Compare commits
4 Commits
1ec7e2c38c
...
v0.2.0
Author | SHA1 | Date | |
---|---|---|---|
a2adc8b958 | |||
4867614474 | |||
6a995635ac | |||
7b81c20a26 |
@@ -6,6 +6,7 @@
|
||||
"Bash(uv add:*)"
|
||||
],
|
||||
"deny": [],
|
||||
"ask": []
|
||||
"ask": [],
|
||||
"defaultMode": "acceptEdits"
|
||||
}
|
||||
}
|
31
README.md
31
README.md
@@ -90,7 +90,7 @@ uv run python main.py
|
||||
|
||||
The application follows a modular architecture for improved maintainability and testability:
|
||||
|
||||
```
|
||||
```text
|
||||
src/embeddingbuddy/
|
||||
├── config/ # Configuration management
|
||||
│ └── settings.py # Centralized app settings
|
||||
@@ -115,8 +115,8 @@ src/embeddingbuddy/
|
||||
Run the test suite to verify functionality:
|
||||
|
||||
```bash
|
||||
# Install pytest
|
||||
uv add pytest
|
||||
# Install test dependencies
|
||||
uv sync --extra test
|
||||
|
||||
# Run all tests
|
||||
uv run pytest tests/ -v
|
||||
@@ -128,6 +128,31 @@ uv run pytest tests/test_data_processing.py -v
|
||||
uv run pytest tests/ --cov=src/embeddingbuddy
|
||||
```
|
||||
|
||||
### Development Tools
|
||||
|
||||
Install development dependencies for linting, type checking, and security:
|
||||
|
||||
```bash
|
||||
# Install all dev dependencies
|
||||
uv sync --extra dev
|
||||
|
||||
# Or install specific groups
|
||||
uv sync --extra test # Testing tools
|
||||
uv sync --extra lint # Linting and formatting
|
||||
uv sync --extra security # Security scanning tools
|
||||
|
||||
# Run linting
|
||||
uv run ruff check src/ tests/
|
||||
uv run ruff format src/ tests/
|
||||
|
||||
# Run type checking
|
||||
uv run mypy src/embeddingbuddy/
|
||||
|
||||
# Run security scans
|
||||
uv run bandit -r src/
|
||||
uv run safety check
|
||||
```
|
||||
|
||||
### Adding New Features
|
||||
|
||||
The modular architecture makes it easy to extend functionality:
|
||||
|
515
app.py
515
app.py
@@ -1,515 +0,0 @@
|
||||
import json
|
||||
import uuid
|
||||
from io import StringIO
|
||||
import base64
|
||||
|
||||
import dash
|
||||
from dash import dcc, html, Input, Output, State, callback
|
||||
import dash_bootstrap_components as dbc
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.decomposition import PCA
|
||||
import umap
|
||||
from openTSNE import TSNE
|
||||
|
||||
|
||||
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||||
|
||||
def parse_ndjson(contents):
|
||||
"""Parse NDJSON content and return list of documents."""
|
||||
content_type, content_string = contents.split(',')
|
||||
decoded = base64.b64decode(content_string)
|
||||
text_content = decoded.decode('utf-8')
|
||||
|
||||
documents = []
|
||||
for line in text_content.strip().split('\n'):
|
||||
if line.strip():
|
||||
doc = json.loads(line)
|
||||
if 'id' not in doc:
|
||||
doc['id'] = str(uuid.uuid4())
|
||||
documents.append(doc)
|
||||
return documents
|
||||
|
||||
def apply_dimensionality_reduction(embeddings, method='pca', n_components=3):
|
||||
"""Apply dimensionality reduction to embeddings."""
|
||||
if method == 'pca':
|
||||
reducer = PCA(n_components=n_components)
|
||||
reduced = reducer.fit_transform(embeddings)
|
||||
variance_explained = reducer.explained_variance_ratio_
|
||||
return reduced, variance_explained
|
||||
elif method == 'tsne':
|
||||
reducer = TSNE(n_components=n_components, random_state=42)
|
||||
reduced = reducer.fit(embeddings)
|
||||
return reduced, None
|
||||
elif method == 'umap':
|
||||
reducer = umap.UMAP(n_components=n_components, random_state=42)
|
||||
reduced = reducer.fit_transform(embeddings)
|
||||
return reduced, None
|
||||
else:
|
||||
raise ValueError(f"Unknown method: {method}")
|
||||
|
||||
def create_color_mapping(documents, color_by):
|
||||
"""Create color mapping for documents based on specified field."""
|
||||
if color_by == 'category':
|
||||
values = [doc.get('category', 'Unknown') for doc in documents]
|
||||
elif color_by == 'subcategory':
|
||||
values = [doc.get('subcategory', 'Unknown') for doc in documents]
|
||||
elif color_by == 'tags':
|
||||
values = [', '.join(doc.get('tags', [])) if doc.get('tags') else 'No tags' for doc in documents]
|
||||
else:
|
||||
values = ['All'] * len(documents)
|
||||
|
||||
return values
|
||||
|
||||
def create_plot(df, dimensions='3d', color_by='category', method='PCA'):
|
||||
"""Create plotly scatter plot."""
|
||||
color_values = create_color_mapping(df.to_dict('records'), color_by)
|
||||
|
||||
# Truncate text for hover display
|
||||
df_display = df.copy()
|
||||
df_display['text_preview'] = df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
|
||||
|
||||
# Include all metadata fields in hover
|
||||
hover_fields = ['id', 'text_preview', 'category', 'subcategory']
|
||||
# Add tags as a string for hover
|
||||
df_display['tags_str'] = df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
|
||||
hover_fields.append('tags_str')
|
||||
|
||||
if dimensions == '3d':
|
||||
fig = px.scatter_3d(
|
||||
df_display, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f'3D Embedding Visualization - {method} (colored by {color_by})'
|
||||
)
|
||||
fig.update_traces(marker=dict(size=5))
|
||||
else:
|
||||
fig = px.scatter(
|
||||
df_display, x='dim_1', y='dim_2',
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f'2D Embedding Visualization - {method} (colored by {color_by})'
|
||||
)
|
||||
fig.update_traces(marker=dict(size=8))
|
||||
|
||||
fig.update_layout(
|
||||
height=None, # Let CSS height control this
|
||||
autosize=True,
|
||||
margin=dict(l=0, r=0, t=50, b=0)
|
||||
)
|
||||
return fig
|
||||
|
||||
def create_dual_plot(doc_df, prompt_df, dimensions='3d', color_by='category', method='PCA', show_prompts=None):
|
||||
"""Create plotly scatter plot with separate traces for documents and prompts."""
|
||||
|
||||
# Create the base figure
|
||||
fig = go.Figure()
|
||||
|
||||
# Helper function to convert colors to grayscale
|
||||
def to_grayscale_hex(color_str):
|
||||
"""Convert a color to grayscale while maintaining some distinction."""
|
||||
import plotly.colors as pc
|
||||
# Try to get RGB values from the color
|
||||
try:
|
||||
if color_str.startswith('#'):
|
||||
# Hex color
|
||||
rgb = tuple(int(color_str[i:i+2], 16) for i in (1, 3, 5))
|
||||
else:
|
||||
# Named color or other format - convert through plotly
|
||||
rgb = pc.hex_to_rgb(pc.convert_colors_to_same_type([color_str], colortype='hex')[0][0])
|
||||
|
||||
# Convert to grayscale using luminance formula, but keep some color
|
||||
gray_value = int(0.299 * rgb[0] + 0.587 * rgb[1] + 0.114 * rgb[2])
|
||||
# Make it a bit more gray but not completely
|
||||
gray_rgb = (gray_value * 0.7 + rgb[0] * 0.3,
|
||||
gray_value * 0.7 + rgb[1] * 0.3,
|
||||
gray_value * 0.7 + rgb[2] * 0.3)
|
||||
return f'rgb({int(gray_rgb[0])},{int(gray_rgb[1])},{int(gray_rgb[2])})'
|
||||
except:
|
||||
return 'rgb(128,128,128)' # fallback gray
|
||||
|
||||
# Create document plot using plotly express for consistent colors
|
||||
doc_color_values = create_color_mapping(doc_df.to_dict('records'), color_by)
|
||||
doc_df_display = doc_df.copy()
|
||||
doc_df_display['text_preview'] = doc_df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
|
||||
doc_df_display['tags_str'] = doc_df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
|
||||
|
||||
hover_fields = ['id', 'text_preview', 'category', 'subcategory', 'tags_str']
|
||||
|
||||
# Create documents plot to get the color mapping
|
||||
if dimensions == '3d':
|
||||
doc_fig = px.scatter_3d(
|
||||
doc_df_display, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
else:
|
||||
doc_fig = px.scatter(
|
||||
doc_df_display, x='dim_1', y='dim_2',
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
|
||||
# Add document traces to main figure
|
||||
for trace in doc_fig.data:
|
||||
trace.name = f'Documents - {trace.name}'
|
||||
if dimensions == '3d':
|
||||
trace.marker.size = 5
|
||||
trace.marker.symbol = 'circle'
|
||||
else:
|
||||
trace.marker.size = 8
|
||||
trace.marker.symbol = 'circle'
|
||||
trace.marker.opacity = 1.0
|
||||
fig.add_trace(trace)
|
||||
|
||||
# Add prompt traces if they exist
|
||||
if prompt_df is not None and show_prompts and 'show' in show_prompts:
|
||||
prompt_color_values = create_color_mapping(prompt_df.to_dict('records'), color_by)
|
||||
prompt_df_display = prompt_df.copy()
|
||||
prompt_df_display['text_preview'] = prompt_df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
|
||||
prompt_df_display['tags_str'] = prompt_df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
|
||||
|
||||
# Create prompts plot to get consistent color grouping
|
||||
if dimensions == '3d':
|
||||
prompt_fig = px.scatter_3d(
|
||||
prompt_df_display, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
else:
|
||||
prompt_fig = px.scatter(
|
||||
prompt_df_display, x='dim_1', y='dim_2',
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
|
||||
# Add prompt traces with grayed colors
|
||||
for trace in prompt_fig.data:
|
||||
# Convert the color to grayscale
|
||||
original_color = trace.marker.color
|
||||
if hasattr(trace.marker, 'color') and isinstance(trace.marker.color, str):
|
||||
trace.marker.color = to_grayscale_hex(trace.marker.color)
|
||||
|
||||
trace.name = f'Prompts - {trace.name}'
|
||||
if dimensions == '3d':
|
||||
trace.marker.size = 6
|
||||
trace.marker.symbol = 'diamond'
|
||||
else:
|
||||
trace.marker.size = 10
|
||||
trace.marker.symbol = 'diamond'
|
||||
trace.marker.opacity = 0.8
|
||||
fig.add_trace(trace)
|
||||
|
||||
title = f'{dimensions.upper()} Embedding Visualization - {method} (colored by {color_by})'
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=None,
|
||||
autosize=True,
|
||||
margin=dict(l=0, r=0, t=50, b=0)
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
# Layout
|
||||
app.layout = dbc.Container([
|
||||
dbc.Row([
|
||||
dbc.Col([
|
||||
html.H1("EmbeddingBuddy", className="text-center mb-4"),
|
||||
], width=12)
|
||||
]),
|
||||
|
||||
dbc.Row([
|
||||
# Left sidebar with controls
|
||||
dbc.Col([
|
||||
html.H5("Upload Data", className="mb-3"),
|
||||
dcc.Upload(
|
||||
id='upload-data',
|
||||
children=html.Div([
|
||||
'Drag and Drop or ',
|
||||
html.A('Select Files')
|
||||
]),
|
||||
style={
|
||||
'width': '100%',
|
||||
'height': '60px',
|
||||
'lineHeight': '60px',
|
||||
'borderWidth': '1px',
|
||||
'borderStyle': 'dashed',
|
||||
'borderRadius': '5px',
|
||||
'textAlign': 'center',
|
||||
'margin-bottom': '20px'
|
||||
},
|
||||
multiple=False
|
||||
),
|
||||
|
||||
dcc.Upload(
|
||||
id='upload-prompts',
|
||||
children=html.Div([
|
||||
'Drag and Drop Prompts or ',
|
||||
html.A('Select Files')
|
||||
]),
|
||||
style={
|
||||
'width': '100%',
|
||||
'height': '60px',
|
||||
'lineHeight': '60px',
|
||||
'borderWidth': '1px',
|
||||
'borderStyle': 'dashed',
|
||||
'borderRadius': '5px',
|
||||
'textAlign': 'center',
|
||||
'margin-bottom': '20px',
|
||||
'borderColor': '#28a745'
|
||||
},
|
||||
multiple=False
|
||||
),
|
||||
|
||||
dbc.Button(
|
||||
"Reset All Data",
|
||||
id='reset-button',
|
||||
color='danger',
|
||||
outline=True,
|
||||
size='sm',
|
||||
className='mb-3',
|
||||
style={'width': '100%'}
|
||||
),
|
||||
|
||||
html.H5("Visualization Controls", className="mb-3"),
|
||||
|
||||
dbc.Label("Method:"),
|
||||
dcc.Dropdown(
|
||||
id='method-dropdown',
|
||||
options=[
|
||||
{'label': 'PCA', 'value': 'pca'},
|
||||
{'label': 't-SNE', 'value': 'tsne'},
|
||||
{'label': 'UMAP', 'value': 'umap'}
|
||||
],
|
||||
value='pca',
|
||||
style={'margin-bottom': '15px'}
|
||||
),
|
||||
|
||||
dbc.Label("Color by:"),
|
||||
dcc.Dropdown(
|
||||
id='color-dropdown',
|
||||
options=[
|
||||
{'label': 'Category', 'value': 'category'},
|
||||
{'label': 'Subcategory', 'value': 'subcategory'},
|
||||
{'label': 'Tags', 'value': 'tags'}
|
||||
],
|
||||
value='category',
|
||||
style={'margin-bottom': '15px'}
|
||||
),
|
||||
|
||||
dbc.Label("Dimensions:"),
|
||||
dcc.RadioItems(
|
||||
id='dimension-toggle',
|
||||
options=[
|
||||
{'label': '2D', 'value': '2d'},
|
||||
{'label': '3D', 'value': '3d'}
|
||||
],
|
||||
value='3d',
|
||||
style={'margin-bottom': '20px'}
|
||||
),
|
||||
|
||||
dbc.Label("Show Prompts:"),
|
||||
dcc.Checklist(
|
||||
id='show-prompts-toggle',
|
||||
options=[{'label': 'Show prompts on plot', 'value': 'show'}],
|
||||
value=['show'],
|
||||
style={'margin-bottom': '20px'}
|
||||
),
|
||||
|
||||
html.H5("Point Details", className="mb-3"),
|
||||
html.Div(id='point-details', children="Click on a point to see details")
|
||||
|
||||
], width=3, style={'padding-right': '20px'}),
|
||||
|
||||
# Main visualization area
|
||||
dbc.Col([
|
||||
dcc.Graph(
|
||||
id='embedding-plot',
|
||||
style={'height': '85vh', 'width': '100%'},
|
||||
config={'responsive': True, 'displayModeBar': True}
|
||||
)
|
||||
], width=9)
|
||||
]),
|
||||
|
||||
dcc.Store(id='processed-data'),
|
||||
dcc.Store(id='processed-prompts')
|
||||
], fluid=True)
|
||||
|
||||
@callback(
|
||||
Output('processed-data', 'data'),
|
||||
Input('upload-data', 'contents'),
|
||||
State('upload-data', 'filename')
|
||||
)
|
||||
def process_uploaded_file(contents, filename):
|
||||
if contents is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
documents = parse_ndjson(contents)
|
||||
embeddings = np.array([doc['embedding'] for doc in documents])
|
||||
|
||||
# Store original embeddings and documents
|
||||
return {
|
||||
'documents': documents,
|
||||
'embeddings': embeddings.tolist()
|
||||
}
|
||||
except Exception as e:
|
||||
return {'error': str(e)}
|
||||
|
||||
@callback(
|
||||
Output('processed-prompts', 'data'),
|
||||
Input('upload-prompts', 'contents'),
|
||||
State('upload-prompts', 'filename')
|
||||
)
|
||||
def process_uploaded_prompts(contents, filename):
|
||||
if contents is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
prompts = parse_ndjson(contents)
|
||||
embeddings = np.array([prompt['embedding'] for prompt in prompts])
|
||||
|
||||
# Store original embeddings and prompts
|
||||
return {
|
||||
'prompts': prompts,
|
||||
'embeddings': embeddings.tolist()
|
||||
}
|
||||
except Exception as e:
|
||||
return {'error': str(e)}
|
||||
|
||||
@callback(
|
||||
Output('embedding-plot', 'figure'),
|
||||
[Input('processed-data', 'data'),
|
||||
Input('processed-prompts', 'data'),
|
||||
Input('method-dropdown', 'value'),
|
||||
Input('color-dropdown', 'value'),
|
||||
Input('dimension-toggle', 'value'),
|
||||
Input('show-prompts-toggle', 'value')]
|
||||
)
|
||||
def update_plot(data, prompts_data, method, color_by, dimensions, show_prompts):
|
||||
if not data or 'error' in data:
|
||||
return go.Figure().add_annotation(
|
||||
text="Upload a valid NDJSON file to see visualization",
|
||||
xref="paper", yref="paper",
|
||||
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
||||
showarrow=False, font=dict(size=16)
|
||||
)
|
||||
|
||||
# Prepare embeddings for dimensionality reduction
|
||||
doc_embeddings = np.array(data['embeddings'])
|
||||
all_embeddings = doc_embeddings
|
||||
has_prompts = prompts_data and 'error' not in prompts_data and prompts_data.get('prompts')
|
||||
|
||||
if has_prompts:
|
||||
prompt_embeddings = np.array(prompts_data['embeddings'])
|
||||
all_embeddings = np.vstack([doc_embeddings, prompt_embeddings])
|
||||
|
||||
n_components = 3 if dimensions == '3d' else 2
|
||||
|
||||
# Apply dimensionality reduction to combined data
|
||||
reduced, variance_explained = apply_dimensionality_reduction(
|
||||
all_embeddings, method=method, n_components=n_components
|
||||
)
|
||||
|
||||
# Split reduced embeddings back
|
||||
doc_reduced = reduced[:len(doc_embeddings)]
|
||||
prompt_reduced = reduced[len(doc_embeddings):] if has_prompts else None
|
||||
|
||||
# Create dataframes
|
||||
doc_df_data = []
|
||||
for i, doc in enumerate(data['documents']):
|
||||
row = {
|
||||
'id': doc['id'],
|
||||
'text': doc['text'],
|
||||
'category': doc.get('category', 'Unknown'),
|
||||
'subcategory': doc.get('subcategory', 'Unknown'),
|
||||
'tags': doc.get('tags', []),
|
||||
'dim_1': doc_reduced[i, 0],
|
||||
'dim_2': doc_reduced[i, 1],
|
||||
'type': 'document'
|
||||
}
|
||||
if dimensions == '3d':
|
||||
row['dim_3'] = doc_reduced[i, 2]
|
||||
doc_df_data.append(row)
|
||||
|
||||
doc_df = pd.DataFrame(doc_df_data)
|
||||
|
||||
prompt_df = None
|
||||
if has_prompts and prompt_reduced is not None:
|
||||
prompt_df_data = []
|
||||
for i, prompt in enumerate(prompts_data['prompts']):
|
||||
row = {
|
||||
'id': prompt['id'],
|
||||
'text': prompt['text'],
|
||||
'category': prompt.get('category', 'Unknown'),
|
||||
'subcategory': prompt.get('subcategory', 'Unknown'),
|
||||
'tags': prompt.get('tags', []),
|
||||
'dim_1': prompt_reduced[i, 0],
|
||||
'dim_2': prompt_reduced[i, 1],
|
||||
'type': 'prompt'
|
||||
}
|
||||
if dimensions == '3d':
|
||||
row['dim_3'] = prompt_reduced[i, 2]
|
||||
prompt_df_data.append(row)
|
||||
|
||||
prompt_df = pd.DataFrame(prompt_df_data)
|
||||
|
||||
return create_dual_plot(doc_df, prompt_df, dimensions, color_by, method.upper(), show_prompts)
|
||||
|
||||
@callback(
|
||||
Output('point-details', 'children'),
|
||||
Input('embedding-plot', 'clickData'),
|
||||
[State('processed-data', 'data'),
|
||||
State('processed-prompts', 'data')]
|
||||
)
|
||||
def display_click_data(clickData, data, prompts_data):
|
||||
if not clickData or not data:
|
||||
return "Click on a point to see details"
|
||||
|
||||
# Get point info from click
|
||||
point_data = clickData['points'][0]
|
||||
trace_name = point_data.get('fullData', {}).get('name', 'Documents')
|
||||
|
||||
if 'pointIndex' in point_data:
|
||||
point_index = point_data['pointIndex']
|
||||
elif 'pointNumber' in point_data:
|
||||
point_index = point_data['pointNumber']
|
||||
else:
|
||||
return "Could not identify clicked point"
|
||||
|
||||
# Determine which dataset this point belongs to
|
||||
if trace_name == 'Prompts' and prompts_data and 'prompts' in prompts_data:
|
||||
item = prompts_data['prompts'][point_index]
|
||||
item_type = 'Prompt'
|
||||
else:
|
||||
item = data['documents'][point_index]
|
||||
item_type = 'Document'
|
||||
|
||||
return dbc.Card([
|
||||
dbc.CardBody([
|
||||
html.H5(f"{item_type}: {item['id']}", className="card-title"),
|
||||
html.P(f"Text: {item['text']}", className="card-text"),
|
||||
html.P(f"Category: {item.get('category', 'Unknown')}", className="card-text"),
|
||||
html.P(f"Subcategory: {item.get('subcategory', 'Unknown')}", className="card-text"),
|
||||
html.P(f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}", className="card-text"),
|
||||
html.P(f"Type: {item_type}", className="card-text text-muted")
|
||||
])
|
||||
])
|
||||
|
||||
@callback(
|
||||
[Output('processed-data', 'data', allow_duplicate=True),
|
||||
Output('processed-prompts', 'data', allow_duplicate=True),
|
||||
Output('point-details', 'children', allow_duplicate=True)],
|
||||
Input('reset-button', 'n_clicks'),
|
||||
prevent_initial_call=True
|
||||
)
|
||||
def reset_data(n_clicks):
|
||||
if n_clicks is None or n_clicks == 0:
|
||||
return dash.no_update, dash.no_update, dash.no_update
|
||||
|
||||
return None, None, "Click on a point to see details"
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(debug=True)
|
2
example/bad/bad_binary_content.ndjson
Normal file
2
example/bad/bad_binary_content.ndjson
Normal file
@@ -0,0 +1,2 @@
|
||||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "Binary junk at start"}
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Normal line"}<7D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
6
example/bad/bad_empty_lines.ndjson
Normal file
6
example/bad/bad_empty_lines.ndjson
Normal file
@@ -0,0 +1,6 @@
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "First line"}
|
||||
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "After empty line"}
|
||||
|
||||
|
||||
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1], "text": "After multiple empty lines"}
|
4
example/bad/bad_inconsistent_dimensions.ndjson
Normal file
4
example/bad/bad_inconsistent_dimensions.ndjson
Normal file
@@ -0,0 +1,4 @@
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "4D embedding"}
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2], "text": "3D embedding"}
|
||||
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1, 0.8], "text": "5D embedding"}
|
||||
{"id": "doc_004", "embedding": [0.2, 0.1], "text": "2D embedding"}
|
8
example/bad/bad_invalid_embeddings.ndjson
Normal file
8
example/bad/bad_invalid_embeddings.ndjson
Normal file
@@ -0,0 +1,8 @@
|
||||
{"id": "doc_001", "embedding": "not_an_array", "text": "Embedding as string"}
|
||||
{"id": "doc_002", "embedding": [0.1, "text", 0.7, 0.2], "text": "Mixed types in embedding"}
|
||||
{"id": "doc_003", "embedding": [], "text": "Empty embedding array"}
|
||||
{"id": "doc_004", "embedding": [0.1], "text": "Single dimension embedding"}
|
||||
{"id": "doc_005", "embedding": null, "text": "Null embedding"}
|
||||
{"id": "doc_006", "embedding": [0.1, 0.2, null, 0.4], "text": "Null value in embedding"}
|
||||
{"id": "doc_007", "embedding": [0.1, 0.2, "NaN", 0.4], "text": "String NaN in embedding"}
|
||||
{"id": "doc_008", "embedding": [0.1, 0.2, Infinity, 0.4], "text": "Infinity in embedding"}
|
5
example/bad/bad_malformed_json.ndjson
Normal file
5
example/bad/bad_malformed_json.ndjson
Normal file
@@ -0,0 +1,5 @@
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, "text": "Valid line"}
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Missing closing brace"
|
||||
{"id": "doc_003" "embedding": [0.3, 0.4, 0.1, -0.1], "text": "Missing colon after id"}
|
||||
{id: "doc_004", "embedding": [0.2, 0.1, 0.3, 0.4], "text": "Unquoted key"}
|
||||
{"id": "doc_005", "embedding": [0.1, 0.2, 0.3, 0.4], "text": "Valid line again"}
|
3
example/bad/bad_missing_embedding.ndjson
Normal file
3
example/bad/bad_missing_embedding.ndjson
Normal file
@@ -0,0 +1,3 @@
|
||||
{"id": "doc_001", "text": "Sample text without embedding field", "category": "test"}
|
||||
{"id": "doc_002", "text": "Another text without embedding", "category": "test"}
|
||||
{"id": "doc_003", "text": "Third text missing embedding", "category": "test"}
|
3
example/bad/bad_missing_text.ndjson
Normal file
3
example/bad/bad_missing_text.ndjson
Normal file
@@ -0,0 +1,3 @@
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "category": "test"}
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "category": "test"}
|
||||
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1], "category": "test"}
|
4
example/bad/bad_not_ndjson.json
Normal file
4
example/bad/bad_not_ndjson.json
Normal file
@@ -0,0 +1,4 @@
|
||||
[
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "Regular JSON array"},
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Instead of NDJSON"}
|
||||
]
|
@@ -16,11 +16,22 @@ class NDJSONParser:
|
||||
@staticmethod
|
||||
def parse_text(text_content: str) -> List[Document]:
|
||||
documents = []
|
||||
for line in text_content.strip().split("\n"):
|
||||
for line_num, line in enumerate(text_content.strip().split("\n"), 1):
|
||||
if line.strip():
|
||||
doc_dict = json.loads(line)
|
||||
doc = NDJSONParser._dict_to_document(doc_dict)
|
||||
documents.append(doc)
|
||||
try:
|
||||
doc_dict = json.loads(line)
|
||||
doc = NDJSONParser._dict_to_document(doc_dict)
|
||||
documents.append(doc)
|
||||
except json.JSONDecodeError as e:
|
||||
raise json.JSONDecodeError(
|
||||
f"Invalid JSON on line {line_num}: {e.msg}", e.doc, e.pos
|
||||
)
|
||||
except KeyError as e:
|
||||
raise KeyError(f"Missing required field {e} on line {line_num}")
|
||||
except (TypeError, ValueError) as e:
|
||||
raise ValueError(
|
||||
f"Invalid data format on line {line_num}: {str(e)}"
|
||||
)
|
||||
return documents
|
||||
|
||||
@staticmethod
|
||||
@@ -28,10 +39,33 @@ class NDJSONParser:
|
||||
if "id" not in doc_dict:
|
||||
doc_dict["id"] = str(uuid.uuid4())
|
||||
|
||||
# Validate required fields
|
||||
if "text" not in doc_dict:
|
||||
raise KeyError("'text'")
|
||||
if "embedding" not in doc_dict:
|
||||
raise KeyError("'embedding'")
|
||||
|
||||
# Validate embedding format
|
||||
embedding = doc_dict["embedding"]
|
||||
if not isinstance(embedding, list):
|
||||
raise ValueError(
|
||||
f"Embedding must be a list, got {type(embedding).__name__}"
|
||||
)
|
||||
|
||||
if not embedding:
|
||||
raise ValueError("Embedding cannot be empty")
|
||||
|
||||
# Check that all embedding values are numbers
|
||||
for i, val in enumerate(embedding):
|
||||
if not isinstance(val, (int, float)) or val != val: # NaN check
|
||||
raise ValueError(
|
||||
f"Embedding contains invalid value at index {i}: {val}"
|
||||
)
|
||||
|
||||
return Document(
|
||||
id=doc_dict["id"],
|
||||
text=doc_dict["text"],
|
||||
embedding=doc_dict["embedding"],
|
||||
embedding=embedding,
|
||||
category=doc_dict.get("category"),
|
||||
subcategory=doc_dict.get("subcategory"),
|
||||
tags=doc_dict.get("tags"),
|
||||
|
@@ -9,30 +9,47 @@ class DataProcessingCallbacks:
|
||||
|
||||
def _register_callbacks(self):
|
||||
@callback(
|
||||
Output("processed-data", "data"),
|
||||
[
|
||||
Output("processed-data", "data", allow_duplicate=True),
|
||||
Output("upload-error-alert", "children", allow_duplicate=True),
|
||||
Output("upload-error-alert", "is_open", allow_duplicate=True),
|
||||
],
|
||||
Input("upload-data", "contents"),
|
||||
State("upload-data", "filename"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def process_uploaded_file(contents, filename):
|
||||
if contents is None:
|
||||
return None
|
||||
return None, "", False
|
||||
|
||||
processed_data = self.processor.process_upload(contents, filename)
|
||||
|
||||
if processed_data.error:
|
||||
return {"error": processed_data.error}
|
||||
error_message = self._format_error_message(
|
||||
processed_data.error, filename
|
||||
)
|
||||
return (
|
||||
{"error": processed_data.error},
|
||||
error_message,
|
||||
True, # Show error alert
|
||||
)
|
||||
|
||||
return {
|
||||
"documents": [
|
||||
self._document_to_dict(doc) for doc in processed_data.documents
|
||||
],
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
}
|
||||
return (
|
||||
{
|
||||
"documents": [
|
||||
self._document_to_dict(doc) for doc in processed_data.documents
|
||||
],
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
},
|
||||
"",
|
||||
False, # Hide error alert
|
||||
)
|
||||
|
||||
@callback(
|
||||
Output("processed-prompts", "data"),
|
||||
Output("processed-prompts", "data", allow_duplicate=True),
|
||||
Input("upload-prompts", "contents"),
|
||||
State("upload-prompts", "filename"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def process_uploaded_prompts(contents, filename):
|
||||
if contents is None:
|
||||
@@ -60,3 +77,44 @@ class DataProcessingCallbacks:
|
||||
"subcategory": doc.subcategory,
|
||||
"tags": doc.tags,
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _format_error_message(error: str, filename: str | None = None) -> str:
|
||||
"""Format error message with helpful guidance for users."""
|
||||
file_part = f" in file '{filename}'" if filename else ""
|
||||
|
||||
# Check for common error patterns and provide helpful messages
|
||||
if "embedding" in error.lower() and (
|
||||
"key" in error.lower() or "required field" in error.lower()
|
||||
):
|
||||
return (
|
||||
f"❌ Missing 'embedding' field{file_part}. "
|
||||
"Each line must contain an 'embedding' field with a list of numbers."
|
||||
)
|
||||
elif "text" in error.lower() and (
|
||||
"key" in error.lower() or "required field" in error.lower()
|
||||
):
|
||||
return (
|
||||
f"❌ Missing 'text' field{file_part}. "
|
||||
"Each line must contain a 'text' field with the document content."
|
||||
)
|
||||
elif "json" in error.lower() and "decode" in error.lower():
|
||||
return (
|
||||
f"❌ Invalid JSON format{file_part}. "
|
||||
"Please check that each line is valid JSON with proper syntax (quotes, braces, etc.)."
|
||||
)
|
||||
elif "unicode" in error.lower() or "decode" in error.lower():
|
||||
return (
|
||||
f"❌ File encoding issue{file_part}. "
|
||||
"Please ensure the file is saved in UTF-8 format and contains no binary data."
|
||||
)
|
||||
elif "array" in error.lower() or "list" in error.lower():
|
||||
return (
|
||||
f"❌ Invalid embedding format{file_part}. "
|
||||
"Embeddings must be arrays/lists of numbers, not strings or other types."
|
||||
)
|
||||
else:
|
||||
return (
|
||||
f"❌ Error processing file{file_part}: {error}. "
|
||||
"Please check that your file is valid NDJSON with required 'text' and 'embedding' fields."
|
||||
)
|
||||
|
@@ -11,14 +11,17 @@ class SidebarComponent:
|
||||
return dbc.Col(
|
||||
[
|
||||
html.H5("Upload Data", className="mb-3"),
|
||||
self.upload_component.create_error_alert(),
|
||||
self.upload_component.create_data_upload(),
|
||||
self.upload_component.create_prompts_upload(),
|
||||
self.upload_component.create_reset_button(),
|
||||
html.H5("Visualization Controls", className="mb-3"),
|
||||
self._create_method_dropdown(),
|
||||
self._create_color_dropdown(),
|
||||
self._create_dimension_toggle(),
|
||||
self._create_prompts_toggle(),
|
||||
]
|
||||
+ self._create_method_dropdown()
|
||||
+ self._create_color_dropdown()
|
||||
+ self._create_dimension_toggle()
|
||||
+ self._create_prompts_toggle()
|
||||
+ [
|
||||
html.H5("Point Details", className="mb-3"),
|
||||
html.Div(
|
||||
id="point-details", children="Click on a point to see details"
|
||||
|
@@ -51,3 +51,14 @@ class UploadComponent:
|
||||
className="mb-3",
|
||||
style={"width": "100%"},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def create_error_alert():
|
||||
"""Create error alert component for data upload issues."""
|
||||
return dbc.Alert(
|
||||
id="upload-error-alert",
|
||||
dismissable=True,
|
||||
is_open=False,
|
||||
color="danger",
|
||||
className="mb-3",
|
||||
)
|
||||
|
@@ -9,7 +9,8 @@ class AppLayout:
|
||||
|
||||
def create_layout(self):
|
||||
return dbc.Container(
|
||||
[self._create_header(), self._create_main_content(), self._create_stores()],
|
||||
[self._create_header(), self._create_main_content()]
|
||||
+ self._create_stores(),
|
||||
fluid=True,
|
||||
)
|
||||
|
||||
|
197
tests/test_bad_data.py
Normal file
197
tests/test_bad_data.py
Normal file
@@ -0,0 +1,197 @@
|
||||
"""Tests for handling bad/invalid data files."""
|
||||
|
||||
import pytest
|
||||
import json
|
||||
import base64
|
||||
from src.embeddingbuddy.data.parser import NDJSONParser
|
||||
from src.embeddingbuddy.data.processor import DataProcessor
|
||||
|
||||
|
||||
class TestBadDataHandling:
|
||||
"""Test suite for various types of invalid input data."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Set up test fixtures."""
|
||||
self.parser = NDJSONParser()
|
||||
self.processor = DataProcessor()
|
||||
|
||||
def _create_upload_contents(self, text_content: str) -> str:
|
||||
"""Helper to create upload contents format."""
|
||||
encoded = base64.b64encode(text_content.encode("utf-8")).decode("utf-8")
|
||||
return f"data:application/json;base64,{encoded}"
|
||||
|
||||
def test_missing_embedding_field(self):
|
||||
"""Test files missing required embedding field."""
|
||||
bad_content = '{"id": "doc_001", "text": "Sample text", "category": "test"}'
|
||||
|
||||
with pytest.raises(KeyError, match="embedding"):
|
||||
self.parser.parse_text(bad_content)
|
||||
|
||||
# Test processor error handling
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
assert result.error is not None
|
||||
assert "embedding" in result.error
|
||||
|
||||
def test_missing_text_field(self):
|
||||
"""Test files missing required text field."""
|
||||
bad_content = (
|
||||
'{"id": "doc_001", "embedding": [0.1, 0.2, 0.3], "category": "test"}'
|
||||
)
|
||||
|
||||
with pytest.raises(KeyError, match="text"):
|
||||
self.parser.parse_text(bad_content)
|
||||
|
||||
# Test processor error handling
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
assert result.error is not None
|
||||
assert "text" in result.error
|
||||
|
||||
def test_malformed_json_lines(self):
|
||||
"""Test files with malformed JSON syntax."""
|
||||
# Missing closing brace
|
||||
bad_content = '{"id": "doc_001", "embedding": [0.1, 0.2], "text": "test"'
|
||||
|
||||
with pytest.raises(json.JSONDecodeError):
|
||||
self.parser.parse_text(bad_content)
|
||||
|
||||
# Test processor error handling
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
assert result.error is not None
|
||||
|
||||
def test_invalid_embedding_types(self):
|
||||
"""Test files with invalid embedding data types."""
|
||||
test_cases = [
|
||||
# String instead of array
|
||||
'{"id": "doc_001", "embedding": "not_an_array", "text": "test"}',
|
||||
# Mixed types in array
|
||||
'{"id": "doc_002", "embedding": [0.1, "text", 0.3], "text": "test"}',
|
||||
# Empty array
|
||||
'{"id": "doc_003", "embedding": [], "text": "test"}',
|
||||
# Null embedding
|
||||
'{"id": "doc_004", "embedding": null, "text": "test"}',
|
||||
]
|
||||
|
||||
for bad_content in test_cases:
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
assert result.error is not None, f"Should fail for: {bad_content}"
|
||||
|
||||
def test_inconsistent_embedding_dimensions(self):
|
||||
"""Test files with embeddings of different dimensions."""
|
||||
bad_content = """{"id": "doc_001", "embedding": [0.1, 0.2, 0.3, 0.4], "text": "4D embedding"}
|
||||
{"id": "doc_002", "embedding": [0.1, 0.2, 0.3], "text": "3D embedding"}"""
|
||||
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
# This might succeed parsing but fail in processing
|
||||
# The error depends on where dimension validation occurs
|
||||
if result.error is None:
|
||||
# If parsing succeeds, check that embeddings have inconsistent shapes
|
||||
assert len(result.documents) == 2
|
||||
assert len(result.documents[0].embedding) != len(
|
||||
result.documents[1].embedding
|
||||
)
|
||||
|
||||
def test_empty_lines_in_ndjson(self):
|
||||
"""Test files with empty lines mixed in."""
|
||||
content_with_empty_lines = """{"id": "doc_001", "embedding": [0.1, 0.2], "text": "First line"}
|
||||
|
||||
{"id": "doc_002", "embedding": [0.3, 0.4], "text": "After empty line"}"""
|
||||
|
||||
# This should work - empty lines should be skipped
|
||||
documents = self.parser.parse_text(content_with_empty_lines)
|
||||
assert len(documents) == 2
|
||||
assert documents[0].id == "doc_001"
|
||||
assert documents[1].id == "doc_002"
|
||||
|
||||
def test_not_ndjson_format(self):
|
||||
"""Test regular JSON array instead of NDJSON."""
|
||||
json_array = """[
|
||||
{"id": "doc_001", "embedding": [0.1, 0.2], "text": "First"},
|
||||
{"id": "doc_002", "embedding": [0.3, 0.4], "text": "Second"}
|
||||
]"""
|
||||
|
||||
with pytest.raises(json.JSONDecodeError):
|
||||
self.parser.parse_text(json_array)
|
||||
|
||||
def test_binary_content_in_file(self):
|
||||
"""Test files with binary content mixed in."""
|
||||
# Simulate binary content that can't be decoded
|
||||
binary_content = (
|
||||
b'\x00\x01\x02{"id": "doc_001", "embedding": [0.1], "text": "test"}'
|
||||
)
|
||||
|
||||
# This should result in an error when processing
|
||||
encoded = base64.b64encode(binary_content).decode("utf-8")
|
||||
upload_contents = f"data:application/json;base64,{encoded}"
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
# Should either fail with UnicodeDecodeError or JSON parsing error
|
||||
assert result.error is not None
|
||||
|
||||
def test_extremely_large_embeddings(self):
|
||||
"""Test embeddings with very large dimensions."""
|
||||
large_embedding = [0.1] * 10000 # 10k dimensions
|
||||
content = json.dumps(
|
||||
{
|
||||
"id": "doc_001",
|
||||
"embedding": large_embedding,
|
||||
"text": "Large embedding test",
|
||||
}
|
||||
)
|
||||
|
||||
# This should work but might be slow
|
||||
upload_contents = self._create_upload_contents(content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
if result.error is None:
|
||||
assert len(result.documents) == 1
|
||||
assert len(result.documents[0].embedding) == 10000
|
||||
|
||||
def test_special_characters_in_text(self):
|
||||
"""Test handling of special characters and unicode."""
|
||||
special_content = json.dumps(
|
||||
{
|
||||
"id": "doc_001",
|
||||
"embedding": [0.1, 0.2],
|
||||
"text": 'Special chars: 🚀 ñoñó 中文 \n\t"',
|
||||
},
|
||||
ensure_ascii=False,
|
||||
)
|
||||
|
||||
upload_contents = self._create_upload_contents(special_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
assert result.error is None
|
||||
assert len(result.documents) == 1
|
||||
assert "🚀" in result.documents[0].text
|
||||
|
||||
def test_processor_error_structure(self):
|
||||
"""Test that processor returns proper error structure."""
|
||||
bad_content = '{"invalid": "json"' # Missing closing brace
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
# Check error structure
|
||||
assert result.error is not None
|
||||
assert isinstance(result.error, str)
|
||||
assert len(result.documents) == 0
|
||||
assert result.embeddings.size == 0
|
||||
|
||||
def test_multiple_errors_in_file(self):
|
||||
"""Test file with multiple different types of errors."""
|
||||
multi_error_content = """{"id": "doc_001", "text": "Missing embedding"}
|
||||
{"id": "doc_002", "embedding": "wrong_type", "text": "Wrong embedding type"}
|
||||
{"id": "doc_003", "embedding": [0.1, 0.2], "text": "Valid line"}
|
||||
{"id": "doc_004", "embedding": [0.3, 0.4]""" # Missing text and closing brace
|
||||
|
||||
upload_contents = self._create_upload_contents(multi_error_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
# Should fail on first error encountered
|
||||
assert result.error is not None
|
Reference in New Issue
Block a user