Compare commits
3 Commits
v0.2.0
...
091a2a0f97
Author | SHA1 | Date | |
---|---|---|---|
091a2a0f97 | |||
48326c6335 | |||
450f6b23e0 |
@@ -6,7 +6,6 @@
|
||||
"Bash(uv add:*)"
|
||||
],
|
||||
"deny": [],
|
||||
"ask": [],
|
||||
"defaultMode": "acceptEdits"
|
||||
"ask": []
|
||||
}
|
||||
}
|
@@ -26,10 +26,12 @@ jobs:
|
||||
run: uv python install 3.11
|
||||
|
||||
- name: Install dependencies
|
||||
run: uv sync --extra test
|
||||
run: uv sync
|
||||
|
||||
- name: Run full test suite
|
||||
run: uv run pytest tests/ -v --cov=src/embeddingbuddy --cov-report=term-missing
|
||||
run: |
|
||||
uv add pytest-cov
|
||||
uv run pytest tests/ -v --cov=src/embeddingbuddy --cov-report=term-missing
|
||||
|
||||
build-and-release:
|
||||
runs-on: ubuntu-latest
|
||||
|
@@ -25,7 +25,12 @@ jobs:
|
||||
run: uv python install 3.11
|
||||
|
||||
- name: Install dependencies
|
||||
run: uv sync --extra security
|
||||
run: uv sync
|
||||
|
||||
- name: Add security tools
|
||||
run: |
|
||||
uv add bandit[toml]
|
||||
uv add safety
|
||||
|
||||
- name: Run bandit security linter
|
||||
run: uv run bandit -r src/ -f json -o bandit-report.json
|
||||
@@ -36,7 +41,7 @@ jobs:
|
||||
continue-on-error: true
|
||||
|
||||
- name: Upload security reports
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: security-reports
|
||||
path: |
|
||||
@@ -59,12 +64,13 @@ jobs:
|
||||
|
||||
- name: Check for dependency vulnerabilities
|
||||
run: |
|
||||
uv sync --extra security
|
||||
uv sync
|
||||
uv add pip-audit
|
||||
uv run pip-audit --format=json --output=pip-audit-report.json
|
||||
continue-on-error: true
|
||||
|
||||
- name: Upload dependency audit report
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: dependency-audit
|
||||
path: pip-audit-report.json
|
@@ -2,20 +2,16 @@ name: Test Suite
|
||||
|
||||
on:
|
||||
push:
|
||||
branches:
|
||||
- "main"
|
||||
- "develop"
|
||||
branches: ["*"]
|
||||
pull_request:
|
||||
branches:
|
||||
- "main"
|
||||
workflow_dispatch:
|
||||
branches: ["main", "master"]
|
||||
|
||||
jobs:
|
||||
test:
|
||||
runs-on: ubuntu-latest
|
||||
strategy:
|
||||
matrix:
|
||||
python-version: ["3.11"]
|
||||
python-version: ["3.11", "3.12"]
|
||||
|
||||
steps:
|
||||
- name: Checkout code
|
||||
@@ -30,13 +26,15 @@ jobs:
|
||||
run: uv python install ${{ matrix.python-version }}
|
||||
|
||||
- name: Install dependencies
|
||||
run: uv sync --extra test
|
||||
run: uv sync
|
||||
|
||||
- name: Run tests with pytest
|
||||
run: uv run pytest tests/ -v --tb=short
|
||||
|
||||
- name: Run tests with coverage
|
||||
run: uv run pytest tests/ --cov=src/embeddingbuddy --cov-report=term-missing --cov-report=xml
|
||||
run: |
|
||||
uv add pytest-cov
|
||||
uv run pytest tests/ --cov=src/embeddingbuddy --cov-report=term-missing --cov-report=xml
|
||||
|
||||
- name: Upload coverage reports
|
||||
uses: codecov/codecov-action@v4
|
||||
@@ -60,7 +58,12 @@ jobs:
|
||||
run: uv python install 3.11
|
||||
|
||||
- name: Install dependencies
|
||||
run: uv sync --extra lint
|
||||
run: uv sync
|
||||
|
||||
- name: Add linting tools
|
||||
run: |
|
||||
uv add ruff
|
||||
uv add mypy
|
||||
|
||||
- name: Run ruff linter
|
||||
run: uv run ruff check src/ tests/
|
||||
@@ -68,9 +71,8 @@ jobs:
|
||||
- name: Run ruff formatter check
|
||||
run: uv run ruff format --check src/ tests/
|
||||
|
||||
# TODO fix this it throws errors
|
||||
# - name: Run mypy type checker
|
||||
# run: uv run mypy src/embeddingbuddy/ --ignore-missing-imports
|
||||
- name: Run mypy type checker
|
||||
run: uv run mypy src/embeddingbuddy/ --ignore-missing-imports
|
||||
|
||||
build:
|
||||
runs-on: ubuntu-latest
|
||||
@@ -98,7 +100,7 @@ jobs:
|
||||
uv run python -c "from src.embeddingbuddy.app import create_app; app = create_app(); print('✅ Package builds and imports successfully')"
|
||||
|
||||
- name: Upload build artifacts
|
||||
uses: actions/upload-artifact@v3
|
||||
uses: actions/upload-artifact@v4
|
||||
with:
|
||||
name: dist-files
|
||||
path: dist/
|
36
CLAUDE.md
36
CLAUDE.md
@@ -30,28 +30,9 @@ The app will be available at http://127.0.0.1:8050
|
||||
**Run tests:**
|
||||
|
||||
```bash
|
||||
uv sync --extra test
|
||||
uv run pytest tests/ -v
|
||||
```
|
||||
|
||||
**Development tools:**
|
||||
|
||||
```bash
|
||||
# Install all dev dependencies
|
||||
uv sync --extra dev
|
||||
|
||||
# Linting and formatting
|
||||
uv run ruff check src/ tests/
|
||||
uv run ruff format src/ tests/
|
||||
|
||||
# Type checking
|
||||
uv run mypy src/embeddingbuddy/
|
||||
|
||||
# Security scanning
|
||||
uv run bandit -r src/
|
||||
uv run safety check
|
||||
```
|
||||
|
||||
**Test with sample data:**
|
||||
Use the included `sample_data.ndjson` and `sample_prompts.ndjson` files for testing the application functionality.
|
||||
|
||||
@@ -61,7 +42,7 @@ Use the included `sample_data.ndjson` and `sample_prompts.ndjson` files for test
|
||||
|
||||
The application follows a modular architecture with clear separation of concerns:
|
||||
|
||||
```text
|
||||
```
|
||||
src/embeddingbuddy/
|
||||
├── app.py # Main application entry point and factory
|
||||
├── main.py # Application runner
|
||||
@@ -91,32 +72,27 @@ src/embeddingbuddy/
|
||||
### Key Components
|
||||
|
||||
**Data Layer:**
|
||||
|
||||
- `data/parser.py` - NDJSON parsing with error handling
|
||||
- `data/processor.py` - Data transformation and combination logic
|
||||
- `models/schemas.py` - Dataclasses for type safety and validation
|
||||
|
||||
**Algorithm Layer:**
|
||||
|
||||
- `models/reducers.py` - Modular dimensionality reduction with factory pattern
|
||||
- Supports PCA, t-SNE (openTSNE), and UMAP algorithms
|
||||
- Abstract base class for easy extension
|
||||
|
||||
**Visualization Layer:**
|
||||
|
||||
- `visualization/plots.py` - Plot factory with single and dual plot support
|
||||
- `visualization/colors.py` - Color mapping and grayscale conversion utilities
|
||||
- Plotly-based 2D/3D scatter plots with interactive features
|
||||
|
||||
**UI Layer:**
|
||||
|
||||
- `ui/layout.py` - Main application layout composition
|
||||
- `ui/components/` - Reusable, testable UI components
|
||||
- `ui/callbacks/` - Organized callbacks grouped by functionality
|
||||
- Bootstrap-styled sidebar with controls and large visualization area
|
||||
|
||||
**Configuration:**
|
||||
|
||||
- `config/settings.py` - Centralized settings with environment variable support
|
||||
- Plot styling, marker configurations, and app-wide constants
|
||||
|
||||
@@ -136,19 +112,16 @@ Optional fields: `id`, `category`, `subcategory`, `tags`
|
||||
The refactored callback system is organized by functionality:
|
||||
|
||||
**Data Processing (`ui/callbacks/data_processing.py`):**
|
||||
|
||||
- File upload handling
|
||||
- NDJSON parsing and validation
|
||||
- Data storage in dcc.Store components
|
||||
|
||||
**Visualization (`ui/callbacks/visualization.py`):**
|
||||
|
||||
- Dimensionality reduction pipeline
|
||||
- Plot generation and updates
|
||||
- Method/parameter change handling
|
||||
|
||||
**Interactions (`ui/callbacks/interactions.py`):**
|
||||
|
||||
- Point click handling and detail display
|
||||
- Reset functionality
|
||||
- User interaction management
|
||||
@@ -158,18 +131,15 @@ The refactored callback system is organized by functionality:
|
||||
The modular design enables comprehensive testing:
|
||||
|
||||
**Unit Tests:**
|
||||
|
||||
- `tests/test_data_processing.py` - Parser and processor logic
|
||||
- `tests/test_reducers.py` - Dimensionality reduction algorithms
|
||||
- `tests/test_visualization.py` - Plot creation and color mapping
|
||||
|
||||
**Integration Tests:**
|
||||
|
||||
- End-to-end data pipeline testing
|
||||
- Component integration verification
|
||||
|
||||
**Key Testing Benefits:**
|
||||
|
||||
- Fast test execution (milliseconds vs seconds)
|
||||
- Isolated component testing
|
||||
- Easy mocking and fixture creation
|
||||
@@ -197,7 +167,6 @@ Uses modern Python stack with uv for dependency management:
|
||||
5. **Tests** - Write tests for all new functionality
|
||||
|
||||
**Code Organization Principles:**
|
||||
|
||||
- Single responsibility principle
|
||||
- Clear module boundaries
|
||||
- Testable, isolated components
|
||||
@@ -205,8 +174,7 @@ Uses modern Python stack with uv for dependency management:
|
||||
- Error handling at appropriate layers
|
||||
|
||||
**Testing Requirements:**
|
||||
|
||||
- Unit tests for all core logic
|
||||
- Integration tests for data flow
|
||||
- Component tests for UI elements
|
||||
- Maintain high test coverage
|
||||
- Maintain high test coverage
|
31
README.md
31
README.md
@@ -90,7 +90,7 @@ uv run python main.py
|
||||
|
||||
The application follows a modular architecture for improved maintainability and testability:
|
||||
|
||||
```text
|
||||
```
|
||||
src/embeddingbuddy/
|
||||
├── config/ # Configuration management
|
||||
│ └── settings.py # Centralized app settings
|
||||
@@ -115,8 +115,8 @@ src/embeddingbuddy/
|
||||
Run the test suite to verify functionality:
|
||||
|
||||
```bash
|
||||
# Install test dependencies
|
||||
uv sync --extra test
|
||||
# Install pytest
|
||||
uv add pytest
|
||||
|
||||
# Run all tests
|
||||
uv run pytest tests/ -v
|
||||
@@ -128,31 +128,6 @@ uv run pytest tests/test_data_processing.py -v
|
||||
uv run pytest tests/ --cov=src/embeddingbuddy
|
||||
```
|
||||
|
||||
### Development Tools
|
||||
|
||||
Install development dependencies for linting, type checking, and security:
|
||||
|
||||
```bash
|
||||
# Install all dev dependencies
|
||||
uv sync --extra dev
|
||||
|
||||
# Or install specific groups
|
||||
uv sync --extra test # Testing tools
|
||||
uv sync --extra lint # Linting and formatting
|
||||
uv sync --extra security # Security scanning tools
|
||||
|
||||
# Run linting
|
||||
uv run ruff check src/ tests/
|
||||
uv run ruff format src/ tests/
|
||||
|
||||
# Run type checking
|
||||
uv run mypy src/embeddingbuddy/
|
||||
|
||||
# Run security scans
|
||||
uv run bandit -r src/
|
||||
uv run safety check
|
||||
```
|
||||
|
||||
### Adding New Features
|
||||
|
||||
The modular architecture makes it easy to extend functionality:
|
||||
|
515
app.py
Normal file
515
app.py
Normal file
@@ -0,0 +1,515 @@
|
||||
import json
|
||||
import uuid
|
||||
from io import StringIO
|
||||
import base64
|
||||
|
||||
import dash
|
||||
from dash import dcc, html, Input, Output, State, callback
|
||||
import dash_bootstrap_components as dbc
|
||||
import plotly.express as px
|
||||
import plotly.graph_objects as go
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
from sklearn.decomposition import PCA
|
||||
import umap
|
||||
from openTSNE import TSNE
|
||||
|
||||
|
||||
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||||
|
||||
def parse_ndjson(contents):
|
||||
"""Parse NDJSON content and return list of documents."""
|
||||
content_type, content_string = contents.split(',')
|
||||
decoded = base64.b64decode(content_string)
|
||||
text_content = decoded.decode('utf-8')
|
||||
|
||||
documents = []
|
||||
for line in text_content.strip().split('\n'):
|
||||
if line.strip():
|
||||
doc = json.loads(line)
|
||||
if 'id' not in doc:
|
||||
doc['id'] = str(uuid.uuid4())
|
||||
documents.append(doc)
|
||||
return documents
|
||||
|
||||
def apply_dimensionality_reduction(embeddings, method='pca', n_components=3):
|
||||
"""Apply dimensionality reduction to embeddings."""
|
||||
if method == 'pca':
|
||||
reducer = PCA(n_components=n_components)
|
||||
reduced = reducer.fit_transform(embeddings)
|
||||
variance_explained = reducer.explained_variance_ratio_
|
||||
return reduced, variance_explained
|
||||
elif method == 'tsne':
|
||||
reducer = TSNE(n_components=n_components, random_state=42)
|
||||
reduced = reducer.fit(embeddings)
|
||||
return reduced, None
|
||||
elif method == 'umap':
|
||||
reducer = umap.UMAP(n_components=n_components, random_state=42)
|
||||
reduced = reducer.fit_transform(embeddings)
|
||||
return reduced, None
|
||||
else:
|
||||
raise ValueError(f"Unknown method: {method}")
|
||||
|
||||
def create_color_mapping(documents, color_by):
|
||||
"""Create color mapping for documents based on specified field."""
|
||||
if color_by == 'category':
|
||||
values = [doc.get('category', 'Unknown') for doc in documents]
|
||||
elif color_by == 'subcategory':
|
||||
values = [doc.get('subcategory', 'Unknown') for doc in documents]
|
||||
elif color_by == 'tags':
|
||||
values = [', '.join(doc.get('tags', [])) if doc.get('tags') else 'No tags' for doc in documents]
|
||||
else:
|
||||
values = ['All'] * len(documents)
|
||||
|
||||
return values
|
||||
|
||||
def create_plot(df, dimensions='3d', color_by='category', method='PCA'):
|
||||
"""Create plotly scatter plot."""
|
||||
color_values = create_color_mapping(df.to_dict('records'), color_by)
|
||||
|
||||
# Truncate text for hover display
|
||||
df_display = df.copy()
|
||||
df_display['text_preview'] = df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
|
||||
|
||||
# Include all metadata fields in hover
|
||||
hover_fields = ['id', 'text_preview', 'category', 'subcategory']
|
||||
# Add tags as a string for hover
|
||||
df_display['tags_str'] = df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
|
||||
hover_fields.append('tags_str')
|
||||
|
||||
if dimensions == '3d':
|
||||
fig = px.scatter_3d(
|
||||
df_display, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f'3D Embedding Visualization - {method} (colored by {color_by})'
|
||||
)
|
||||
fig.update_traces(marker=dict(size=5))
|
||||
else:
|
||||
fig = px.scatter(
|
||||
df_display, x='dim_1', y='dim_2',
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f'2D Embedding Visualization - {method} (colored by {color_by})'
|
||||
)
|
||||
fig.update_traces(marker=dict(size=8))
|
||||
|
||||
fig.update_layout(
|
||||
height=None, # Let CSS height control this
|
||||
autosize=True,
|
||||
margin=dict(l=0, r=0, t=50, b=0)
|
||||
)
|
||||
return fig
|
||||
|
||||
def create_dual_plot(doc_df, prompt_df, dimensions='3d', color_by='category', method='PCA', show_prompts=None):
|
||||
"""Create plotly scatter plot with separate traces for documents and prompts."""
|
||||
|
||||
# Create the base figure
|
||||
fig = go.Figure()
|
||||
|
||||
# Helper function to convert colors to grayscale
|
||||
def to_grayscale_hex(color_str):
|
||||
"""Convert a color to grayscale while maintaining some distinction."""
|
||||
import plotly.colors as pc
|
||||
# Try to get RGB values from the color
|
||||
try:
|
||||
if color_str.startswith('#'):
|
||||
# Hex color
|
||||
rgb = tuple(int(color_str[i:i+2], 16) for i in (1, 3, 5))
|
||||
else:
|
||||
# Named color or other format - convert through plotly
|
||||
rgb = pc.hex_to_rgb(pc.convert_colors_to_same_type([color_str], colortype='hex')[0][0])
|
||||
|
||||
# Convert to grayscale using luminance formula, but keep some color
|
||||
gray_value = int(0.299 * rgb[0] + 0.587 * rgb[1] + 0.114 * rgb[2])
|
||||
# Make it a bit more gray but not completely
|
||||
gray_rgb = (gray_value * 0.7 + rgb[0] * 0.3,
|
||||
gray_value * 0.7 + rgb[1] * 0.3,
|
||||
gray_value * 0.7 + rgb[2] * 0.3)
|
||||
return f'rgb({int(gray_rgb[0])},{int(gray_rgb[1])},{int(gray_rgb[2])})'
|
||||
except:
|
||||
return 'rgb(128,128,128)' # fallback gray
|
||||
|
||||
# Create document plot using plotly express for consistent colors
|
||||
doc_color_values = create_color_mapping(doc_df.to_dict('records'), color_by)
|
||||
doc_df_display = doc_df.copy()
|
||||
doc_df_display['text_preview'] = doc_df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
|
||||
doc_df_display['tags_str'] = doc_df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
|
||||
|
||||
hover_fields = ['id', 'text_preview', 'category', 'subcategory', 'tags_str']
|
||||
|
||||
# Create documents plot to get the color mapping
|
||||
if dimensions == '3d':
|
||||
doc_fig = px.scatter_3d(
|
||||
doc_df_display, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
else:
|
||||
doc_fig = px.scatter(
|
||||
doc_df_display, x='dim_1', y='dim_2',
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
|
||||
# Add document traces to main figure
|
||||
for trace in doc_fig.data:
|
||||
trace.name = f'Documents - {trace.name}'
|
||||
if dimensions == '3d':
|
||||
trace.marker.size = 5
|
||||
trace.marker.symbol = 'circle'
|
||||
else:
|
||||
trace.marker.size = 8
|
||||
trace.marker.symbol = 'circle'
|
||||
trace.marker.opacity = 1.0
|
||||
fig.add_trace(trace)
|
||||
|
||||
# Add prompt traces if they exist
|
||||
if prompt_df is not None and show_prompts and 'show' in show_prompts:
|
||||
prompt_color_values = create_color_mapping(prompt_df.to_dict('records'), color_by)
|
||||
prompt_df_display = prompt_df.copy()
|
||||
prompt_df_display['text_preview'] = prompt_df_display['text'].apply(lambda x: x[:100] + "..." if len(x) > 100 else x)
|
||||
prompt_df_display['tags_str'] = prompt_df_display['tags'].apply(lambda x: ', '.join(x) if x else 'None')
|
||||
|
||||
# Create prompts plot to get consistent color grouping
|
||||
if dimensions == '3d':
|
||||
prompt_fig = px.scatter_3d(
|
||||
prompt_df_display, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
else:
|
||||
prompt_fig = px.scatter(
|
||||
prompt_df_display, x='dim_1', y='dim_2',
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
|
||||
# Add prompt traces with grayed colors
|
||||
for trace in prompt_fig.data:
|
||||
# Convert the color to grayscale
|
||||
original_color = trace.marker.color
|
||||
if hasattr(trace.marker, 'color') and isinstance(trace.marker.color, str):
|
||||
trace.marker.color = to_grayscale_hex(trace.marker.color)
|
||||
|
||||
trace.name = f'Prompts - {trace.name}'
|
||||
if dimensions == '3d':
|
||||
trace.marker.size = 6
|
||||
trace.marker.symbol = 'diamond'
|
||||
else:
|
||||
trace.marker.size = 10
|
||||
trace.marker.symbol = 'diamond'
|
||||
trace.marker.opacity = 0.8
|
||||
fig.add_trace(trace)
|
||||
|
||||
title = f'{dimensions.upper()} Embedding Visualization - {method} (colored by {color_by})'
|
||||
fig.update_layout(
|
||||
title=title,
|
||||
height=None,
|
||||
autosize=True,
|
||||
margin=dict(l=0, r=0, t=50, b=0)
|
||||
)
|
||||
|
||||
return fig
|
||||
|
||||
# Layout
|
||||
app.layout = dbc.Container([
|
||||
dbc.Row([
|
||||
dbc.Col([
|
||||
html.H1("EmbeddingBuddy", className="text-center mb-4"),
|
||||
], width=12)
|
||||
]),
|
||||
|
||||
dbc.Row([
|
||||
# Left sidebar with controls
|
||||
dbc.Col([
|
||||
html.H5("Upload Data", className="mb-3"),
|
||||
dcc.Upload(
|
||||
id='upload-data',
|
||||
children=html.Div([
|
||||
'Drag and Drop or ',
|
||||
html.A('Select Files')
|
||||
]),
|
||||
style={
|
||||
'width': '100%',
|
||||
'height': '60px',
|
||||
'lineHeight': '60px',
|
||||
'borderWidth': '1px',
|
||||
'borderStyle': 'dashed',
|
||||
'borderRadius': '5px',
|
||||
'textAlign': 'center',
|
||||
'margin-bottom': '20px'
|
||||
},
|
||||
multiple=False
|
||||
),
|
||||
|
||||
dcc.Upload(
|
||||
id='upload-prompts',
|
||||
children=html.Div([
|
||||
'Drag and Drop Prompts or ',
|
||||
html.A('Select Files')
|
||||
]),
|
||||
style={
|
||||
'width': '100%',
|
||||
'height': '60px',
|
||||
'lineHeight': '60px',
|
||||
'borderWidth': '1px',
|
||||
'borderStyle': 'dashed',
|
||||
'borderRadius': '5px',
|
||||
'textAlign': 'center',
|
||||
'margin-bottom': '20px',
|
||||
'borderColor': '#28a745'
|
||||
},
|
||||
multiple=False
|
||||
),
|
||||
|
||||
dbc.Button(
|
||||
"Reset All Data",
|
||||
id='reset-button',
|
||||
color='danger',
|
||||
outline=True,
|
||||
size='sm',
|
||||
className='mb-3',
|
||||
style={'width': '100%'}
|
||||
),
|
||||
|
||||
html.H5("Visualization Controls", className="mb-3"),
|
||||
|
||||
dbc.Label("Method:"),
|
||||
dcc.Dropdown(
|
||||
id='method-dropdown',
|
||||
options=[
|
||||
{'label': 'PCA', 'value': 'pca'},
|
||||
{'label': 't-SNE', 'value': 'tsne'},
|
||||
{'label': 'UMAP', 'value': 'umap'}
|
||||
],
|
||||
value='pca',
|
||||
style={'margin-bottom': '15px'}
|
||||
),
|
||||
|
||||
dbc.Label("Color by:"),
|
||||
dcc.Dropdown(
|
||||
id='color-dropdown',
|
||||
options=[
|
||||
{'label': 'Category', 'value': 'category'},
|
||||
{'label': 'Subcategory', 'value': 'subcategory'},
|
||||
{'label': 'Tags', 'value': 'tags'}
|
||||
],
|
||||
value='category',
|
||||
style={'margin-bottom': '15px'}
|
||||
),
|
||||
|
||||
dbc.Label("Dimensions:"),
|
||||
dcc.RadioItems(
|
||||
id='dimension-toggle',
|
||||
options=[
|
||||
{'label': '2D', 'value': '2d'},
|
||||
{'label': '3D', 'value': '3d'}
|
||||
],
|
||||
value='3d',
|
||||
style={'margin-bottom': '20px'}
|
||||
),
|
||||
|
||||
dbc.Label("Show Prompts:"),
|
||||
dcc.Checklist(
|
||||
id='show-prompts-toggle',
|
||||
options=[{'label': 'Show prompts on plot', 'value': 'show'}],
|
||||
value=['show'],
|
||||
style={'margin-bottom': '20px'}
|
||||
),
|
||||
|
||||
html.H5("Point Details", className="mb-3"),
|
||||
html.Div(id='point-details', children="Click on a point to see details")
|
||||
|
||||
], width=3, style={'padding-right': '20px'}),
|
||||
|
||||
# Main visualization area
|
||||
dbc.Col([
|
||||
dcc.Graph(
|
||||
id='embedding-plot',
|
||||
style={'height': '85vh', 'width': '100%'},
|
||||
config={'responsive': True, 'displayModeBar': True}
|
||||
)
|
||||
], width=9)
|
||||
]),
|
||||
|
||||
dcc.Store(id='processed-data'),
|
||||
dcc.Store(id='processed-prompts')
|
||||
], fluid=True)
|
||||
|
||||
@callback(
|
||||
Output('processed-data', 'data'),
|
||||
Input('upload-data', 'contents'),
|
||||
State('upload-data', 'filename')
|
||||
)
|
||||
def process_uploaded_file(contents, filename):
|
||||
if contents is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
documents = parse_ndjson(contents)
|
||||
embeddings = np.array([doc['embedding'] for doc in documents])
|
||||
|
||||
# Store original embeddings and documents
|
||||
return {
|
||||
'documents': documents,
|
||||
'embeddings': embeddings.tolist()
|
||||
}
|
||||
except Exception as e:
|
||||
return {'error': str(e)}
|
||||
|
||||
@callback(
|
||||
Output('processed-prompts', 'data'),
|
||||
Input('upload-prompts', 'contents'),
|
||||
State('upload-prompts', 'filename')
|
||||
)
|
||||
def process_uploaded_prompts(contents, filename):
|
||||
if contents is None:
|
||||
return None
|
||||
|
||||
try:
|
||||
prompts = parse_ndjson(contents)
|
||||
embeddings = np.array([prompt['embedding'] for prompt in prompts])
|
||||
|
||||
# Store original embeddings and prompts
|
||||
return {
|
||||
'prompts': prompts,
|
||||
'embeddings': embeddings.tolist()
|
||||
}
|
||||
except Exception as e:
|
||||
return {'error': str(e)}
|
||||
|
||||
@callback(
|
||||
Output('embedding-plot', 'figure'),
|
||||
[Input('processed-data', 'data'),
|
||||
Input('processed-prompts', 'data'),
|
||||
Input('method-dropdown', 'value'),
|
||||
Input('color-dropdown', 'value'),
|
||||
Input('dimension-toggle', 'value'),
|
||||
Input('show-prompts-toggle', 'value')]
|
||||
)
|
||||
def update_plot(data, prompts_data, method, color_by, dimensions, show_prompts):
|
||||
if not data or 'error' in data:
|
||||
return go.Figure().add_annotation(
|
||||
text="Upload a valid NDJSON file to see visualization",
|
||||
xref="paper", yref="paper",
|
||||
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
||||
showarrow=False, font=dict(size=16)
|
||||
)
|
||||
|
||||
# Prepare embeddings for dimensionality reduction
|
||||
doc_embeddings = np.array(data['embeddings'])
|
||||
all_embeddings = doc_embeddings
|
||||
has_prompts = prompts_data and 'error' not in prompts_data and prompts_data.get('prompts')
|
||||
|
||||
if has_prompts:
|
||||
prompt_embeddings = np.array(prompts_data['embeddings'])
|
||||
all_embeddings = np.vstack([doc_embeddings, prompt_embeddings])
|
||||
|
||||
n_components = 3 if dimensions == '3d' else 2
|
||||
|
||||
# Apply dimensionality reduction to combined data
|
||||
reduced, variance_explained = apply_dimensionality_reduction(
|
||||
all_embeddings, method=method, n_components=n_components
|
||||
)
|
||||
|
||||
# Split reduced embeddings back
|
||||
doc_reduced = reduced[:len(doc_embeddings)]
|
||||
prompt_reduced = reduced[len(doc_embeddings):] if has_prompts else None
|
||||
|
||||
# Create dataframes
|
||||
doc_df_data = []
|
||||
for i, doc in enumerate(data['documents']):
|
||||
row = {
|
||||
'id': doc['id'],
|
||||
'text': doc['text'],
|
||||
'category': doc.get('category', 'Unknown'),
|
||||
'subcategory': doc.get('subcategory', 'Unknown'),
|
||||
'tags': doc.get('tags', []),
|
||||
'dim_1': doc_reduced[i, 0],
|
||||
'dim_2': doc_reduced[i, 1],
|
||||
'type': 'document'
|
||||
}
|
||||
if dimensions == '3d':
|
||||
row['dim_3'] = doc_reduced[i, 2]
|
||||
doc_df_data.append(row)
|
||||
|
||||
doc_df = pd.DataFrame(doc_df_data)
|
||||
|
||||
prompt_df = None
|
||||
if has_prompts and prompt_reduced is not None:
|
||||
prompt_df_data = []
|
||||
for i, prompt in enumerate(prompts_data['prompts']):
|
||||
row = {
|
||||
'id': prompt['id'],
|
||||
'text': prompt['text'],
|
||||
'category': prompt.get('category', 'Unknown'),
|
||||
'subcategory': prompt.get('subcategory', 'Unknown'),
|
||||
'tags': prompt.get('tags', []),
|
||||
'dim_1': prompt_reduced[i, 0],
|
||||
'dim_2': prompt_reduced[i, 1],
|
||||
'type': 'prompt'
|
||||
}
|
||||
if dimensions == '3d':
|
||||
row['dim_3'] = prompt_reduced[i, 2]
|
||||
prompt_df_data.append(row)
|
||||
|
||||
prompt_df = pd.DataFrame(prompt_df_data)
|
||||
|
||||
return create_dual_plot(doc_df, prompt_df, dimensions, color_by, method.upper(), show_prompts)
|
||||
|
||||
@callback(
|
||||
Output('point-details', 'children'),
|
||||
Input('embedding-plot', 'clickData'),
|
||||
[State('processed-data', 'data'),
|
||||
State('processed-prompts', 'data')]
|
||||
)
|
||||
def display_click_data(clickData, data, prompts_data):
|
||||
if not clickData or not data:
|
||||
return "Click on a point to see details"
|
||||
|
||||
# Get point info from click
|
||||
point_data = clickData['points'][0]
|
||||
trace_name = point_data.get('fullData', {}).get('name', 'Documents')
|
||||
|
||||
if 'pointIndex' in point_data:
|
||||
point_index = point_data['pointIndex']
|
||||
elif 'pointNumber' in point_data:
|
||||
point_index = point_data['pointNumber']
|
||||
else:
|
||||
return "Could not identify clicked point"
|
||||
|
||||
# Determine which dataset this point belongs to
|
||||
if trace_name == 'Prompts' and prompts_data and 'prompts' in prompts_data:
|
||||
item = prompts_data['prompts'][point_index]
|
||||
item_type = 'Prompt'
|
||||
else:
|
||||
item = data['documents'][point_index]
|
||||
item_type = 'Document'
|
||||
|
||||
return dbc.Card([
|
||||
dbc.CardBody([
|
||||
html.H5(f"{item_type}: {item['id']}", className="card-title"),
|
||||
html.P(f"Text: {item['text']}", className="card-text"),
|
||||
html.P(f"Category: {item.get('category', 'Unknown')}", className="card-text"),
|
||||
html.P(f"Subcategory: {item.get('subcategory', 'Unknown')}", className="card-text"),
|
||||
html.P(f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}", className="card-text"),
|
||||
html.P(f"Type: {item_type}", className="card-text text-muted")
|
||||
])
|
||||
])
|
||||
|
||||
@callback(
|
||||
[Output('processed-data', 'data', allow_duplicate=True),
|
||||
Output('processed-prompts', 'data', allow_duplicate=True),
|
||||
Output('point-details', 'children', allow_duplicate=True)],
|
||||
Input('reset-button', 'n_clicks'),
|
||||
prevent_initial_call=True
|
||||
)
|
||||
def reset_data(n_clicks):
|
||||
if n_clicks is None or n_clicks == 0:
|
||||
return dash.no_update, dash.no_update, dash.no_update
|
||||
|
||||
return None, None, "Click on a point to see details"
|
||||
|
||||
if __name__ == '__main__':
|
||||
app.run(debug=True)
|
@@ -1,2 +0,0 @@
|
||||
<EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "Binary junk at start"}
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Normal line"}<7D><><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD><EFBFBD>
|
@@ -1,6 +0,0 @@
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "First line"}
|
||||
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "After empty line"}
|
||||
|
||||
|
||||
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1], "text": "After multiple empty lines"}
|
@@ -1,4 +0,0 @@
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "4D embedding"}
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2], "text": "3D embedding"}
|
||||
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1, 0.8], "text": "5D embedding"}
|
||||
{"id": "doc_004", "embedding": [0.2, 0.1], "text": "2D embedding"}
|
@@ -1,8 +0,0 @@
|
||||
{"id": "doc_001", "embedding": "not_an_array", "text": "Embedding as string"}
|
||||
{"id": "doc_002", "embedding": [0.1, "text", 0.7, 0.2], "text": "Mixed types in embedding"}
|
||||
{"id": "doc_003", "embedding": [], "text": "Empty embedding array"}
|
||||
{"id": "doc_004", "embedding": [0.1], "text": "Single dimension embedding"}
|
||||
{"id": "doc_005", "embedding": null, "text": "Null embedding"}
|
||||
{"id": "doc_006", "embedding": [0.1, 0.2, null, 0.4], "text": "Null value in embedding"}
|
||||
{"id": "doc_007", "embedding": [0.1, 0.2, "NaN", 0.4], "text": "String NaN in embedding"}
|
||||
{"id": "doc_008", "embedding": [0.1, 0.2, Infinity, 0.4], "text": "Infinity in embedding"}
|
@@ -1,5 +0,0 @@
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, "text": "Valid line"}
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Missing closing brace"
|
||||
{"id": "doc_003" "embedding": [0.3, 0.4, 0.1, -0.1], "text": "Missing colon after id"}
|
||||
{id: "doc_004", "embedding": [0.2, 0.1, 0.3, 0.4], "text": "Unquoted key"}
|
||||
{"id": "doc_005", "embedding": [0.1, 0.2, 0.3, 0.4], "text": "Valid line again"}
|
@@ -1,3 +0,0 @@
|
||||
{"id": "doc_001", "text": "Sample text without embedding field", "category": "test"}
|
||||
{"id": "doc_002", "text": "Another text without embedding", "category": "test"}
|
||||
{"id": "doc_003", "text": "Third text missing embedding", "category": "test"}
|
@@ -1,3 +0,0 @@
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "category": "test"}
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "category": "test"}
|
||||
{"id": "doc_003", "embedding": [0.3, 0.4, 0.1, -0.1], "category": "test"}
|
@@ -1,4 +0,0 @@
|
||||
[
|
||||
{"id": "doc_001", "embedding": [0.1, -0.3, 0.7, 0.2], "text": "Regular JSON array"},
|
||||
{"id": "doc_002", "embedding": [0.5, 0.1, -0.2, 0.8], "text": "Instead of NDJSON"}
|
||||
]
|
@@ -14,28 +14,7 @@ dependencies = [
|
||||
"umap-learn>=0.5.8",
|
||||
"numba>=0.56.4",
|
||||
"openTSNE>=1.0.0",
|
||||
"mypy>=1.17.1",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
test = [
|
||||
"pytest>=8.4.1",
|
||||
"pytest-cov>=4.1.0",
|
||||
]
|
||||
lint = [
|
||||
"ruff>=0.1.0",
|
||||
"mypy>=1.5.0",
|
||||
]
|
||||
security = [
|
||||
"bandit[toml]>=1.7.5",
|
||||
"safety>=2.3.0",
|
||||
"pip-audit>=2.6.0",
|
||||
]
|
||||
dev = [
|
||||
"embeddingbuddy[test,lint,security]",
|
||||
]
|
||||
all = [
|
||||
"embeddingbuddy[test,lint,security]",
|
||||
]
|
||||
|
||||
[build-system]
|
||||
|
@@ -1,3 +1,3 @@
|
||||
"""EmbeddingBuddy - Interactive exploration and visualization of embedding vectors."""
|
||||
|
||||
__version__ = "0.1.0"
|
||||
__version__ = "0.1.0"
|
@@ -8,29 +8,32 @@ from .ui.callbacks.interactions import InteractionCallbacks
|
||||
|
||||
|
||||
def create_app():
|
||||
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||||
|
||||
app = dash.Dash(
|
||||
__name__,
|
||||
external_stylesheets=[dbc.themes.BOOTSTRAP]
|
||||
)
|
||||
|
||||
layout_manager = AppLayout()
|
||||
app.layout = layout_manager.create_layout()
|
||||
|
||||
|
||||
DataProcessingCallbacks()
|
||||
VisualizationCallbacks()
|
||||
InteractionCallbacks()
|
||||
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def run_app(app=None, debug=None, host=None, port=None):
|
||||
if app is None:
|
||||
app = create_app()
|
||||
|
||||
|
||||
app.run(
|
||||
debug=debug if debug is not None else AppSettings.DEBUG,
|
||||
host=host if host is not None else AppSettings.HOST,
|
||||
port=port if port is not None else AppSettings.PORT,
|
||||
port=port if port is not None else AppSettings.PORT
|
||||
)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
if __name__ == '__main__':
|
||||
app = create_app()
|
||||
run_app(app)
|
||||
run_app(app)
|
@@ -3,100 +3,105 @@ import os
|
||||
|
||||
|
||||
class AppSettings:
|
||||
|
||||
# UI Configuration
|
||||
UPLOAD_STYLE = {
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
'width': '100%',
|
||||
'height': '60px',
|
||||
'lineHeight': '60px',
|
||||
'borderWidth': '1px',
|
||||
'borderStyle': 'dashed',
|
||||
'borderRadius': '5px',
|
||||
'textAlign': 'center',
|
||||
'margin-bottom': '20px'
|
||||
}
|
||||
|
||||
PROMPTS_UPLOAD_STYLE = {**UPLOAD_STYLE, "borderColor": "#28a745"}
|
||||
|
||||
PLOT_CONFIG = {"responsive": True, "displayModeBar": True}
|
||||
|
||||
PLOT_STYLE = {"height": "85vh", "width": "100%"}
|
||||
|
||||
|
||||
PROMPTS_UPLOAD_STYLE = {
|
||||
**UPLOAD_STYLE,
|
||||
'borderColor': '#28a745'
|
||||
}
|
||||
|
||||
PLOT_CONFIG = {
|
||||
'responsive': True,
|
||||
'displayModeBar': True
|
||||
}
|
||||
|
||||
PLOT_STYLE = {
|
||||
'height': '85vh',
|
||||
'width': '100%'
|
||||
}
|
||||
|
||||
PLOT_LAYOUT_CONFIG = {
|
||||
"height": None,
|
||||
"autosize": True,
|
||||
"margin": dict(l=0, r=0, t=50, b=0),
|
||||
'height': None,
|
||||
'autosize': True,
|
||||
'margin': dict(l=0, r=0, t=50, b=0)
|
||||
}
|
||||
|
||||
|
||||
# Dimensionality Reduction Settings
|
||||
DEFAULT_N_COMPONENTS_3D = 3
|
||||
DEFAULT_N_COMPONENTS_2D = 2
|
||||
DEFAULT_RANDOM_STATE = 42
|
||||
|
||||
|
||||
# Available Methods
|
||||
REDUCTION_METHODS = [
|
||||
{"label": "PCA", "value": "pca"},
|
||||
{"label": "t-SNE", "value": "tsne"},
|
||||
{"label": "UMAP", "value": "umap"},
|
||||
{'label': 'PCA', 'value': 'pca'},
|
||||
{'label': 't-SNE', 'value': 'tsne'},
|
||||
{'label': 'UMAP', 'value': 'umap'}
|
||||
]
|
||||
|
||||
|
||||
COLOR_OPTIONS = [
|
||||
{"label": "Category", "value": "category"},
|
||||
{"label": "Subcategory", "value": "subcategory"},
|
||||
{"label": "Tags", "value": "tags"},
|
||||
{'label': 'Category', 'value': 'category'},
|
||||
{'label': 'Subcategory', 'value': 'subcategory'},
|
||||
{'label': 'Tags', 'value': 'tags'}
|
||||
]
|
||||
|
||||
DIMENSION_OPTIONS = [{"label": "2D", "value": "2d"}, {"label": "3D", "value": "3d"}]
|
||||
|
||||
|
||||
DIMENSION_OPTIONS = [
|
||||
{'label': '2D', 'value': '2d'},
|
||||
{'label': '3D', 'value': '3d'}
|
||||
]
|
||||
|
||||
# Default Values
|
||||
DEFAULT_METHOD = "pca"
|
||||
DEFAULT_COLOR_BY = "category"
|
||||
DEFAULT_DIMENSIONS = "3d"
|
||||
DEFAULT_SHOW_PROMPTS = ["show"]
|
||||
|
||||
DEFAULT_METHOD = 'pca'
|
||||
DEFAULT_COLOR_BY = 'category'
|
||||
DEFAULT_DIMENSIONS = '3d'
|
||||
DEFAULT_SHOW_PROMPTS = ['show']
|
||||
|
||||
# Plot Marker Settings
|
||||
DOCUMENT_MARKER_SIZE_2D = 8
|
||||
DOCUMENT_MARKER_SIZE_3D = 5
|
||||
PROMPT_MARKER_SIZE_2D = 10
|
||||
PROMPT_MARKER_SIZE_3D = 6
|
||||
|
||||
DOCUMENT_MARKER_SYMBOL = "circle"
|
||||
PROMPT_MARKER_SYMBOL = "diamond"
|
||||
|
||||
|
||||
DOCUMENT_MARKER_SYMBOL = 'circle'
|
||||
PROMPT_MARKER_SYMBOL = 'diamond'
|
||||
|
||||
DOCUMENT_OPACITY = 1.0
|
||||
PROMPT_OPACITY = 0.8
|
||||
|
||||
|
||||
# Text Processing
|
||||
TEXT_PREVIEW_LENGTH = 100
|
||||
|
||||
|
||||
# App Configuration
|
||||
DEBUG = os.getenv("EMBEDDINGBUDDY_DEBUG", "True").lower() == "true"
|
||||
HOST = os.getenv("EMBEDDINGBUDDY_HOST", "127.0.0.1")
|
||||
PORT = int(os.getenv("EMBEDDINGBUDDY_PORT", "8050"))
|
||||
|
||||
DEBUG = os.getenv('EMBEDDINGBUDDY_DEBUG', 'True').lower() == 'true'
|
||||
HOST = os.getenv('EMBEDDINGBUDDY_HOST', '127.0.0.1')
|
||||
PORT = int(os.getenv('EMBEDDINGBUDDY_PORT', '8050'))
|
||||
|
||||
# Bootstrap Theme
|
||||
EXTERNAL_STYLESHEETS = [
|
||||
"https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"
|
||||
]
|
||||
|
||||
EXTERNAL_STYLESHEETS = ['https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css']
|
||||
|
||||
@classmethod
|
||||
def get_plot_marker_config(
|
||||
cls, dimensions: str, is_prompt: bool = False
|
||||
) -> Dict[str, Any]:
|
||||
def get_plot_marker_config(cls, dimensions: str, is_prompt: bool = False) -> Dict[str, Any]:
|
||||
if is_prompt:
|
||||
size = (
|
||||
cls.PROMPT_MARKER_SIZE_3D
|
||||
if dimensions == "3d"
|
||||
else cls.PROMPT_MARKER_SIZE_2D
|
||||
)
|
||||
size = cls.PROMPT_MARKER_SIZE_3D if dimensions == '3d' else cls.PROMPT_MARKER_SIZE_2D
|
||||
symbol = cls.PROMPT_MARKER_SYMBOL
|
||||
opacity = cls.PROMPT_OPACITY
|
||||
else:
|
||||
size = (
|
||||
cls.DOCUMENT_MARKER_SIZE_3D
|
||||
if dimensions == "3d"
|
||||
else cls.DOCUMENT_MARKER_SIZE_2D
|
||||
)
|
||||
size = cls.DOCUMENT_MARKER_SIZE_3D if dimensions == '3d' else cls.DOCUMENT_MARKER_SIZE_2D
|
||||
symbol = cls.DOCUMENT_MARKER_SYMBOL
|
||||
opacity = cls.DOCUMENT_OPACITY
|
||||
|
||||
return {"size": size, "symbol": symbol, "opacity": opacity}
|
||||
|
||||
return {
|
||||
'size': size,
|
||||
'symbol': symbol,
|
||||
'opacity': opacity
|
||||
}
|
@@ -6,67 +6,34 @@ from ..models.schemas import Document
|
||||
|
||||
|
||||
class NDJSONParser:
|
||||
|
||||
@staticmethod
|
||||
def parse_upload_contents(contents: str) -> List[Document]:
|
||||
content_type, content_string = contents.split(",")
|
||||
content_type, content_string = contents.split(',')
|
||||
decoded = base64.b64decode(content_string)
|
||||
text_content = decoded.decode("utf-8")
|
||||
text_content = decoded.decode('utf-8')
|
||||
return NDJSONParser.parse_text(text_content)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def parse_text(text_content: str) -> List[Document]:
|
||||
documents = []
|
||||
for line_num, line in enumerate(text_content.strip().split("\n"), 1):
|
||||
for line in text_content.strip().split('\n'):
|
||||
if line.strip():
|
||||
try:
|
||||
doc_dict = json.loads(line)
|
||||
doc = NDJSONParser._dict_to_document(doc_dict)
|
||||
documents.append(doc)
|
||||
except json.JSONDecodeError as e:
|
||||
raise json.JSONDecodeError(
|
||||
f"Invalid JSON on line {line_num}: {e.msg}", e.doc, e.pos
|
||||
)
|
||||
except KeyError as e:
|
||||
raise KeyError(f"Missing required field {e} on line {line_num}")
|
||||
except (TypeError, ValueError) as e:
|
||||
raise ValueError(
|
||||
f"Invalid data format on line {line_num}: {str(e)}"
|
||||
)
|
||||
doc_dict = json.loads(line)
|
||||
doc = NDJSONParser._dict_to_document(doc_dict)
|
||||
documents.append(doc)
|
||||
return documents
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _dict_to_document(doc_dict: dict) -> Document:
|
||||
if "id" not in doc_dict:
|
||||
doc_dict["id"] = str(uuid.uuid4())
|
||||
|
||||
# Validate required fields
|
||||
if "text" not in doc_dict:
|
||||
raise KeyError("'text'")
|
||||
if "embedding" not in doc_dict:
|
||||
raise KeyError("'embedding'")
|
||||
|
||||
# Validate embedding format
|
||||
embedding = doc_dict["embedding"]
|
||||
if not isinstance(embedding, list):
|
||||
raise ValueError(
|
||||
f"Embedding must be a list, got {type(embedding).__name__}"
|
||||
)
|
||||
|
||||
if not embedding:
|
||||
raise ValueError("Embedding cannot be empty")
|
||||
|
||||
# Check that all embedding values are numbers
|
||||
for i, val in enumerate(embedding):
|
||||
if not isinstance(val, (int, float)) or val != val: # NaN check
|
||||
raise ValueError(
|
||||
f"Embedding contains invalid value at index {i}: {val}"
|
||||
)
|
||||
|
||||
if 'id' not in doc_dict:
|
||||
doc_dict['id'] = str(uuid.uuid4())
|
||||
|
||||
return Document(
|
||||
id=doc_dict["id"],
|
||||
text=doc_dict["text"],
|
||||
embedding=embedding,
|
||||
category=doc_dict.get("category"),
|
||||
subcategory=doc_dict.get("subcategory"),
|
||||
tags=doc_dict.get("tags"),
|
||||
)
|
||||
id=doc_dict['id'],
|
||||
text=doc_dict['text'],
|
||||
embedding=doc_dict['embedding'],
|
||||
category=doc_dict.get('category'),
|
||||
subcategory=doc_dict.get('subcategory'),
|
||||
tags=doc_dict.get('tags')
|
||||
)
|
@@ -5,19 +5,18 @@ from .parser import NDJSONParser
|
||||
|
||||
|
||||
class DataProcessor:
|
||||
|
||||
def __init__(self):
|
||||
self.parser = NDJSONParser()
|
||||
|
||||
def process_upload(
|
||||
self, contents: str, filename: Optional[str] = None
|
||||
) -> ProcessedData:
|
||||
|
||||
def process_upload(self, contents: str, filename: Optional[str] = None) -> ProcessedData:
|
||||
try:
|
||||
documents = self.parser.parse_upload_contents(contents)
|
||||
embeddings = self._extract_embeddings(documents)
|
||||
return ProcessedData(documents=documents, embeddings=embeddings)
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
|
||||
def process_text(self, text_content: str) -> ProcessedData:
|
||||
try:
|
||||
documents = self.parser.parse_text(text_content)
|
||||
@@ -25,35 +24,31 @@ class DataProcessor:
|
||||
return ProcessedData(documents=documents, embeddings=embeddings)
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
|
||||
def _extract_embeddings(self, documents: List[Document]) -> np.ndarray:
|
||||
if not documents:
|
||||
return np.array([])
|
||||
return np.array([doc.embedding for doc in documents])
|
||||
|
||||
def combine_data(
|
||||
self, doc_data: ProcessedData, prompt_data: Optional[ProcessedData] = None
|
||||
) -> Tuple[np.ndarray, List[Document], Optional[List[Document]]]:
|
||||
|
||||
def combine_data(self, doc_data: ProcessedData, prompt_data: Optional[ProcessedData] = None) -> Tuple[np.ndarray, List[Document], Optional[List[Document]]]:
|
||||
if not doc_data or doc_data.error:
|
||||
raise ValueError("Invalid document data")
|
||||
|
||||
|
||||
all_embeddings = doc_data.embeddings
|
||||
documents = doc_data.documents
|
||||
prompts = None
|
||||
|
||||
|
||||
if prompt_data and not prompt_data.error and prompt_data.documents:
|
||||
all_embeddings = np.vstack([doc_data.embeddings, prompt_data.embeddings])
|
||||
prompts = prompt_data.documents
|
||||
|
||||
|
||||
return all_embeddings, documents, prompts
|
||||
|
||||
def split_reduced_data(
|
||||
self, reduced_embeddings: np.ndarray, n_documents: int, n_prompts: int = 0
|
||||
) -> Tuple[np.ndarray, Optional[np.ndarray]]:
|
||||
|
||||
def split_reduced_data(self, reduced_embeddings: np.ndarray, n_documents: int, n_prompts: int = 0) -> Tuple[np.ndarray, Optional[np.ndarray]]:
|
||||
doc_reduced = reduced_embeddings[:n_documents]
|
||||
prompt_reduced = None
|
||||
|
||||
|
||||
if n_prompts > 0:
|
||||
prompt_reduced = reduced_embeddings[n_documents : n_documents + n_prompts]
|
||||
|
||||
return doc_reduced, prompt_reduced
|
||||
prompt_reduced = reduced_embeddings[n_documents:n_documents + n_prompts]
|
||||
|
||||
return doc_reduced, prompt_reduced
|
@@ -7,89 +7,88 @@ from .schemas import ReducedData
|
||||
|
||||
|
||||
class DimensionalityReducer(ABC):
|
||||
|
||||
def __init__(self, n_components: int = 3, random_state: int = 42):
|
||||
self.n_components = n_components
|
||||
self.random_state = random_state
|
||||
self._reducer = None
|
||||
|
||||
|
||||
@abstractmethod
|
||||
def fit_transform(self, embeddings: np.ndarray) -> ReducedData:
|
||||
pass
|
||||
|
||||
|
||||
@abstractmethod
|
||||
def get_method_name(self) -> str:
|
||||
pass
|
||||
|
||||
|
||||
class PCAReducer(DimensionalityReducer):
|
||||
|
||||
def fit_transform(self, embeddings: np.ndarray) -> ReducedData:
|
||||
self._reducer = PCA(n_components=self.n_components)
|
||||
reduced = self._reducer.fit_transform(embeddings)
|
||||
variance_explained = self._reducer.explained_variance_ratio_
|
||||
|
||||
|
||||
return ReducedData(
|
||||
reduced_embeddings=reduced,
|
||||
variance_explained=variance_explained,
|
||||
method=self.get_method_name(),
|
||||
n_components=self.n_components,
|
||||
n_components=self.n_components
|
||||
)
|
||||
|
||||
|
||||
def get_method_name(self) -> str:
|
||||
return "PCA"
|
||||
|
||||
|
||||
class TSNEReducer(DimensionalityReducer):
|
||||
|
||||
def fit_transform(self, embeddings: np.ndarray) -> ReducedData:
|
||||
self._reducer = TSNE(
|
||||
n_components=self.n_components, random_state=self.random_state
|
||||
)
|
||||
self._reducer = TSNE(n_components=self.n_components, random_state=self.random_state)
|
||||
reduced = self._reducer.fit(embeddings)
|
||||
|
||||
|
||||
return ReducedData(
|
||||
reduced_embeddings=reduced,
|
||||
variance_explained=None,
|
||||
method=self.get_method_name(),
|
||||
n_components=self.n_components,
|
||||
n_components=self.n_components
|
||||
)
|
||||
|
||||
|
||||
def get_method_name(self) -> str:
|
||||
return "t-SNE"
|
||||
|
||||
|
||||
class UMAPReducer(DimensionalityReducer):
|
||||
|
||||
def fit_transform(self, embeddings: np.ndarray) -> ReducedData:
|
||||
self._reducer = umap.UMAP(
|
||||
n_components=self.n_components, random_state=self.random_state
|
||||
)
|
||||
self._reducer = umap.UMAP(n_components=self.n_components, random_state=self.random_state)
|
||||
reduced = self._reducer.fit_transform(embeddings)
|
||||
|
||||
|
||||
return ReducedData(
|
||||
reduced_embeddings=reduced,
|
||||
variance_explained=None,
|
||||
method=self.get_method_name(),
|
||||
n_components=self.n_components,
|
||||
n_components=self.n_components
|
||||
)
|
||||
|
||||
|
||||
def get_method_name(self) -> str:
|
||||
return "UMAP"
|
||||
|
||||
|
||||
class ReducerFactory:
|
||||
|
||||
@staticmethod
|
||||
def create_reducer(
|
||||
method: str, n_components: int = 3, random_state: int = 42
|
||||
) -> DimensionalityReducer:
|
||||
def create_reducer(method: str, n_components: int = 3, random_state: int = 42) -> DimensionalityReducer:
|
||||
method_lower = method.lower()
|
||||
|
||||
if method_lower == "pca":
|
||||
|
||||
if method_lower == 'pca':
|
||||
return PCAReducer(n_components=n_components, random_state=random_state)
|
||||
elif method_lower == "tsne":
|
||||
elif method_lower == 'tsne':
|
||||
return TSNEReducer(n_components=n_components, random_state=random_state)
|
||||
elif method_lower == "umap":
|
||||
elif method_lower == 'umap':
|
||||
return UMAPReducer(n_components=n_components, random_state=random_state)
|
||||
else:
|
||||
raise ValueError(f"Unknown reduction method: {method}")
|
||||
|
||||
|
||||
@staticmethod
|
||||
def get_available_methods() -> list:
|
||||
return ["pca", "tsne", "umap"]
|
||||
return ['pca', 'tsne', 'umap']
|
@@ -50,11 +50,9 @@ class PlotData:
|
||||
coordinates: np.ndarray
|
||||
prompts: Optional[List[Document]] = None
|
||||
prompt_coordinates: Optional[np.ndarray] = None
|
||||
|
||||
|
||||
def __post_init__(self):
|
||||
if not isinstance(self.coordinates, np.ndarray):
|
||||
self.coordinates = np.array(self.coordinates)
|
||||
if self.prompt_coordinates is not None and not isinstance(
|
||||
self.prompt_coordinates, np.ndarray
|
||||
):
|
||||
self.prompt_coordinates = np.array(self.prompt_coordinates)
|
||||
if self.prompt_coordinates is not None and not isinstance(self.prompt_coordinates, np.ndarray):
|
||||
self.prompt_coordinates = np.array(self.prompt_coordinates)
|
@@ -3,118 +3,58 @@ from ...data.processor import DataProcessor
|
||||
|
||||
|
||||
class DataProcessingCallbacks:
|
||||
|
||||
def __init__(self):
|
||||
self.processor = DataProcessor()
|
||||
self._register_callbacks()
|
||||
|
||||
|
||||
def _register_callbacks(self):
|
||||
|
||||
@callback(
|
||||
[
|
||||
Output("processed-data", "data", allow_duplicate=True),
|
||||
Output("upload-error-alert", "children", allow_duplicate=True),
|
||||
Output("upload-error-alert", "is_open", allow_duplicate=True),
|
||||
],
|
||||
Input("upload-data", "contents"),
|
||||
State("upload-data", "filename"),
|
||||
prevent_initial_call=True,
|
||||
Output('processed-data', 'data'),
|
||||
Input('upload-data', 'contents'),
|
||||
State('upload-data', 'filename')
|
||||
)
|
||||
def process_uploaded_file(contents, filename):
|
||||
if contents is None:
|
||||
return None, "", False
|
||||
|
||||
return None
|
||||
|
||||
processed_data = self.processor.process_upload(contents, filename)
|
||||
|
||||
|
||||
if processed_data.error:
|
||||
error_message = self._format_error_message(
|
||||
processed_data.error, filename
|
||||
)
|
||||
return (
|
||||
{"error": processed_data.error},
|
||||
error_message,
|
||||
True, # Show error alert
|
||||
)
|
||||
|
||||
return (
|
||||
{
|
||||
"documents": [
|
||||
self._document_to_dict(doc) for doc in processed_data.documents
|
||||
],
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
},
|
||||
"",
|
||||
False, # Hide error alert
|
||||
)
|
||||
|
||||
return {'error': processed_data.error}
|
||||
|
||||
return {
|
||||
'documents': [self._document_to_dict(doc) for doc in processed_data.documents],
|
||||
'embeddings': processed_data.embeddings.tolist()
|
||||
}
|
||||
|
||||
@callback(
|
||||
Output("processed-prompts", "data", allow_duplicate=True),
|
||||
Input("upload-prompts", "contents"),
|
||||
State("upload-prompts", "filename"),
|
||||
prevent_initial_call=True,
|
||||
Output('processed-prompts', 'data'),
|
||||
Input('upload-prompts', 'contents'),
|
||||
State('upload-prompts', 'filename')
|
||||
)
|
||||
def process_uploaded_prompts(contents, filename):
|
||||
if contents is None:
|
||||
return None
|
||||
|
||||
|
||||
processed_data = self.processor.process_upload(contents, filename)
|
||||
|
||||
|
||||
if processed_data.error:
|
||||
return {"error": processed_data.error}
|
||||
|
||||
return {'error': processed_data.error}
|
||||
|
||||
return {
|
||||
"prompts": [
|
||||
self._document_to_dict(doc) for doc in processed_data.documents
|
||||
],
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
'prompts': [self._document_to_dict(doc) for doc in processed_data.documents],
|
||||
'embeddings': processed_data.embeddings.tolist()
|
||||
}
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _document_to_dict(doc):
|
||||
return {
|
||||
"id": doc.id,
|
||||
"text": doc.text,
|
||||
"embedding": doc.embedding,
|
||||
"category": doc.category,
|
||||
"subcategory": doc.subcategory,
|
||||
"tags": doc.tags,
|
||||
}
|
||||
|
||||
@staticmethod
|
||||
def _format_error_message(error: str, filename: str | None = None) -> str:
|
||||
"""Format error message with helpful guidance for users."""
|
||||
file_part = f" in file '{filename}'" if filename else ""
|
||||
|
||||
# Check for common error patterns and provide helpful messages
|
||||
if "embedding" in error.lower() and (
|
||||
"key" in error.lower() or "required field" in error.lower()
|
||||
):
|
||||
return (
|
||||
f"❌ Missing 'embedding' field{file_part}. "
|
||||
"Each line must contain an 'embedding' field with a list of numbers."
|
||||
)
|
||||
elif "text" in error.lower() and (
|
||||
"key" in error.lower() or "required field" in error.lower()
|
||||
):
|
||||
return (
|
||||
f"❌ Missing 'text' field{file_part}. "
|
||||
"Each line must contain a 'text' field with the document content."
|
||||
)
|
||||
elif "json" in error.lower() and "decode" in error.lower():
|
||||
return (
|
||||
f"❌ Invalid JSON format{file_part}. "
|
||||
"Please check that each line is valid JSON with proper syntax (quotes, braces, etc.)."
|
||||
)
|
||||
elif "unicode" in error.lower() or "decode" in error.lower():
|
||||
return (
|
||||
f"❌ File encoding issue{file_part}. "
|
||||
"Please ensure the file is saved in UTF-8 format and contains no binary data."
|
||||
)
|
||||
elif "array" in error.lower() or "list" in error.lower():
|
||||
return (
|
||||
f"❌ Invalid embedding format{file_part}. "
|
||||
"Embeddings must be arrays/lists of numbers, not strings or other types."
|
||||
)
|
||||
else:
|
||||
return (
|
||||
f"❌ Error processing file{file_part}: {error}. "
|
||||
"Please check that your file is valid NDJSON with required 'text' and 'embedding' fields."
|
||||
)
|
||||
'id': doc.id,
|
||||
'text': doc.text,
|
||||
'embedding': doc.embedding,
|
||||
'category': doc.category,
|
||||
'subcategory': doc.subcategory,
|
||||
'tags': doc.tags
|
||||
}
|
@@ -4,79 +4,63 @@ import dash_bootstrap_components as dbc
|
||||
|
||||
|
||||
class InteractionCallbacks:
|
||||
|
||||
def __init__(self):
|
||||
self._register_callbacks()
|
||||
|
||||
|
||||
def _register_callbacks(self):
|
||||
|
||||
@callback(
|
||||
Output("point-details", "children"),
|
||||
Input("embedding-plot", "clickData"),
|
||||
[State("processed-data", "data"), State("processed-prompts", "data")],
|
||||
Output('point-details', 'children'),
|
||||
Input('embedding-plot', 'clickData'),
|
||||
[State('processed-data', 'data'),
|
||||
State('processed-prompts', 'data')]
|
||||
)
|
||||
def display_click_data(clickData, data, prompts_data):
|
||||
if not clickData or not data:
|
||||
return "Click on a point to see details"
|
||||
|
||||
point_data = clickData["points"][0]
|
||||
trace_name = point_data.get("fullData", {}).get("name", "Documents")
|
||||
|
||||
if "pointIndex" in point_data:
|
||||
point_index = point_data["pointIndex"]
|
||||
elif "pointNumber" in point_data:
|
||||
point_index = point_data["pointNumber"]
|
||||
|
||||
point_data = clickData['points'][0]
|
||||
trace_name = point_data.get('fullData', {}).get('name', 'Documents')
|
||||
|
||||
if 'pointIndex' in point_data:
|
||||
point_index = point_data['pointIndex']
|
||||
elif 'pointNumber' in point_data:
|
||||
point_index = point_data['pointNumber']
|
||||
else:
|
||||
return "Could not identify clicked point"
|
||||
|
||||
if (
|
||||
trace_name.startswith("Prompts")
|
||||
and prompts_data
|
||||
and "prompts" in prompts_data
|
||||
):
|
||||
item = prompts_data["prompts"][point_index]
|
||||
item_type = "Prompt"
|
||||
|
||||
if trace_name.startswith('Prompts') and prompts_data and 'prompts' in prompts_data:
|
||||
item = prompts_data['prompts'][point_index]
|
||||
item_type = 'Prompt'
|
||||
else:
|
||||
item = data["documents"][point_index]
|
||||
item_type = "Document"
|
||||
|
||||
item = data['documents'][point_index]
|
||||
item_type = 'Document'
|
||||
|
||||
return self._create_detail_card(item, item_type)
|
||||
|
||||
|
||||
@callback(
|
||||
[
|
||||
Output("processed-data", "data", allow_duplicate=True),
|
||||
Output("processed-prompts", "data", allow_duplicate=True),
|
||||
Output("point-details", "children", allow_duplicate=True),
|
||||
],
|
||||
Input("reset-button", "n_clicks"),
|
||||
prevent_initial_call=True,
|
||||
[Output('processed-data', 'data', allow_duplicate=True),
|
||||
Output('processed-prompts', 'data', allow_duplicate=True),
|
||||
Output('point-details', 'children', allow_duplicate=True)],
|
||||
Input('reset-button', 'n_clicks'),
|
||||
prevent_initial_call=True
|
||||
)
|
||||
def reset_data(n_clicks):
|
||||
if n_clicks is None or n_clicks == 0:
|
||||
return dash.no_update, dash.no_update, dash.no_update
|
||||
|
||||
|
||||
return None, None, "Click on a point to see details"
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _create_detail_card(item, item_type):
|
||||
return dbc.Card(
|
||||
[
|
||||
dbc.CardBody(
|
||||
[
|
||||
html.H5(f"{item_type}: {item['id']}", className="card-title"),
|
||||
html.P(f"Text: {item['text']}", className="card-text"),
|
||||
html.P(
|
||||
f"Category: {item.get('category', 'Unknown')}",
|
||||
className="card-text",
|
||||
),
|
||||
html.P(
|
||||
f"Subcategory: {item.get('subcategory', 'Unknown')}",
|
||||
className="card-text",
|
||||
),
|
||||
html.P(
|
||||
f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}",
|
||||
className="card-text",
|
||||
),
|
||||
html.P(f"Type: {item_type}", className="card-text text-muted"),
|
||||
]
|
||||
)
|
||||
]
|
||||
)
|
||||
return dbc.Card([
|
||||
dbc.CardBody([
|
||||
html.H5(f"{item_type}: {item['id']}", className="card-title"),
|
||||
html.P(f"Text: {item['text']}", className="card-text"),
|
||||
html.P(f"Category: {item.get('category', 'Unknown')}", className="card-text"),
|
||||
html.P(f"Subcategory: {item.get('subcategory', 'Unknown')}", className="card-text"),
|
||||
html.P(f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}", className="card-text"),
|
||||
html.P(f"Type: {item_type}", className="card-text text-muted")
|
||||
])
|
||||
])
|
@@ -7,102 +7,81 @@ from ...visualization.plots import PlotFactory
|
||||
|
||||
|
||||
class VisualizationCallbacks:
|
||||
|
||||
def __init__(self):
|
||||
self.plot_factory = PlotFactory()
|
||||
self._register_callbacks()
|
||||
|
||||
|
||||
def _register_callbacks(self):
|
||||
|
||||
@callback(
|
||||
Output("embedding-plot", "figure"),
|
||||
[
|
||||
Input("processed-data", "data"),
|
||||
Input("processed-prompts", "data"),
|
||||
Input("method-dropdown", "value"),
|
||||
Input("color-dropdown", "value"),
|
||||
Input("dimension-toggle", "value"),
|
||||
Input("show-prompts-toggle", "value"),
|
||||
],
|
||||
Output('embedding-plot', 'figure'),
|
||||
[Input('processed-data', 'data'),
|
||||
Input('processed-prompts', 'data'),
|
||||
Input('method-dropdown', 'value'),
|
||||
Input('color-dropdown', 'value'),
|
||||
Input('dimension-toggle', 'value'),
|
||||
Input('show-prompts-toggle', 'value')]
|
||||
)
|
||||
def update_plot(data, prompts_data, method, color_by, dimensions, show_prompts):
|
||||
if not data or "error" in data:
|
||||
if not data or 'error' in data:
|
||||
return go.Figure().add_annotation(
|
||||
text="Upload a valid NDJSON file to see visualization",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
xanchor="center",
|
||||
yanchor="middle",
|
||||
showarrow=False,
|
||||
font=dict(size=16),
|
||||
xref="paper", yref="paper",
|
||||
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
||||
showarrow=False, font=dict(size=16)
|
||||
)
|
||||
|
||||
|
||||
try:
|
||||
doc_embeddings = np.array(data["embeddings"])
|
||||
doc_embeddings = np.array(data['embeddings'])
|
||||
all_embeddings = doc_embeddings
|
||||
has_prompts = (
|
||||
prompts_data
|
||||
and "error" not in prompts_data
|
||||
and prompts_data.get("prompts")
|
||||
)
|
||||
|
||||
has_prompts = prompts_data and 'error' not in prompts_data and prompts_data.get('prompts')
|
||||
|
||||
if has_prompts:
|
||||
prompt_embeddings = np.array(prompts_data["embeddings"])
|
||||
prompt_embeddings = np.array(prompts_data['embeddings'])
|
||||
all_embeddings = np.vstack([doc_embeddings, prompt_embeddings])
|
||||
|
||||
n_components = 3 if dimensions == "3d" else 2
|
||||
|
||||
reducer = ReducerFactory.create_reducer(
|
||||
method, n_components=n_components
|
||||
)
|
||||
|
||||
n_components = 3 if dimensions == '3d' else 2
|
||||
|
||||
reducer = ReducerFactory.create_reducer(method, n_components=n_components)
|
||||
reduced_data = reducer.fit_transform(all_embeddings)
|
||||
|
||||
doc_reduced = reduced_data.reduced_embeddings[: len(doc_embeddings)]
|
||||
|
||||
doc_reduced = reduced_data.reduced_embeddings[:len(doc_embeddings)]
|
||||
prompt_reduced = None
|
||||
if has_prompts:
|
||||
prompt_reduced = reduced_data.reduced_embeddings[
|
||||
len(doc_embeddings) :
|
||||
]
|
||||
|
||||
documents = [self._dict_to_document(doc) for doc in data["documents"]]
|
||||
prompt_reduced = reduced_data.reduced_embeddings[len(doc_embeddings):]
|
||||
|
||||
documents = [self._dict_to_document(doc) for doc in data['documents']]
|
||||
prompts = None
|
||||
if has_prompts:
|
||||
prompts = [
|
||||
self._dict_to_document(prompt)
|
||||
for prompt in prompts_data["prompts"]
|
||||
]
|
||||
|
||||
prompts = [self._dict_to_document(prompt) for prompt in prompts_data['prompts']]
|
||||
|
||||
plot_data = PlotData(
|
||||
documents=documents,
|
||||
coordinates=doc_reduced,
|
||||
prompts=prompts,
|
||||
prompt_coordinates=prompt_reduced,
|
||||
prompt_coordinates=prompt_reduced
|
||||
)
|
||||
|
||||
|
||||
return self.plot_factory.create_plot(
|
||||
plot_data, dimensions, color_by, reduced_data.method, show_prompts
|
||||
)
|
||||
|
||||
|
||||
except Exception as e:
|
||||
return go.Figure().add_annotation(
|
||||
text=f"Error creating visualization: {str(e)}",
|
||||
xref="paper",
|
||||
yref="paper",
|
||||
x=0.5,
|
||||
y=0.5,
|
||||
xanchor="center",
|
||||
yanchor="middle",
|
||||
showarrow=False,
|
||||
font=dict(size=16),
|
||||
xref="paper", yref="paper",
|
||||
x=0.5, y=0.5, xanchor='center', yanchor='middle',
|
||||
showarrow=False, font=dict(size=16)
|
||||
)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def _dict_to_document(doc_dict):
|
||||
return Document(
|
||||
id=doc_dict["id"],
|
||||
text=doc_dict["text"],
|
||||
embedding=doc_dict["embedding"],
|
||||
category=doc_dict.get("category"),
|
||||
subcategory=doc_dict.get("subcategory"),
|
||||
tags=doc_dict.get("tags", []),
|
||||
)
|
||||
id=doc_dict['id'],
|
||||
text=doc_dict['text'],
|
||||
embedding=doc_dict['embedding'],
|
||||
category=doc_dict.get('category'),
|
||||
subcategory=doc_dict.get('subcategory'),
|
||||
tags=doc_dict.get('tags', [])
|
||||
)
|
@@ -4,84 +4,79 @@ from .upload import UploadComponent
|
||||
|
||||
|
||||
class SidebarComponent:
|
||||
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
|
||||
|
||||
def create_layout(self):
|
||||
return dbc.Col(
|
||||
[
|
||||
html.H5("Upload Data", className="mb-3"),
|
||||
self.upload_component.create_error_alert(),
|
||||
self.upload_component.create_data_upload(),
|
||||
self.upload_component.create_prompts_upload(),
|
||||
self.upload_component.create_reset_button(),
|
||||
html.H5("Visualization Controls", className="mb-3"),
|
||||
]
|
||||
+ self._create_method_dropdown()
|
||||
+ self._create_color_dropdown()
|
||||
+ self._create_dimension_toggle()
|
||||
+ self._create_prompts_toggle()
|
||||
+ [
|
||||
html.H5("Point Details", className="mb-3"),
|
||||
html.Div(
|
||||
id="point-details", children="Click on a point to see details"
|
||||
),
|
||||
],
|
||||
width=3,
|
||||
style={"padding-right": "20px"},
|
||||
)
|
||||
|
||||
return dbc.Col([
|
||||
html.H5("Upload Data", className="mb-3"),
|
||||
self.upload_component.create_data_upload(),
|
||||
self.upload_component.create_prompts_upload(),
|
||||
self.upload_component.create_reset_button(),
|
||||
|
||||
html.H5("Visualization Controls", className="mb-3"),
|
||||
self._create_method_dropdown(),
|
||||
self._create_color_dropdown(),
|
||||
self._create_dimension_toggle(),
|
||||
self._create_prompts_toggle(),
|
||||
|
||||
html.H5("Point Details", className="mb-3"),
|
||||
html.Div(id='point-details', children="Click on a point to see details")
|
||||
|
||||
], width=3, style={'padding-right': '20px'})
|
||||
|
||||
def _create_method_dropdown(self):
|
||||
return [
|
||||
dbc.Label("Method:"),
|
||||
dcc.Dropdown(
|
||||
id="method-dropdown",
|
||||
id='method-dropdown',
|
||||
options=[
|
||||
{"label": "PCA", "value": "pca"},
|
||||
{"label": "t-SNE", "value": "tsne"},
|
||||
{"label": "UMAP", "value": "umap"},
|
||||
{'label': 'PCA', 'value': 'pca'},
|
||||
{'label': 't-SNE', 'value': 'tsne'},
|
||||
{'label': 'UMAP', 'value': 'umap'}
|
||||
],
|
||||
value="pca",
|
||||
style={"margin-bottom": "15px"},
|
||||
),
|
||||
value='pca',
|
||||
style={'margin-bottom': '15px'}
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
def _create_color_dropdown(self):
|
||||
return [
|
||||
dbc.Label("Color by:"),
|
||||
dcc.Dropdown(
|
||||
id="color-dropdown",
|
||||
id='color-dropdown',
|
||||
options=[
|
||||
{"label": "Category", "value": "category"},
|
||||
{"label": "Subcategory", "value": "subcategory"},
|
||||
{"label": "Tags", "value": "tags"},
|
||||
{'label': 'Category', 'value': 'category'},
|
||||
{'label': 'Subcategory', 'value': 'subcategory'},
|
||||
{'label': 'Tags', 'value': 'tags'}
|
||||
],
|
||||
value="category",
|
||||
style={"margin-bottom": "15px"},
|
||||
),
|
||||
value='category',
|
||||
style={'margin-bottom': '15px'}
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
def _create_dimension_toggle(self):
|
||||
return [
|
||||
dbc.Label("Dimensions:"),
|
||||
dcc.RadioItems(
|
||||
id="dimension-toggle",
|
||||
id='dimension-toggle',
|
||||
options=[
|
||||
{"label": "2D", "value": "2d"},
|
||||
{"label": "3D", "value": "3d"},
|
||||
{'label': '2D', 'value': '2d'},
|
||||
{'label': '3D', 'value': '3d'}
|
||||
],
|
||||
value="3d",
|
||||
style={"margin-bottom": "20px"},
|
||||
),
|
||||
value='3d',
|
||||
style={'margin-bottom': '20px'}
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
def _create_prompts_toggle(self):
|
||||
return [
|
||||
dbc.Label("Show Prompts:"),
|
||||
dcc.Checklist(
|
||||
id="show-prompts-toggle",
|
||||
options=[{"label": "Show prompts on plot", "value": "show"}],
|
||||
value=["show"],
|
||||
style={"margin-bottom": "20px"},
|
||||
),
|
||||
]
|
||||
id='show-prompts-toggle',
|
||||
options=[{'label': 'Show prompts on plot', 'value': 'show'}],
|
||||
value=['show'],
|
||||
style={'margin-bottom': '20px'}
|
||||
)
|
||||
]
|
@@ -3,62 +3,58 @@ import dash_bootstrap_components as dbc
|
||||
|
||||
|
||||
class UploadComponent:
|
||||
|
||||
@staticmethod
|
||||
def create_data_upload():
|
||||
return dcc.Upload(
|
||||
id="upload-data",
|
||||
children=html.Div(["Drag and Drop or ", html.A("Select Files")]),
|
||||
id='upload-data',
|
||||
children=html.Div([
|
||||
'Drag and Drop or ',
|
||||
html.A('Select Files')
|
||||
]),
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
'width': '100%',
|
||||
'height': '60px',
|
||||
'lineHeight': '60px',
|
||||
'borderWidth': '1px',
|
||||
'borderStyle': 'dashed',
|
||||
'borderRadius': '5px',
|
||||
'textAlign': 'center',
|
||||
'margin-bottom': '20px'
|
||||
},
|
||||
multiple=False,
|
||||
multiple=False
|
||||
)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def create_prompts_upload():
|
||||
return dcc.Upload(
|
||||
id="upload-prompts",
|
||||
children=html.Div(["Drag and Drop Prompts or ", html.A("Select Files")]),
|
||||
id='upload-prompts',
|
||||
children=html.Div([
|
||||
'Drag and Drop Prompts or ',
|
||||
html.A('Select Files')
|
||||
]),
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
"borderColor": "#28a745",
|
||||
'width': '100%',
|
||||
'height': '60px',
|
||||
'lineHeight': '60px',
|
||||
'borderWidth': '1px',
|
||||
'borderStyle': 'dashed',
|
||||
'borderRadius': '5px',
|
||||
'textAlign': 'center',
|
||||
'margin-bottom': '20px',
|
||||
'borderColor': '#28a745'
|
||||
},
|
||||
multiple=False,
|
||||
multiple=False
|
||||
)
|
||||
|
||||
|
||||
@staticmethod
|
||||
def create_reset_button():
|
||||
return dbc.Button(
|
||||
"Reset All Data",
|
||||
id="reset-button",
|
||||
color="danger",
|
||||
id='reset-button',
|
||||
color='danger',
|
||||
outline=True,
|
||||
size="sm",
|
||||
className="mb-3",
|
||||
style={"width": "100%"},
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def create_error_alert():
|
||||
"""Create error alert component for data upload issues."""
|
||||
return dbc.Alert(
|
||||
id="upload-error-alert",
|
||||
dismissable=True,
|
||||
is_open=False,
|
||||
color="danger",
|
||||
className="mb-3",
|
||||
)
|
||||
size='sm',
|
||||
className='mb-3',
|
||||
style={'width': '100%'}
|
||||
)
|
@@ -4,44 +4,41 @@ from .components.sidebar import SidebarComponent
|
||||
|
||||
|
||||
class AppLayout:
|
||||
|
||||
def __init__(self):
|
||||
self.sidebar = SidebarComponent()
|
||||
|
||||
|
||||
def create_layout(self):
|
||||
return dbc.Container(
|
||||
[self._create_header(), self._create_main_content()]
|
||||
+ self._create_stores(),
|
||||
fluid=True,
|
||||
)
|
||||
|
||||
return dbc.Container([
|
||||
self._create_header(),
|
||||
self._create_main_content(),
|
||||
self._create_stores()
|
||||
], fluid=True)
|
||||
|
||||
def _create_header(self):
|
||||
return dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
html.H1("EmbeddingBuddy", className="text-center mb-4"),
|
||||
],
|
||||
width=12,
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
return dbc.Row([
|
||||
dbc.Col([
|
||||
html.H1("EmbeddingBuddy", className="text-center mb-4"),
|
||||
], width=12)
|
||||
])
|
||||
|
||||
def _create_main_content(self):
|
||||
return dbc.Row(
|
||||
[self.sidebar.create_layout(), self._create_visualization_area()]
|
||||
)
|
||||
|
||||
return dbc.Row([
|
||||
self.sidebar.create_layout(),
|
||||
self._create_visualization_area()
|
||||
])
|
||||
|
||||
def _create_visualization_area(self):
|
||||
return dbc.Col(
|
||||
[
|
||||
dcc.Graph(
|
||||
id="embedding-plot",
|
||||
style={"height": "85vh", "width": "100%"},
|
||||
config={"responsive": True, "displayModeBar": True},
|
||||
)
|
||||
],
|
||||
width=9,
|
||||
)
|
||||
|
||||
return dbc.Col([
|
||||
dcc.Graph(
|
||||
id='embedding-plot',
|
||||
style={'height': '85vh', 'width': '100%'},
|
||||
config={'responsive': True, 'displayModeBar': True}
|
||||
)
|
||||
], width=9)
|
||||
|
||||
def _create_stores(self):
|
||||
return [dcc.Store(id="processed-data"), dcc.Store(id="processed-prompts")]
|
||||
return [
|
||||
dcc.Store(id='processed-data'),
|
||||
dcc.Store(id='processed-prompts')
|
||||
]
|
@@ -4,33 +4,30 @@ from ..models.schemas import Document
|
||||
|
||||
|
||||
class ColorMapper:
|
||||
|
||||
@staticmethod
|
||||
def create_color_mapping(documents: List[Document], color_by: str) -> List[str]:
|
||||
if color_by == "category":
|
||||
if color_by == 'category':
|
||||
return [doc.category for doc in documents]
|
||||
elif color_by == "subcategory":
|
||||
elif color_by == 'subcategory':
|
||||
return [doc.subcategory for doc in documents]
|
||||
elif color_by == "tags":
|
||||
return [", ".join(doc.tags) if doc.tags else "No tags" for doc in documents]
|
||||
elif color_by == 'tags':
|
||||
return [', '.join(doc.tags) if doc.tags else 'No tags' for doc in documents]
|
||||
else:
|
||||
return ["All"] * len(documents)
|
||||
|
||||
return ['All'] * len(documents)
|
||||
|
||||
@staticmethod
|
||||
def to_grayscale_hex(color_str: str) -> str:
|
||||
try:
|
||||
if color_str.startswith("#"):
|
||||
rgb = tuple(int(color_str[i : i + 2], 16) for i in (1, 3, 5))
|
||||
if color_str.startswith('#'):
|
||||
rgb = tuple(int(color_str[i:i+2], 16) for i in (1, 3, 5))
|
||||
else:
|
||||
rgb = pc.hex_to_rgb(
|
||||
pc.convert_colors_to_same_type([color_str], colortype="hex")[0][0]
|
||||
)
|
||||
|
||||
rgb = pc.hex_to_rgb(pc.convert_colors_to_same_type([color_str], colortype='hex')[0][0])
|
||||
|
||||
gray_value = int(0.299 * rgb[0] + 0.587 * rgb[1] + 0.114 * rgb[2])
|
||||
gray_rgb = (
|
||||
gray_value * 0.7 + rgb[0] * 0.3,
|
||||
gray_value * 0.7 + rgb[1] * 0.3,
|
||||
gray_value * 0.7 + rgb[2] * 0.3,
|
||||
)
|
||||
return f"rgb({int(gray_rgb[0])},{int(gray_rgb[1])},{int(gray_rgb[2])})"
|
||||
except: # noqa: E722
|
||||
return "rgb(128,128,128)"
|
||||
gray_rgb = (gray_value * 0.7 + rgb[0] * 0.3,
|
||||
gray_value * 0.7 + rgb[1] * 0.3,
|
||||
gray_value * 0.7 + rgb[2] * 0.3)
|
||||
return f'rgb({int(gray_rgb[0])},{int(gray_rgb[1])},{int(gray_rgb[2])})'
|
||||
except: # noqa: E722
|
||||
return 'rgb(128,128,128)'
|
@@ -7,172 +7,139 @@ from .colors import ColorMapper
|
||||
|
||||
|
||||
class PlotFactory:
|
||||
|
||||
def __init__(self):
|
||||
self.color_mapper = ColorMapper()
|
||||
|
||||
def create_plot(
|
||||
self,
|
||||
plot_data: PlotData,
|
||||
dimensions: str = "3d",
|
||||
color_by: str = "category",
|
||||
method: str = "PCA",
|
||||
show_prompts: Optional[List[str]] = None,
|
||||
) -> go.Figure:
|
||||
if plot_data.prompts and show_prompts and "show" in show_prompts:
|
||||
|
||||
def create_plot(self, plot_data: PlotData, dimensions: str = '3d',
|
||||
color_by: str = 'category', method: str = 'PCA',
|
||||
show_prompts: Optional[List[str]] = None) -> go.Figure:
|
||||
|
||||
if plot_data.prompts and show_prompts and 'show' in show_prompts:
|
||||
return self._create_dual_plot(plot_data, dimensions, color_by, method)
|
||||
else:
|
||||
return self._create_single_plot(plot_data, dimensions, color_by, method)
|
||||
|
||||
def _create_single_plot(
|
||||
self, plot_data: PlotData, dimensions: str, color_by: str, method: str
|
||||
) -> go.Figure:
|
||||
df = self._prepare_dataframe(
|
||||
plot_data.documents, plot_data.coordinates, dimensions
|
||||
)
|
||||
color_values = self.color_mapper.create_color_mapping(
|
||||
plot_data.documents, color_by
|
||||
)
|
||||
|
||||
hover_fields = ["id", "text_preview", "category", "subcategory", "tags_str"]
|
||||
|
||||
if dimensions == "3d":
|
||||
|
||||
def _create_single_plot(self, plot_data: PlotData, dimensions: str,
|
||||
color_by: str, method: str) -> go.Figure:
|
||||
df = self._prepare_dataframe(plot_data.documents, plot_data.coordinates, dimensions)
|
||||
color_values = self.color_mapper.create_color_mapping(plot_data.documents, color_by)
|
||||
|
||||
hover_fields = ['id', 'text_preview', 'category', 'subcategory', 'tags_str']
|
||||
|
||||
if dimensions == '3d':
|
||||
fig = px.scatter_3d(
|
||||
df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
z="dim_3",
|
||||
df, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f"3D Embedding Visualization - {method} (colored by {color_by})",
|
||||
title=f'3D Embedding Visualization - {method} (colored by {color_by})'
|
||||
)
|
||||
fig.update_traces(marker=dict(size=5))
|
||||
else:
|
||||
fig = px.scatter(
|
||||
df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
df, x='dim_1', y='dim_2',
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f"2D Embedding Visualization - {method} (colored by {color_by})",
|
||||
title=f'2D Embedding Visualization - {method} (colored by {color_by})'
|
||||
)
|
||||
fig.update_traces(marker=dict(size=8))
|
||||
|
||||
fig.update_layout(height=None, autosize=True, margin=dict(l=0, r=0, t=50, b=0))
|
||||
|
||||
fig.update_layout(
|
||||
height=None,
|
||||
autosize=True,
|
||||
margin=dict(l=0, r=0, t=50, b=0)
|
||||
)
|
||||
return fig
|
||||
|
||||
def _create_dual_plot(
|
||||
self, plot_data: PlotData, dimensions: str, color_by: str, method: str
|
||||
) -> go.Figure:
|
||||
|
||||
def _create_dual_plot(self, plot_data: PlotData, dimensions: str,
|
||||
color_by: str, method: str) -> go.Figure:
|
||||
fig = go.Figure()
|
||||
|
||||
doc_df = self._prepare_dataframe(
|
||||
plot_data.documents, plot_data.coordinates, dimensions
|
||||
)
|
||||
doc_color_values = self.color_mapper.create_color_mapping(
|
||||
plot_data.documents, color_by
|
||||
)
|
||||
|
||||
hover_fields = ["id", "text_preview", "category", "subcategory", "tags_str"]
|
||||
|
||||
if dimensions == "3d":
|
||||
|
||||
doc_df = self._prepare_dataframe(plot_data.documents, plot_data.coordinates, dimensions)
|
||||
doc_color_values = self.color_mapper.create_color_mapping(plot_data.documents, color_by)
|
||||
|
||||
hover_fields = ['id', 'text_preview', 'category', 'subcategory', 'tags_str']
|
||||
|
||||
if dimensions == '3d':
|
||||
doc_fig = px.scatter_3d(
|
||||
doc_df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
z="dim_3",
|
||||
doc_df, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
else:
|
||||
doc_fig = px.scatter(
|
||||
doc_df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
doc_df, x='dim_1', y='dim_2',
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
|
||||
|
||||
for trace in doc_fig.data:
|
||||
trace.name = f"Documents - {trace.name}"
|
||||
if dimensions == "3d":
|
||||
trace.name = f'Documents - {trace.name}'
|
||||
if dimensions == '3d':
|
||||
trace.marker.size = 5
|
||||
trace.marker.symbol = "circle"
|
||||
trace.marker.symbol = 'circle'
|
||||
else:
|
||||
trace.marker.size = 8
|
||||
trace.marker.symbol = "circle"
|
||||
trace.marker.symbol = 'circle'
|
||||
trace.marker.opacity = 1.0
|
||||
fig.add_trace(trace)
|
||||
|
||||
|
||||
if plot_data.prompts and plot_data.prompt_coordinates is not None:
|
||||
prompt_df = self._prepare_dataframe(
|
||||
plot_data.prompts, plot_data.prompt_coordinates, dimensions
|
||||
)
|
||||
prompt_color_values = self.color_mapper.create_color_mapping(
|
||||
plot_data.prompts, color_by
|
||||
)
|
||||
|
||||
if dimensions == "3d":
|
||||
prompt_df = self._prepare_dataframe(plot_data.prompts, plot_data.prompt_coordinates, dimensions)
|
||||
prompt_color_values = self.color_mapper.create_color_mapping(plot_data.prompts, color_by)
|
||||
|
||||
if dimensions == '3d':
|
||||
prompt_fig = px.scatter_3d(
|
||||
prompt_df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
z="dim_3",
|
||||
prompt_df, x='dim_1', y='dim_2', z='dim_3',
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
else:
|
||||
prompt_fig = px.scatter(
|
||||
prompt_df,
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
prompt_df, x='dim_1', y='dim_2',
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields,
|
||||
hover_data=hover_fields
|
||||
)
|
||||
|
||||
|
||||
for trace in prompt_fig.data:
|
||||
if hasattr(trace.marker, "color") and isinstance(
|
||||
trace.marker.color, str
|
||||
):
|
||||
trace.marker.color = self.color_mapper.to_grayscale_hex(
|
||||
trace.marker.color
|
||||
)
|
||||
|
||||
trace.name = f"Prompts - {trace.name}"
|
||||
if dimensions == "3d":
|
||||
if hasattr(trace.marker, 'color') and isinstance(trace.marker.color, str):
|
||||
trace.marker.color = self.color_mapper.to_grayscale_hex(trace.marker.color)
|
||||
|
||||
trace.name = f'Prompts - {trace.name}'
|
||||
if dimensions == '3d':
|
||||
trace.marker.size = 6
|
||||
trace.marker.symbol = "diamond"
|
||||
trace.marker.symbol = 'diamond'
|
||||
else:
|
||||
trace.marker.size = 10
|
||||
trace.marker.symbol = "diamond"
|
||||
trace.marker.symbol = 'diamond'
|
||||
trace.marker.opacity = 0.8
|
||||
fig.add_trace(trace)
|
||||
|
||||
title = f"{dimensions.upper()} Embedding Visualization - {method} (colored by {color_by})"
|
||||
|
||||
title = f'{dimensions.upper()} Embedding Visualization - {method} (colored by {color_by})'
|
||||
fig.update_layout(
|
||||
title=title, height=None, autosize=True, margin=dict(l=0, r=0, t=50, b=0)
|
||||
title=title,
|
||||
height=None,
|
||||
autosize=True,
|
||||
margin=dict(l=0, r=0, t=50, b=0)
|
||||
)
|
||||
|
||||
|
||||
return fig
|
||||
|
||||
def _prepare_dataframe(
|
||||
self, documents: List[Document], coordinates, dimensions: str
|
||||
) -> pd.DataFrame:
|
||||
|
||||
def _prepare_dataframe(self, documents: List[Document], coordinates, dimensions: str) -> pd.DataFrame:
|
||||
df_data = []
|
||||
for i, doc in enumerate(documents):
|
||||
row = {
|
||||
"id": doc.id,
|
||||
"text": doc.text,
|
||||
"text_preview": doc.text[:100] + "..."
|
||||
if len(doc.text) > 100
|
||||
else doc.text,
|
||||
"category": doc.category,
|
||||
"subcategory": doc.subcategory,
|
||||
"tags_str": ", ".join(doc.tags) if doc.tags else "None",
|
||||
"dim_1": coordinates[i, 0],
|
||||
"dim_2": coordinates[i, 1],
|
||||
'id': doc.id,
|
||||
'text': doc.text,
|
||||
'text_preview': doc.text[:100] + "..." if len(doc.text) > 100 else doc.text,
|
||||
'category': doc.category,
|
||||
'subcategory': doc.subcategory,
|
||||
'tags_str': ', '.join(doc.tags) if doc.tags else 'None',
|
||||
'dim_1': coordinates[i, 0],
|
||||
'dim_2': coordinates[i, 1],
|
||||
}
|
||||
if dimensions == "3d":
|
||||
row["dim_3"] = coordinates[i, 2]
|
||||
if dimensions == '3d':
|
||||
row['dim_3'] = coordinates[i, 2]
|
||||
df_data.append(row)
|
||||
|
||||
return pd.DataFrame(df_data)
|
||||
|
||||
return pd.DataFrame(df_data)
|
@@ -1,197 +0,0 @@
|
||||
"""Tests for handling bad/invalid data files."""
|
||||
|
||||
import pytest
|
||||
import json
|
||||
import base64
|
||||
from src.embeddingbuddy.data.parser import NDJSONParser
|
||||
from src.embeddingbuddy.data.processor import DataProcessor
|
||||
|
||||
|
||||
class TestBadDataHandling:
|
||||
"""Test suite for various types of invalid input data."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Set up test fixtures."""
|
||||
self.parser = NDJSONParser()
|
||||
self.processor = DataProcessor()
|
||||
|
||||
def _create_upload_contents(self, text_content: str) -> str:
|
||||
"""Helper to create upload contents format."""
|
||||
encoded = base64.b64encode(text_content.encode("utf-8")).decode("utf-8")
|
||||
return f"data:application/json;base64,{encoded}"
|
||||
|
||||
def test_missing_embedding_field(self):
|
||||
"""Test files missing required embedding field."""
|
||||
bad_content = '{"id": "doc_001", "text": "Sample text", "category": "test"}'
|
||||
|
||||
with pytest.raises(KeyError, match="embedding"):
|
||||
self.parser.parse_text(bad_content)
|
||||
|
||||
# Test processor error handling
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
assert result.error is not None
|
||||
assert "embedding" in result.error
|
||||
|
||||
def test_missing_text_field(self):
|
||||
"""Test files missing required text field."""
|
||||
bad_content = (
|
||||
'{"id": "doc_001", "embedding": [0.1, 0.2, 0.3], "category": "test"}'
|
||||
)
|
||||
|
||||
with pytest.raises(KeyError, match="text"):
|
||||
self.parser.parse_text(bad_content)
|
||||
|
||||
# Test processor error handling
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
assert result.error is not None
|
||||
assert "text" in result.error
|
||||
|
||||
def test_malformed_json_lines(self):
|
||||
"""Test files with malformed JSON syntax."""
|
||||
# Missing closing brace
|
||||
bad_content = '{"id": "doc_001", "embedding": [0.1, 0.2], "text": "test"'
|
||||
|
||||
with pytest.raises(json.JSONDecodeError):
|
||||
self.parser.parse_text(bad_content)
|
||||
|
||||
# Test processor error handling
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
assert result.error is not None
|
||||
|
||||
def test_invalid_embedding_types(self):
|
||||
"""Test files with invalid embedding data types."""
|
||||
test_cases = [
|
||||
# String instead of array
|
||||
'{"id": "doc_001", "embedding": "not_an_array", "text": "test"}',
|
||||
# Mixed types in array
|
||||
'{"id": "doc_002", "embedding": [0.1, "text", 0.3], "text": "test"}',
|
||||
# Empty array
|
||||
'{"id": "doc_003", "embedding": [], "text": "test"}',
|
||||
# Null embedding
|
||||
'{"id": "doc_004", "embedding": null, "text": "test"}',
|
||||
]
|
||||
|
||||
for bad_content in test_cases:
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
assert result.error is not None, f"Should fail for: {bad_content}"
|
||||
|
||||
def test_inconsistent_embedding_dimensions(self):
|
||||
"""Test files with embeddings of different dimensions."""
|
||||
bad_content = """{"id": "doc_001", "embedding": [0.1, 0.2, 0.3, 0.4], "text": "4D embedding"}
|
||||
{"id": "doc_002", "embedding": [0.1, 0.2, 0.3], "text": "3D embedding"}"""
|
||||
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
# This might succeed parsing but fail in processing
|
||||
# The error depends on where dimension validation occurs
|
||||
if result.error is None:
|
||||
# If parsing succeeds, check that embeddings have inconsistent shapes
|
||||
assert len(result.documents) == 2
|
||||
assert len(result.documents[0].embedding) != len(
|
||||
result.documents[1].embedding
|
||||
)
|
||||
|
||||
def test_empty_lines_in_ndjson(self):
|
||||
"""Test files with empty lines mixed in."""
|
||||
content_with_empty_lines = """{"id": "doc_001", "embedding": [0.1, 0.2], "text": "First line"}
|
||||
|
||||
{"id": "doc_002", "embedding": [0.3, 0.4], "text": "After empty line"}"""
|
||||
|
||||
# This should work - empty lines should be skipped
|
||||
documents = self.parser.parse_text(content_with_empty_lines)
|
||||
assert len(documents) == 2
|
||||
assert documents[0].id == "doc_001"
|
||||
assert documents[1].id == "doc_002"
|
||||
|
||||
def test_not_ndjson_format(self):
|
||||
"""Test regular JSON array instead of NDJSON."""
|
||||
json_array = """[
|
||||
{"id": "doc_001", "embedding": [0.1, 0.2], "text": "First"},
|
||||
{"id": "doc_002", "embedding": [0.3, 0.4], "text": "Second"}
|
||||
]"""
|
||||
|
||||
with pytest.raises(json.JSONDecodeError):
|
||||
self.parser.parse_text(json_array)
|
||||
|
||||
def test_binary_content_in_file(self):
|
||||
"""Test files with binary content mixed in."""
|
||||
# Simulate binary content that can't be decoded
|
||||
binary_content = (
|
||||
b'\x00\x01\x02{"id": "doc_001", "embedding": [0.1], "text": "test"}'
|
||||
)
|
||||
|
||||
# This should result in an error when processing
|
||||
encoded = base64.b64encode(binary_content).decode("utf-8")
|
||||
upload_contents = f"data:application/json;base64,{encoded}"
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
# Should either fail with UnicodeDecodeError or JSON parsing error
|
||||
assert result.error is not None
|
||||
|
||||
def test_extremely_large_embeddings(self):
|
||||
"""Test embeddings with very large dimensions."""
|
||||
large_embedding = [0.1] * 10000 # 10k dimensions
|
||||
content = json.dumps(
|
||||
{
|
||||
"id": "doc_001",
|
||||
"embedding": large_embedding,
|
||||
"text": "Large embedding test",
|
||||
}
|
||||
)
|
||||
|
||||
# This should work but might be slow
|
||||
upload_contents = self._create_upload_contents(content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
if result.error is None:
|
||||
assert len(result.documents) == 1
|
||||
assert len(result.documents[0].embedding) == 10000
|
||||
|
||||
def test_special_characters_in_text(self):
|
||||
"""Test handling of special characters and unicode."""
|
||||
special_content = json.dumps(
|
||||
{
|
||||
"id": "doc_001",
|
||||
"embedding": [0.1, 0.2],
|
||||
"text": 'Special chars: 🚀 ñoñó 中文 \n\t"',
|
||||
},
|
||||
ensure_ascii=False,
|
||||
)
|
||||
|
||||
upload_contents = self._create_upload_contents(special_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
assert result.error is None
|
||||
assert len(result.documents) == 1
|
||||
assert "🚀" in result.documents[0].text
|
||||
|
||||
def test_processor_error_structure(self):
|
||||
"""Test that processor returns proper error structure."""
|
||||
bad_content = '{"invalid": "json"' # Missing closing brace
|
||||
upload_contents = self._create_upload_contents(bad_content)
|
||||
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
# Check error structure
|
||||
assert result.error is not None
|
||||
assert isinstance(result.error, str)
|
||||
assert len(result.documents) == 0
|
||||
assert result.embeddings.size == 0
|
||||
|
||||
def test_multiple_errors_in_file(self):
|
||||
"""Test file with multiple different types of errors."""
|
||||
multi_error_content = """{"id": "doc_001", "text": "Missing embedding"}
|
||||
{"id": "doc_002", "embedding": "wrong_type", "text": "Wrong embedding type"}
|
||||
{"id": "doc_003", "embedding": [0.1, 0.2], "text": "Valid line"}
|
||||
{"id": "doc_004", "embedding": [0.3, 0.4]""" # Missing text and closing brace
|
||||
|
||||
upload_contents = self._create_upload_contents(multi_error_content)
|
||||
result = self.processor.process_upload(upload_contents)
|
||||
|
||||
# Should fail on first error encountered
|
||||
assert result.error is not None
|
@@ -6,64 +6,62 @@ from src.embeddingbuddy.models.schemas import Document
|
||||
|
||||
|
||||
class TestNDJSONParser:
|
||||
|
||||
def test_parse_text_basic(self):
|
||||
text_content = (
|
||||
'{"id": "test1", "text": "Hello world", "embedding": [0.1, 0.2, 0.3]}'
|
||||
)
|
||||
text_content = '{"id": "test1", "text": "Hello world", "embedding": [0.1, 0.2, 0.3]}'
|
||||
documents = NDJSONParser.parse_text(text_content)
|
||||
|
||||
|
||||
assert len(documents) == 1
|
||||
assert documents[0].id == "test1"
|
||||
assert documents[0].text == "Hello world"
|
||||
assert documents[0].embedding == [0.1, 0.2, 0.3]
|
||||
|
||||
|
||||
def test_parse_text_with_metadata(self):
|
||||
text_content = '{"id": "test1", "text": "Hello", "embedding": [0.1, 0.2], "category": "greeting", "tags": ["test"]}'
|
||||
documents = NDJSONParser.parse_text(text_content)
|
||||
|
||||
|
||||
assert documents[0].category == "greeting"
|
||||
assert documents[0].tags == ["test"]
|
||||
|
||||
|
||||
def test_parse_text_missing_id(self):
|
||||
text_content = '{"text": "Hello", "embedding": [0.1, 0.2]}'
|
||||
documents = NDJSONParser.parse_text(text_content)
|
||||
|
||||
|
||||
assert len(documents) == 1
|
||||
assert documents[0].id is not None # Should be auto-generated
|
||||
|
||||
|
||||
class TestDataProcessor:
|
||||
|
||||
def test_extract_embeddings(self):
|
||||
documents = [
|
||||
Document(id="1", text="test1", embedding=[0.1, 0.2]),
|
||||
Document(id="2", text="test2", embedding=[0.3, 0.4]),
|
||||
Document(id="2", text="test2", embedding=[0.3, 0.4])
|
||||
]
|
||||
|
||||
|
||||
processor = DataProcessor()
|
||||
embeddings = processor._extract_embeddings(documents)
|
||||
|
||||
|
||||
assert embeddings.shape == (2, 2)
|
||||
assert np.allclose(embeddings[0], [0.1, 0.2])
|
||||
assert np.allclose(embeddings[1], [0.3, 0.4])
|
||||
|
||||
|
||||
def test_combine_data(self):
|
||||
from src.embeddingbuddy.models.schemas import ProcessedData
|
||||
|
||||
|
||||
doc_data = ProcessedData(
|
||||
documents=[Document(id="1", text="doc", embedding=[0.1, 0.2])],
|
||||
embeddings=np.array([[0.1, 0.2]]),
|
||||
embeddings=np.array([[0.1, 0.2]])
|
||||
)
|
||||
|
||||
|
||||
prompt_data = ProcessedData(
|
||||
documents=[Document(id="p1", text="prompt", embedding=[0.3, 0.4])],
|
||||
embeddings=np.array([[0.3, 0.4]]),
|
||||
embeddings=np.array([[0.3, 0.4]])
|
||||
)
|
||||
|
||||
|
||||
processor = DataProcessor()
|
||||
all_embeddings, documents, prompts = processor.combine_data(
|
||||
doc_data, prompt_data
|
||||
)
|
||||
|
||||
all_embeddings, documents, prompts = processor.combine_data(doc_data, prompt_data)
|
||||
|
||||
assert all_embeddings.shape == (2, 2)
|
||||
assert len(documents) == 1
|
||||
assert len(prompts) == 1
|
||||
@@ -72,4 +70,4 @@ class TestDataProcessor:
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__])
|
||||
pytest.main([__file__])
|
@@ -1,90 +1,89 @@
|
||||
import pytest
|
||||
import numpy as np
|
||||
from src.embeddingbuddy.models.reducers import (
|
||||
ReducerFactory,
|
||||
PCAReducer,
|
||||
TSNEReducer,
|
||||
UMAPReducer,
|
||||
)
|
||||
from src.embeddingbuddy.models.reducers import ReducerFactory, PCAReducer, TSNEReducer, UMAPReducer
|
||||
|
||||
|
||||
class TestReducerFactory:
|
||||
|
||||
def test_create_pca_reducer(self):
|
||||
reducer = ReducerFactory.create_reducer("pca", n_components=2)
|
||||
reducer = ReducerFactory.create_reducer('pca', n_components=2)
|
||||
assert isinstance(reducer, PCAReducer)
|
||||
assert reducer.n_components == 2
|
||||
|
||||
|
||||
def test_create_tsne_reducer(self):
|
||||
reducer = ReducerFactory.create_reducer("tsne", n_components=3)
|
||||
reducer = ReducerFactory.create_reducer('tsne', n_components=3)
|
||||
assert isinstance(reducer, TSNEReducer)
|
||||
assert reducer.n_components == 3
|
||||
|
||||
|
||||
def test_create_umap_reducer(self):
|
||||
reducer = ReducerFactory.create_reducer("umap", n_components=2)
|
||||
reducer = ReducerFactory.create_reducer('umap', n_components=2)
|
||||
assert isinstance(reducer, UMAPReducer)
|
||||
assert reducer.n_components == 2
|
||||
|
||||
|
||||
def test_invalid_method(self):
|
||||
with pytest.raises(ValueError, match="Unknown reduction method"):
|
||||
ReducerFactory.create_reducer("invalid_method")
|
||||
|
||||
ReducerFactory.create_reducer('invalid_method')
|
||||
|
||||
def test_available_methods(self):
|
||||
methods = ReducerFactory.get_available_methods()
|
||||
assert "pca" in methods
|
||||
assert "tsne" in methods
|
||||
assert "umap" in methods
|
||||
assert 'pca' in methods
|
||||
assert 'tsne' in methods
|
||||
assert 'umap' in methods
|
||||
|
||||
|
||||
class TestPCAReducer:
|
||||
|
||||
def test_fit_transform(self):
|
||||
embeddings = np.random.rand(100, 512)
|
||||
reducer = PCAReducer(n_components=2)
|
||||
|
||||
|
||||
result = reducer.fit_transform(embeddings)
|
||||
|
||||
|
||||
assert result.reduced_embeddings.shape == (100, 2)
|
||||
assert result.variance_explained is not None
|
||||
assert result.method == "PCA"
|
||||
assert result.n_components == 2
|
||||
|
||||
|
||||
def test_method_name(self):
|
||||
reducer = PCAReducer()
|
||||
assert reducer.get_method_name() == "PCA"
|
||||
|
||||
|
||||
class TestTSNEReducer:
|
||||
|
||||
def test_fit_transform_small_dataset(self):
|
||||
embeddings = np.random.rand(30, 10) # Small dataset for faster testing
|
||||
reducer = TSNEReducer(n_components=2)
|
||||
|
||||
|
||||
result = reducer.fit_transform(embeddings)
|
||||
|
||||
|
||||
assert result.reduced_embeddings.shape == (30, 2)
|
||||
assert result.variance_explained is None # t-SNE doesn't provide this
|
||||
assert result.method == "t-SNE"
|
||||
assert result.n_components == 2
|
||||
|
||||
|
||||
def test_method_name(self):
|
||||
reducer = TSNEReducer()
|
||||
assert reducer.get_method_name() == "t-SNE"
|
||||
|
||||
|
||||
class TestUMAPReducer:
|
||||
|
||||
def test_fit_transform(self):
|
||||
embeddings = np.random.rand(50, 10)
|
||||
reducer = UMAPReducer(n_components=2)
|
||||
|
||||
|
||||
result = reducer.fit_transform(embeddings)
|
||||
|
||||
|
||||
assert result.reduced_embeddings.shape == (50, 2)
|
||||
assert result.variance_explained is None # UMAP doesn't provide this
|
||||
assert result.method == "UMAP"
|
||||
assert result.n_components == 2
|
||||
|
||||
|
||||
def test_method_name(self):
|
||||
reducer = UMAPReducer()
|
||||
assert reducer.get_method_name() == "UMAP"
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
pytest.main([__file__])
|
||||
pytest.main([__file__])
|
Reference in New Issue
Block a user