is True
 | 
			
		||||
        assert "test-cluster" in message
 | 
			
		||||
        assert client.client is not None
 | 
			
		||||
        assert client.connection_info["cluster_name"] == "test-cluster"
 | 
			
		||||
 | 
			
		||||
    @patch("src.embeddingbuddy.data.sources.opensearch.OpenSearch")
 | 
			
		||||
    def test_connect_failure(self, mock_opensearch):
 | 
			
		||||
        # Mock connection failure
 | 
			
		||||
        mock_opensearch.side_effect = Exception("Connection failed")
 | 
			
		||||
 | 
			
		||||
        client = OpenSearchClient()
 | 
			
		||||
        success, message = client.connect("https://localhost:9200")
 | 
			
		||||
 | 
			
		||||
        assert success is False
 | 
			
		||||
        assert "Connection failed" in message
 | 
			
		||||
        assert client.client is None
 | 
			
		||||
 | 
			
		||||
    def test_analyze_fields(self):
 | 
			
		||||
        client = OpenSearchClient()
 | 
			
		||||
        client.client = Mock()
 | 
			
		||||
 | 
			
		||||
        # Mock mapping response
 | 
			
		||||
        mock_mapping = {
 | 
			
		||||
            "test-index": {
 | 
			
		||||
                "mappings": {
 | 
			
		||||
                    "properties": {
 | 
			
		||||
                        "embedding": {"type": "dense_vector", "dimension": 768},
 | 
			
		||||
                        "text": {"type": "text"},
 | 
			
		||||
                        "category": {"type": "keyword"},
 | 
			
		||||
                        "id": {"type": "keyword"},
 | 
			
		||||
                        "count": {"type": "integer"},
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        client.client.indices.get_mapping.return_value = mock_mapping
 | 
			
		||||
 | 
			
		||||
        success, analysis, message = client.analyze_fields("test-index")
 | 
			
		||||
 | 
			
		||||
        assert success is True
 | 
			
		||||
        assert len(analysis["vector_fields"]) == 1
 | 
			
		||||
        assert analysis["vector_fields"][0]["name"] == "embedding"
 | 
			
		||||
        assert analysis["vector_fields"][0]["dimension"] == 768
 | 
			
		||||
        assert "text" in analysis["text_fields"]
 | 
			
		||||
        assert "category" in analysis["keyword_fields"]
 | 
			
		||||
        assert "count" in analysis["numeric_fields"]
 | 
			
		||||
 | 
			
		||||
    def test_fetch_sample_data(self):
 | 
			
		||||
        client = OpenSearchClient()
 | 
			
		||||
        client.client = Mock()
 | 
			
		||||
 | 
			
		||||
        # Mock search response
 | 
			
		||||
        mock_response = {
 | 
			
		||||
            "hits": {
 | 
			
		||||
                "hits": [
 | 
			
		||||
                    {"_source": {"text": "doc1", "embedding": [0.1, 0.2]}},
 | 
			
		||||
                    {"_source": {"text": "doc2", "embedding": [0.3, 0.4]}},
 | 
			
		||||
                ]
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
        client.client.search.return_value = mock_response
 | 
			
		||||
 | 
			
		||||
        success, documents, message = client.fetch_sample_data("test-index", size=2)
 | 
			
		||||
 | 
			
		||||
        assert success is True
 | 
			
		||||
        assert len(documents) == 2
 | 
			
		||||
        assert documents[0]["text"] == "doc1"
 | 
			
		||||
        assert documents[1]["text"] == "doc2"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class TestFieldMapper:
 | 
			
		||||
    def test_suggest_mappings(self):
 | 
			
		||||
        field_analysis = {
 | 
			
		||||
            "vector_fields": [{"name": "embedding", "dimension": 768}],
 | 
			
		||||
            "text_fields": ["content", "description"],
 | 
			
		||||
            "keyword_fields": ["doc_id", "category", "type", "tags"],
 | 
			
		||||
            "numeric_fields": ["count"],
 | 
			
		||||
            "all_fields": [
 | 
			
		||||
                "embedding",
 | 
			
		||||
                "content",
 | 
			
		||||
                "description",
 | 
			
		||||
                "doc_id",
 | 
			
		||||
                "category",
 | 
			
		||||
                "type",
 | 
			
		||||
                "tags",
 | 
			
		||||
                "count",
 | 
			
		||||
            ],
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        suggestions = FieldMapper.suggest_mappings(field_analysis)
 | 
			
		||||
 | 
			
		||||
        # Check that all dropdowns contain all fields
 | 
			
		||||
        all_fields = [
 | 
			
		||||
            "embedding",
 | 
			
		||||
            "content",
 | 
			
		||||
            "description",
 | 
			
		||||
            "doc_id",
 | 
			
		||||
            "category",
 | 
			
		||||
            "type",
 | 
			
		||||
            "tags",
 | 
			
		||||
            "count",
 | 
			
		||||
        ]
 | 
			
		||||
        for field_type in [
 | 
			
		||||
            "embedding",
 | 
			
		||||
            "text",
 | 
			
		||||
            "id",
 | 
			
		||||
            "category",
 | 
			
		||||
            "subcategory",
 | 
			
		||||
            "tags",
 | 
			
		||||
        ]:
 | 
			
		||||
            for field in all_fields:
 | 
			
		||||
                assert field in suggestions[field_type], (
 | 
			
		||||
                    f"Field '{field}' missing from {field_type} suggestions"
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
        # Check that best candidates are first
 | 
			
		||||
        assert (
 | 
			
		||||
            suggestions["embedding"][0] == "embedding"
 | 
			
		||||
        )  # vector field should be first
 | 
			
		||||
        assert suggestions["text"][0] in [
 | 
			
		||||
            "content",
 | 
			
		||||
            "description",
 | 
			
		||||
        ]  # text fields should be first
 | 
			
		||||
        assert suggestions["id"][0] == "doc_id"  # ID-like field should be first
 | 
			
		||||
        assert suggestions["category"][0] in [
 | 
			
		||||
            "category",
 | 
			
		||||
            "type",
 | 
			
		||||
        ]  # category-like field should be first
 | 
			
		||||
        assert suggestions["tags"][0] == "tags"  # tags field should be first
 | 
			
		||||
 | 
			
		||||
    def test_suggest_mappings_name_based_embedding(self):
 | 
			
		||||
        """Test that fields named 'embedding' are prioritized even without vector type."""
 | 
			
		||||
        field_analysis = {
 | 
			
		||||
            "vector_fields": [],  # No explicit vector fields detected
 | 
			
		||||
            "text_fields": ["content", "description"],
 | 
			
		||||
            "keyword_fields": ["doc_id", "category", "type", "tags"],
 | 
			
		||||
            "numeric_fields": ["count"],
 | 
			
		||||
            "all_fields": [
 | 
			
		||||
                "content",
 | 
			
		||||
                "description",
 | 
			
		||||
                "doc_id",
 | 
			
		||||
                "category",
 | 
			
		||||
                "embedding",
 | 
			
		||||
                "type",
 | 
			
		||||
                "tags",
 | 
			
		||||
                "count",
 | 
			
		||||
            ],
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        suggestions = FieldMapper.suggest_mappings(field_analysis)
 | 
			
		||||
 | 
			
		||||
        # Check that 'embedding' field is prioritized despite not being detected as vector type
 | 
			
		||||
        assert suggestions["embedding"][0] == "embedding", (
 | 
			
		||||
            "Field named 'embedding' should be first priority"
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        # Check that all fields are still available
 | 
			
		||||
        all_fields = [
 | 
			
		||||
            "content",
 | 
			
		||||
            "description",
 | 
			
		||||
            "doc_id",
 | 
			
		||||
            "category",
 | 
			
		||||
            "embedding",
 | 
			
		||||
            "type",
 | 
			
		||||
            "tags",
 | 
			
		||||
            "count",
 | 
			
		||||
        ]
 | 
			
		||||
        for field_type in [
 | 
			
		||||
            "embedding",
 | 
			
		||||
            "text",
 | 
			
		||||
            "id",
 | 
			
		||||
            "category",
 | 
			
		||||
            "subcategory",
 | 
			
		||||
            "tags",
 | 
			
		||||
        ]:
 | 
			
		||||
            for field in all_fields:
 | 
			
		||||
                assert field in suggestions[field_type], (
 | 
			
		||||
                    f"Field '{field}' missing from {field_type} suggestions"
 | 
			
		||||
                )
 | 
			
		||||
 | 
			
		||||
    def test_validate_mapping_success(self):
 | 
			
		||||
        mapping = FieldMapping(
 | 
			
		||||
            embedding_field="embedding", text_field="text", id_field="doc_id"
 | 
			
		||||
        )
 | 
			
		||||
        available_fields = ["embedding", "text", "doc_id", "category"]
 | 
			
		||||
 | 
			
		||||
        errors = FieldMapper.validate_mapping(mapping, available_fields)
 | 
			
		||||
 | 
			
		||||
        assert len(errors) == 0
 | 
			
		||||
 | 
			
		||||
    def test_validate_mapping_missing_required(self):
 | 
			
		||||
        mapping = FieldMapping(embedding_field="missing_field", text_field="text")
 | 
			
		||||
        available_fields = ["text", "category"]
 | 
			
		||||
 | 
			
		||||
        errors = FieldMapper.validate_mapping(mapping, available_fields)
 | 
			
		||||
 | 
			
		||||
        assert len(errors) == 1
 | 
			
		||||
        assert "missing_field" in errors[0]
 | 
			
		||||
        assert "not found" in errors[0]
 | 
			
		||||
 | 
			
		||||
    def test_validate_mapping_missing_optional(self):
 | 
			
		||||
        mapping = FieldMapping(
 | 
			
		||||
            embedding_field="embedding",
 | 
			
		||||
            text_field="text",
 | 
			
		||||
            category_field="missing_category",
 | 
			
		||||
        )
 | 
			
		||||
        available_fields = ["embedding", "text"]
 | 
			
		||||
 | 
			
		||||
        errors = FieldMapper.validate_mapping(mapping, available_fields)
 | 
			
		||||
 | 
			
		||||
        assert len(errors) == 1
 | 
			
		||||
        assert "missing_category" in errors[0]
 | 
			
		||||
 | 
			
		||||
    def test_transform_documents(self):
 | 
			
		||||
        mapping = FieldMapping(
 | 
			
		||||
            embedding_field="vector",
 | 
			
		||||
            text_field="content",
 | 
			
		||||
            id_field="doc_id",
 | 
			
		||||
            category_field="type",
 | 
			
		||||
        )
 | 
			
		||||
 | 
			
		||||
        raw_documents = [
 | 
			
		||||
            {
 | 
			
		||||
                "vector": [0.1, 0.2, 0.3],
 | 
			
		||||
                "content": "Test document 1",
 | 
			
		||||
                "doc_id": "doc1",
 | 
			
		||||
                "type": "news",
 | 
			
		||||
            },
 | 
			
		||||
            {
 | 
			
		||||
                "vector": [0.4, 0.5, 0.6],
 | 
			
		||||
                "content": "Test document 2",
 | 
			
		||||
                "doc_id": "doc2",
 | 
			
		||||
                "type": "blog",
 | 
			
		||||
            },
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        transformed = FieldMapper.transform_documents(raw_documents, mapping)
 | 
			
		||||
 | 
			
		||||
        assert len(transformed) == 2
 | 
			
		||||
        assert transformed[0]["embedding"] == [0.1, 0.2, 0.3]
 | 
			
		||||
        assert transformed[0]["text"] == "Test document 1"
 | 
			
		||||
        assert transformed[0]["id"] == "doc1"
 | 
			
		||||
        assert transformed[0]["category"] == "news"
 | 
			
		||||
 | 
			
		||||
    def test_transform_documents_missing_required(self):
 | 
			
		||||
        mapping = FieldMapping(embedding_field="vector", text_field="content")
 | 
			
		||||
 | 
			
		||||
        raw_documents = [
 | 
			
		||||
            {
 | 
			
		||||
                "vector": [0.1, 0.2, 0.3],
 | 
			
		||||
                # Missing content field
 | 
			
		||||
            }
 | 
			
		||||
        ]
 | 
			
		||||
 | 
			
		||||
        transformed = FieldMapper.transform_documents(raw_documents, mapping)
 | 
			
		||||
 | 
			
		||||
        assert len(transformed) == 0  # Document should be skipped
 | 
			
		||||
 | 
			
		||||
    def test_create_mapping_from_dict(self):
 | 
			
		||||
        mapping_dict = {
 | 
			
		||||
            "embedding": "vector_field",
 | 
			
		||||
            "text": "text_field",
 | 
			
		||||
            "id": "doc_id",
 | 
			
		||||
            "category": "cat_field",
 | 
			
		||||
            "subcategory": "subcat_field",
 | 
			
		||||
            "tags": "tags_field",
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        mapping = FieldMapper.create_mapping_from_dict(mapping_dict)
 | 
			
		||||
 | 
			
		||||
        assert mapping.embedding_field == "vector_field"
 | 
			
		||||
        assert mapping.text_field == "text_field"
 | 
			
		||||
        assert mapping.id_field == "doc_id"
 | 
			
		||||
        assert mapping.category_field == "cat_field"
 | 
			
		||||
        assert mapping.subcategory_field == "subcat_field"
 | 
			
		||||
        assert mapping.tags_field == "tags_field"
 | 
			
		||||
 | 
			
		||||
    def test_create_mapping_from_dict_minimal(self):
 | 
			
		||||
        mapping_dict = {"embedding": "vector_field", "text": "text_field"}
 | 
			
		||||
 | 
			
		||||
        mapping = FieldMapper.create_mapping_from_dict(mapping_dict)
 | 
			
		||||
 | 
			
		||||
        assert mapping.embedding_field == "vector_field"
 | 
			
		||||
        assert mapping.text_field == "text_field"
 | 
			
		||||
        assert mapping.id_field is None
 | 
			
		||||
        assert mapping.category_field is None
 | 
			
		||||
							
								
								
									
										28
									
								
								uv.lock
									
									
									
										generated
									
									
									
								
							
							
						
						
									
										28
									
								
								uv.lock
									
									
									
										generated
									
									
									
								
							@@ -412,7 +412,7 @@ wheels = [
 | 
			
		||||
 | 
			
		||||
[[package]]
 | 
			
		||||
name = "embeddingbuddy"
 | 
			
		||||
version = "0.2.0"
 | 
			
		||||
version = "0.3.0"
 | 
			
		||||
source = { editable = "." }
 | 
			
		||||
dependencies = [
 | 
			
		||||
    { name = "dash" },
 | 
			
		||||
@@ -420,6 +420,7 @@ dependencies = [
 | 
			
		||||
    { name = "mypy" },
 | 
			
		||||
    { name = "numba" },
 | 
			
		||||
    { name = "numpy" },
 | 
			
		||||
    { name = "opensearch-py" },
 | 
			
		||||
    { name = "opentsne" },
 | 
			
		||||
    { name = "pandas" },
 | 
			
		||||
    { name = "plotly" },
 | 
			
		||||
@@ -471,6 +472,7 @@ requires-dist = [
 | 
			
		||||
    { name = "mypy", marker = "extra == 'lint'", specifier = ">=1.5.0" },
 | 
			
		||||
    { name = "numba", specifier = ">=0.56.4" },
 | 
			
		||||
    { name = "numpy", specifier = ">=1.24.4" },
 | 
			
		||||
    { name = "opensearch-py", specifier = ">=3.0.0" },
 | 
			
		||||
    { name = "opentsne", specifier = ">=1.0.0" },
 | 
			
		||||
    { name = "pandas", specifier = ">=2.1.4" },
 | 
			
		||||
    { name = "pip-audit", marker = "extra == 'security'", specifier = ">=2.6.0" },
 | 
			
		||||
@@ -484,6 +486,14 @@ requires-dist = [
 | 
			
		||||
]
 | 
			
		||||
provides-extras = ["test", "lint", "security", "dev", "all"]
 | 
			
		||||
 | 
			
		||||
[[package]]
 | 
			
		||||
name = "events"
 | 
			
		||||
version = "0.5"
 | 
			
		||||
source = { registry = "https://pypi.org/simple" }
 | 
			
		||||
wheels = [
 | 
			
		||||
    { url = "https://files.pythonhosted.org/packages/25/ed/e47dec0626edd468c84c04d97769e7ab4ea6457b7f54dcb3f72b17fcd876/Events-0.5-py3-none-any.whl", hash = "sha256:a7286af378ba3e46640ac9825156c93bdba7502174dd696090fdfcd4d80a1abd", size = 6758, upload-time = "2023-07-31T08:23:13.645Z" },
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
[[package]]
 | 
			
		||||
name = "filelock"
 | 
			
		||||
version = "3.16.1"
 | 
			
		||||
@@ -913,6 +923,22 @@ wheels = [
 | 
			
		||||
    { url = "https://files.pythonhosted.org/packages/67/0e/35082d13c09c02c011cf21570543d202ad929d961c02a147493cb0c2bdf5/numpy-2.2.6-cp313-cp313t-win_amd64.whl", hash = "sha256:6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06", size = 12771374, upload-time = "2025-05-17T21:43:35.479Z" },
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
[[package]]
 | 
			
		||||
name = "opensearch-py"
 | 
			
		||||
version = "3.0.0"
 | 
			
		||||
source = { registry = "https://pypi.org/simple" }
 | 
			
		||||
dependencies = [
 | 
			
		||||
    { name = "certifi" },
 | 
			
		||||
    { name = "events" },
 | 
			
		||||
    { name = "python-dateutil" },
 | 
			
		||||
    { name = "requests" },
 | 
			
		||||
    { name = "urllib3" },
 | 
			
		||||
]
 | 
			
		||||
sdist = { url = "https://files.pythonhosted.org/packages/b8/58/ecec7f855aae7bcfb08f570088c6cb993f68c361a0727abab35dbf021acb/opensearch_py-3.0.0.tar.gz", hash = "sha256:ebb38f303f8a3f794db816196315bcddad880be0dc75094e3334bc271db2ed39", size = 248890, upload-time = "2025-06-17T05:39:48.453Z" }
 | 
			
		||||
wheels = [
 | 
			
		||||
    { url = "https://files.pythonhosted.org/packages/71/e0/69fd114c607b0323d3f864ab4a5ecb87d76ec5a172d2e36a739c8baebea1/opensearch_py-3.0.0-py3-none-any.whl", hash = "sha256:842bf5d56a4a0d8290eda9bb921c50f3080e5dc4e5fefb9c9648289da3f6a8bb", size = 371491, upload-time = "2025-06-17T05:39:46.539Z" },
 | 
			
		||||
]
 | 
			
		||||
 | 
			
		||||
[[package]]
 | 
			
		||||
name = "opentsne"
 | 
			
		||||
version = "1.0.2"
 | 
			
		||||
 
 | 
			
		||||
		Reference in New Issue
	
	Block a user