Compare commits
11 Commits
validate-i
...
d35ef995a3
Author | SHA1 | Date | |
---|---|---|---|
d35ef995a3 | |||
6610b9c196 | |||
f4095cc0cb | |||
cb6ab1bfbe | |||
bced5e07ce | |||
cdaaffd735 | |||
14abc446b7 | |||
1b6845774b | |||
09e3c86f0a | |||
9cf2f0e6fa | |||
a2adc8b958 |
@@ -3,7 +3,8 @@
|
||||
"allow": [
|
||||
"Bash(mkdir:*)",
|
||||
"Bash(uv run:*)",
|
||||
"Bash(uv add:*)"
|
||||
"Bash(uv add:*)",
|
||||
"Bash(uv sync:*)"
|
||||
],
|
||||
"deny": [],
|
||||
"ask": [],
|
||||
|
76
.dockerignore
Normal file
76
.dockerignore
Normal file
@@ -0,0 +1,76 @@
|
||||
# Python
|
||||
__pycache__/
|
||||
*.py[cod]
|
||||
*$py.class
|
||||
*.so
|
||||
.Python
|
||||
env/
|
||||
venv/
|
||||
ENV/
|
||||
env.bak/
|
||||
venv.bak/
|
||||
.venv/
|
||||
|
||||
# Testing
|
||||
.pytest_cache/
|
||||
.coverage
|
||||
htmlcov/
|
||||
.tox/
|
||||
coverage.xml
|
||||
*.cover
|
||||
|
||||
# Development tools
|
||||
.mypy_cache/
|
||||
.ruff_cache/
|
||||
|
||||
# IDE
|
||||
.vscode/
|
||||
.idea/
|
||||
*.swp
|
||||
*.swo
|
||||
*~
|
||||
|
||||
# OS
|
||||
.DS_Store
|
||||
.DS_Store?
|
||||
._*
|
||||
.Spotlight-V100
|
||||
.Trashes
|
||||
ehthumbs.db
|
||||
Thumbs.db
|
||||
|
||||
# Git
|
||||
.git/
|
||||
.gitignore
|
||||
|
||||
# Documentation
|
||||
*.md
|
||||
!README.md
|
||||
|
||||
# Docker
|
||||
Dockerfile*
|
||||
docker-compose*.yml
|
||||
.dockerignore
|
||||
|
||||
# Data files (may contain sensitive information)
|
||||
*.ndjson
|
||||
*.ldjson
|
||||
*.json
|
||||
|
||||
# Reports
|
||||
*-report.json
|
||||
bandit-report.json
|
||||
safety-report.json
|
||||
|
||||
# Screenshots
|
||||
*.png
|
||||
*.jpg
|
||||
*.jpeg
|
||||
*.gif
|
||||
|
||||
# Logs
|
||||
*.log
|
||||
|
||||
# Temporary files
|
||||
*.tmp
|
||||
*.temp
|
5
.gitignore
vendored
5
.gitignore
vendored
@@ -81,4 +81,7 @@ safety-report.json
|
||||
pip-audit-report.json
|
||||
|
||||
# Temporary files
|
||||
*.tmp
|
||||
*.tmp
|
||||
|
||||
|
||||
examples/extra
|
17
CLAUDE.md
17
CLAUDE.md
@@ -21,8 +21,23 @@ uv sync
|
||||
|
||||
**Run the application:**
|
||||
|
||||
Development mode (with auto-reload):
|
||||
```bash
|
||||
uv run python main.py
|
||||
uv run run_dev.py
|
||||
```
|
||||
|
||||
Production mode (with Gunicorn WSGI server):
|
||||
```bash
|
||||
# First install production dependencies
|
||||
uv sync --extra prod
|
||||
|
||||
# Then run in production mode
|
||||
uv run run_prod.py
|
||||
```
|
||||
|
||||
Legacy mode (basic Dash server):
|
||||
```bash
|
||||
uv run main.py
|
||||
```
|
||||
|
||||
The app will be available at http://127.0.0.1:8050
|
||||
|
73
Dockerfile
Normal file
73
Dockerfile
Normal file
@@ -0,0 +1,73 @@
|
||||
# Two-stage Dockerfile for EmbeddingBuddy
|
||||
# Stage 1: Builder
|
||||
FROM python:3.11-slim as builder
|
||||
|
||||
# Install system dependencies for building Python packages
|
||||
RUN apt-get update && apt-get install -y \
|
||||
build-essential \
|
||||
gcc \
|
||||
g++ \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Install uv for dependency management
|
||||
RUN pip install uv
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Copy dependency files
|
||||
COPY pyproject.toml uv.lock ./
|
||||
|
||||
# Copy source code (needed for editable install)
|
||||
COPY src/ src/
|
||||
COPY main.py .
|
||||
COPY wsgi.py .
|
||||
COPY run_prod.py .
|
||||
COPY assets/ assets/
|
||||
|
||||
# Create virtual environment and install dependencies (including production extras)
|
||||
RUN uv venv .venv
|
||||
RUN uv sync --frozen --extra prod
|
||||
|
||||
# Stage 2: Runtime
|
||||
FROM python:3.11-slim as runtime
|
||||
|
||||
# Install runtime dependencies for compiled packages
|
||||
RUN apt-get update && apt-get install -y \
|
||||
libgomp1 \
|
||||
&& rm -rf /var/lib/apt/lists/*
|
||||
|
||||
# Set working directory
|
||||
WORKDIR /app
|
||||
|
||||
# Copy virtual environment from builder stage
|
||||
COPY --from=builder /app/.venv /app/.venv
|
||||
|
||||
# Copy application files from builder stage
|
||||
COPY --from=builder /app/src /app/src
|
||||
COPY --from=builder /app/main.py /app/main.py
|
||||
COPY --from=builder /app/assets /app/assets
|
||||
COPY --from=builder /app/wsgi.py /app/wsgi.py
|
||||
COPY --from=builder /app/run_prod.py /app/run_prod.py
|
||||
|
||||
# Make sure the virtual environment is in PATH
|
||||
ENV PATH="/app/.venv/bin:$PATH"
|
||||
|
||||
# Set Python path
|
||||
ENV PYTHONPATH="/app/src:$PYTHONPATH"
|
||||
|
||||
# Environment variables for production
|
||||
ENV EMBEDDINGBUDDY_HOST=0.0.0.0
|
||||
ENV EMBEDDINGBUDDY_PORT=8050
|
||||
ENV EMBEDDINGBUDDY_DEBUG=false
|
||||
ENV EMBEDDINGBUDDY_ENV=production
|
||||
|
||||
# Expose port
|
||||
EXPOSE 8050
|
||||
|
||||
# Health check
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=30s --retries=3 \
|
||||
CMD python -c "import requests; requests.get('http://localhost:8050/', timeout=5)" || exit 1
|
||||
|
||||
# Run application with Gunicorn in production
|
||||
CMD ["python", "run_prod.py"]
|
66
README.md
66
README.md
@@ -12,7 +12,7 @@ EmbeddingBuddy provides an intuitive web interface for analyzing high-dimensiona
|
||||
embedding vectors by applying various dimensionality reduction algorithms and
|
||||
visualizing the results in interactive 2D and 3D plots. The application features
|
||||
a clean, modular architecture that makes it easy to test, maintain, and extend
|
||||
with new features. It supports dual dataset visualization, allowing you to compare
|
||||
with new features. It supports dual dataset visualization, allowing you to compare
|
||||
documents and prompts to understand how queries relate to your content.
|
||||
|
||||
## Features
|
||||
@@ -73,17 +73,77 @@ uv sync
|
||||
|
||||
2. **Run the application:**
|
||||
|
||||
**Development mode** (with auto-reload):
|
||||
|
||||
```bash
|
||||
uv run python main.py
|
||||
uv run run_dev.py
|
||||
```
|
||||
|
||||
3. **Open your browser** to http://127.0.0.1:8050
|
||||
**Production mode** (with Gunicorn WSGI server):
|
||||
|
||||
```bash
|
||||
# Install production dependencies
|
||||
uv sync --extra prod
|
||||
|
||||
# Run in production mode
|
||||
uv run run_prod.py
|
||||
```
|
||||
|
||||
**Legacy mode** (basic Dash server):
|
||||
|
||||
```bash
|
||||
uv run main.py
|
||||
```
|
||||
|
||||
3. **Open your browser** to <http://127.0.0.1:8050>
|
||||
|
||||
4. **Test with sample data**:
|
||||
- Upload `sample_data.ndjson` (documents)
|
||||
- Upload `sample_prompts.ndjson` (prompts) to see dual visualization
|
||||
- Use the "Show prompts" toggle to compare how prompts relate to documents
|
||||
|
||||
## Docker
|
||||
|
||||
You can also run EmbeddingBuddy using Docker:
|
||||
|
||||
### Basic Usage
|
||||
|
||||
```bash
|
||||
# Run in the background
|
||||
docker compose up -d
|
||||
```
|
||||
|
||||
The application will be available at <http://127.0.0.1:8050>
|
||||
|
||||
### With OpenSearch
|
||||
|
||||
To run with OpenSearch for enhanced search capabilities:
|
||||
|
||||
```bash
|
||||
# Run in the background with OpenSearch
|
||||
docker compose --profile opensearch up -d
|
||||
```
|
||||
|
||||
This will start both the EmbeddingBuddy application and an OpenSearch instance.
|
||||
OpenSearch will be available at <http://127.0.0.1:9200>
|
||||
|
||||
### Docker Commands
|
||||
|
||||
```bash
|
||||
# Stop all services
|
||||
docker compose down
|
||||
|
||||
# Stop and remove volumes
|
||||
docker compose down -v
|
||||
|
||||
# View logs
|
||||
docker compose logs embeddingbuddy
|
||||
docker compose logs opensearch
|
||||
|
||||
# Rebuild containers
|
||||
docker compose build
|
||||
```
|
||||
|
||||
## Development
|
||||
|
||||
### Project Structure
|
||||
|
278
assets/embeddings.js
Normal file
278
assets/embeddings.js
Normal file
@@ -0,0 +1,278 @@
|
||||
// Text input embedding generation using Transformers.js
|
||||
// This module runs entirely in the browser for privacy and performance
|
||||
|
||||
// Global flag to track initialization
|
||||
window.transformersLoading = false;
|
||||
window.transformersLoaded = false;
|
||||
|
||||
class TransformersEmbedder {
|
||||
constructor() {
|
||||
this.extractor = null;
|
||||
this.currentModel = null;
|
||||
this.modelCache = new Map();
|
||||
this.isLoading = false;
|
||||
}
|
||||
|
||||
async initializeModel(modelName = 'Xenova/all-MiniLM-L6-v2') {
|
||||
try {
|
||||
if (this.modelCache.has(modelName)) {
|
||||
this.extractor = this.modelCache.get(modelName);
|
||||
this.currentModel = modelName;
|
||||
return { success: true, model: modelName };
|
||||
}
|
||||
|
||||
if (this.isLoading) {
|
||||
return { success: false, error: 'Model loading already in progress' };
|
||||
}
|
||||
|
||||
this.isLoading = true;
|
||||
|
||||
// Use globally loaded Transformers.js pipeline
|
||||
if (!window.transformers) {
|
||||
if (!window.transformersPipeline) {
|
||||
// Wait for the pipeline to load
|
||||
let attempts = 0;
|
||||
while (!window.transformersPipeline && attempts < 50) { // Wait up to 5 seconds
|
||||
await new Promise(resolve => setTimeout(resolve, 100));
|
||||
attempts++;
|
||||
}
|
||||
if (!window.transformersPipeline) {
|
||||
throw new Error('Transformers.js pipeline not available. Please refresh the page.');
|
||||
}
|
||||
}
|
||||
window.transformers = { pipeline: window.transformersPipeline };
|
||||
window.transformersLoaded = true;
|
||||
console.log('✅ Using globally loaded Transformers.js pipeline');
|
||||
}
|
||||
|
||||
// Show loading progress to user
|
||||
if (window.updateModelLoadingProgress) {
|
||||
window.updateModelLoadingProgress(0, `Loading ${modelName}...`);
|
||||
}
|
||||
|
||||
this.extractor = await window.transformers.pipeline('feature-extraction', modelName, {
|
||||
progress_callback: (data) => {
|
||||
if (window.updateModelLoadingProgress && data.progress !== undefined) {
|
||||
const progress = Math.round(data.progress);
|
||||
window.updateModelLoadingProgress(progress, data.status || 'Loading...');
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
this.modelCache.set(modelName, this.extractor);
|
||||
this.currentModel = modelName;
|
||||
this.isLoading = false;
|
||||
|
||||
if (window.updateModelLoadingProgress) {
|
||||
window.updateModelLoadingProgress(100, 'Model loaded successfully');
|
||||
}
|
||||
|
||||
return { success: true, model: modelName };
|
||||
} catch (error) {
|
||||
this.isLoading = false;
|
||||
console.error('Model initialization error:', error);
|
||||
return { success: false, error: error.message };
|
||||
}
|
||||
}
|
||||
|
||||
async generateEmbeddings(texts, options = {}) {
|
||||
if (!this.extractor) {
|
||||
throw new Error('Model not initialized. Call initializeModel() first.');
|
||||
}
|
||||
|
||||
if (!texts || texts.length === 0) {
|
||||
throw new Error('No texts provided for embedding generation.');
|
||||
}
|
||||
|
||||
const embeddings = [];
|
||||
const defaultOptions = {
|
||||
pooling: 'mean',
|
||||
normalize: true,
|
||||
...options
|
||||
};
|
||||
|
||||
// Process in batches to avoid memory issues
|
||||
const batchSize = options.batchSize || 8;
|
||||
|
||||
try {
|
||||
for (let i = 0; i < texts.length; i += batchSize) {
|
||||
const batch = texts.slice(i, i + batchSize);
|
||||
|
||||
const batchResults = await Promise.all(
|
||||
batch.map(text => {
|
||||
if (!text || text.trim().length === 0) {
|
||||
throw new Error('Empty text found in batch');
|
||||
}
|
||||
return this.extractor(text.trim(), defaultOptions);
|
||||
})
|
||||
);
|
||||
|
||||
// Convert tensor output to arrays
|
||||
batchResults.forEach((result, idx) => {
|
||||
if (result && result.data) {
|
||||
embeddings.push(Array.from(result.data));
|
||||
} else {
|
||||
throw new Error(`Invalid embedding result for text: ${batch[idx]}`);
|
||||
}
|
||||
});
|
||||
|
||||
// Update progress
|
||||
const progress = Math.min(100, ((i + batch.length) / texts.length) * 100);
|
||||
if (window.updateEmbeddingProgress) {
|
||||
window.updateEmbeddingProgress(progress, `Processing ${i + batch.length}/${texts.length} texts`);
|
||||
}
|
||||
}
|
||||
|
||||
if (window.updateEmbeddingProgress) {
|
||||
window.updateEmbeddingProgress(100, `Generated ${embeddings.length} embeddings successfully`);
|
||||
}
|
||||
|
||||
return embeddings;
|
||||
} catch (error) {
|
||||
console.error('Embedding generation error:', error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Global instance
|
||||
window.transformersEmbedder = new TransformersEmbedder();
|
||||
console.log('📦 TransformersEmbedder instance created');
|
||||
|
||||
// Global progress update functions
|
||||
window.updateModelLoadingProgress = function(progress, status) {
|
||||
const progressBar = document.getElementById('model-loading-progress');
|
||||
const statusText = document.getElementById('model-loading-status');
|
||||
if (progressBar) {
|
||||
progressBar.style.width = progress + '%';
|
||||
progressBar.setAttribute('aria-valuenow', progress);
|
||||
}
|
||||
if (statusText) {
|
||||
statusText.textContent = status;
|
||||
}
|
||||
};
|
||||
|
||||
window.updateEmbeddingProgress = function(progress, status) {
|
||||
const progressBar = document.getElementById('embedding-progress');
|
||||
const statusText = document.getElementById('embedding-status');
|
||||
if (progressBar) {
|
||||
progressBar.style.width = progress + '%';
|
||||
progressBar.setAttribute('aria-valuenow', progress);
|
||||
}
|
||||
if (statusText) {
|
||||
statusText.textContent = status;
|
||||
}
|
||||
};
|
||||
|
||||
// Dash clientside callback functions
|
||||
window.dash_clientside = window.dash_clientside || {};
|
||||
console.log('🔧 Setting up window.dash_clientside.transformers');
|
||||
window.dash_clientside.transformers = {
|
||||
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
||||
console.log('🚀 generateEmbeddings called with:', { nClicks, modelName, tokenizationMethod, textLength: textContent?.length });
|
||||
|
||||
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
||||
console.log('⚠️ Early return - missing required parameters');
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
try {
|
||||
// Initialize model if needed
|
||||
const initResult = await window.transformersEmbedder.initializeModel(modelName);
|
||||
if (!initResult.success) {
|
||||
return [
|
||||
{ error: initResult.error },
|
||||
`❌ Model loading error: ${initResult.error}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
// Tokenize text based on method
|
||||
let textChunks;
|
||||
const trimmedText = textContent.trim();
|
||||
|
||||
switch (tokenizationMethod) {
|
||||
case 'sentence':
|
||||
// Simple sentence splitting - can be enhanced with proper NLP
|
||||
textChunks = trimmedText
|
||||
.split(/[.!?]+/)
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 0);
|
||||
break;
|
||||
case 'paragraph':
|
||||
textChunks = trimmedText
|
||||
.split(/\n\s*\n/)
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 0);
|
||||
break;
|
||||
case 'manual':
|
||||
textChunks = trimmedText
|
||||
.split('\n')
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 0);
|
||||
break;
|
||||
default:
|
||||
textChunks = [trimmedText];
|
||||
}
|
||||
|
||||
if (textChunks.length === 0) {
|
||||
return [
|
||||
{ error: 'No valid text chunks found after tokenization' },
|
||||
'❌ Error: No valid text chunks found after tokenization',
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = await window.transformersEmbedder.generateEmbeddings(textChunks);
|
||||
|
||||
if (!embeddings || embeddings.length !== textChunks.length) {
|
||||
return [
|
||||
{ error: 'Embedding generation failed - mismatch in text chunks and embeddings' },
|
||||
'❌ Error: Embedding generation failed',
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
// Create documents structure
|
||||
const documents = textChunks.map((text, i) => ({
|
||||
id: `text_input_${Date.now()}_${i}`,
|
||||
text: text,
|
||||
embedding: embeddings[i],
|
||||
category: category || "Text Input",
|
||||
subcategory: subcategory || "Generated",
|
||||
tags: []
|
||||
}));
|
||||
|
||||
return [
|
||||
{
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
},
|
||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
||||
"success",
|
||||
false
|
||||
];
|
||||
|
||||
} catch (error) {
|
||||
console.error('Client-side embedding error:', error);
|
||||
return [
|
||||
{ error: error.message },
|
||||
`❌ Error: ${error.message}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
console.log('✅ Transformers.js client-side setup complete');
|
||||
console.log('Available:', {
|
||||
transformersEmbedder: !!window.transformersEmbedder,
|
||||
dashClientside: !!window.dash_clientside,
|
||||
transformersModule: !!window.dash_clientside?.transformers,
|
||||
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings
|
||||
});
|
9
assets/package.json
Normal file
9
assets/package.json
Normal file
@@ -0,0 +1,9 @@
|
||||
{
|
||||
"name": "embeddingbuddy-assets",
|
||||
"version": "1.0.0",
|
||||
"description": "JavaScript dependencies for EmbeddingBuddy text input functionality",
|
||||
"dependencies": {
|
||||
"@huggingface/transformers": "^3.0.0"
|
||||
},
|
||||
"type": "module"
|
||||
}
|
106
assets/sample-txt.md
Normal file
106
assets/sample-txt.md
Normal file
@@ -0,0 +1,106 @@
|
||||
The sun peeked through the clouds after a drizzly morning.
|
||||
A gentle breeze rustled the leaves as we walked along the shoreline.
|
||||
Heavy rains caused flooding in several low-lying neighborhoods.
|
||||
It was so hot that even the birds sought shade under the palm trees.
|
||||
By midnight, the temperature had dropped below freezing.
|
||||
Thunderstorms lit up the sky with flashes of lightning.
|
||||
A thick fog settled over the city streets at dawn.
|
||||
The air smelled of ozone after the sudden hailstorm.
|
||||
I watched the snowflakes drift silently onto the ground.
|
||||
A double rainbow appeared after the rain shower.
|
||||
The humidity soared to uncomfortable levels by midday.
|
||||
Dust devils formed in the dry desert plains.
|
||||
The barometer readings indicated an approaching front.
|
||||
A sudden gust of wind knocked over the garden chairs.
|
||||
Light drizzle turned into a torrential downpour within minutes.
|
||||
The new smartphone features a foldable display and 5G connectivity.
|
||||
In the world of AI, transformers have revolutionized natural language processing.
|
||||
Quantum computing promises to solve problems beyond classical computers' reach.
|
||||
Blockchain technology is being explored for secure voting systems.
|
||||
Virtual reality headsets are becoming more affordable and accessible.
|
||||
The rise of electric vehicles is reshaping the automotive industry.
|
||||
Cloud computing allows businesses to scale resources dynamically.
|
||||
Machine learning algorithms can now predict stock market trends with surprising accuracy.
|
||||
Augmented reality applications are transforming retail experiences.
|
||||
The Internet of Things connects everyday devices to the web for smarter living.
|
||||
Cybersecurity threats are evolving, requiring constant vigilance.
|
||||
3D printing is enabling rapid prototyping and custom manufacturing.
|
||||
Edge computing reduces latency by processing data closer to the source.
|
||||
Biometric authentication methods are enhancing security in devices.
|
||||
Wearable technology is tracking health metrics in real-time.
|
||||
Artificial intelligence is being used to create realistic deepfakes.
|
||||
Preheat the oven to 375°F before you start mixing the batter.
|
||||
She finely chopped the garlic and sautéed it in two tablespoons of olive oil.
|
||||
A pinch of saffron adds a beautiful color and aroma to traditional paella.
|
||||
If the soup is too salty, add a peeled potato to absorb excess sodium.
|
||||
Let the bread dough rise for at least an hour in a warm, draft-free spot.
|
||||
Marinate the chicken overnight in a blend of citrus and spices.
|
||||
Use a cast-iron skillet to sear the steak on high heat.
|
||||
Whisk the egg whites until they form stiff peaks.
|
||||
Fold in the chocolate chips gently to keep the batter airy.
|
||||
Brush the pastry with an egg wash for a golden finish.
|
||||
Slow-roast the pork shoulder until it falls off the bone.
|
||||
Garnish the salad with toasted nuts and fresh herbs.
|
||||
Deglaze the pan with white wine for a rich sauce.
|
||||
Simmer the curry paste until the aroma intensifies.
|
||||
Let the risotto rest before serving to thicken slightly.
|
||||
He dribbled past two defenders and sank a three-pointer at the buzzer.
|
||||
The marathon runner kept a steady pace despite the sweltering heat.
|
||||
Their home team clinched the championship with a last-minute goal.
|
||||
NASCAR fans cheered as the cars roared around the oval track.
|
||||
She landed a perfect triple axel at the figure skating championship.
|
||||
The cyclist pedaled up the steep hill in record time.
|
||||
He pitched a no-hitter during the high school baseball game.
|
||||
The quarterback threw a touchdown pass under heavy pressure.
|
||||
They scored a hat-trick in the hockey final.
|
||||
The boxer delivered a swift uppercut in the final round.
|
||||
Surfers caught massive waves at dawn on the Pacific coast.
|
||||
Fans erupted when the underdog scored the winning goal.
|
||||
The swimmer broke the national record in the 200m freestyle.
|
||||
The gymnast executed a flawless routine on the balance beam.
|
||||
The rugby team celebrated their victory with a traditional haka.
|
||||
The stock market rallied after positive earnings reports.
|
||||
Investors are closely watching interest rate changes by the Federal Reserve.
|
||||
Cryptocurrency prices have been extremely volatile this year.
|
||||
Diversification is key to managing investment risk effectively.
|
||||
Inflation rates have reached a 40-year high, impacting consumer spending.
|
||||
Many companies are adopting ESG criteria to attract socially conscious investors.
|
||||
The bond market is reacting to geopolitical tensions and supply chain disruptions.
|
||||
Venture capital funding for startups has surged in the tech sector.
|
||||
Exchange-traded funds (ETFs) offer a way to invest in diversified portfolios.
|
||||
The global economy is recovering from the pandemic, but challenges remain.
|
||||
Central banks are exploring digital currencies to modernize payment systems.
|
||||
Retail investors are increasingly participating in the stock market through apps.
|
||||
Hedge funds are using complex algorithms to gain an edge in trading.
|
||||
Real estate prices have skyrocketed in urban areas due to low inventory.
|
||||
The startup raised $10 million in its Series A funding round.
|
||||
The symphony orchestra played a hauntingly beautiful melody.
|
||||
She strummed her guitar softly, filling the room with a warm sound.
|
||||
The DJ mixed tracks seamlessly, keeping the crowd dancing all night.
|
||||
His voice soared during the high notes of the ballad.
|
||||
The band played an acoustic set in the intimate coffee shop.
|
||||
Jazz musicians often improvise solos based on the chord changes.
|
||||
The opera singer hit the high C with perfect pitch.
|
||||
The choir harmonized beautifully, filling the church with sound.
|
||||
He composed a symphony that was performed at the concert hall.
|
||||
The singer-songwriter wrote heartfelt lyrics about love and loss.
|
||||
The rock band headlined the festival, drawing a massive crowd.
|
||||
Hip-hop artists use rhythm and rhyme to tell powerful stories.
|
||||
The violinist played a virtuosic solo that left the audience in awe.
|
||||
Folk music often reflects the culture and traditions of a community.
|
||||
The gospel choir lifted spirits with their uplifting performance.
|
||||
The fall of the Berlin Wall in 1989 marked the end of the Cold War.
|
||||
Ancient Egypt's pyramids are a testament to their architectural prowess.
|
||||
Europe's Renaissance period sparked a revival in art and science.
|
||||
The signing of the Declaration of Independence in 1776 established the United States.
|
||||
The Industrial Revolution transformed economies and societies worldwide.
|
||||
Rome was the center of a vast empire that influenced law and governance.
|
||||
The discovery of the New World by Christopher Columbus in 1492 changed global trade.
|
||||
The French Revolution in 1789 led to significant political and social change.
|
||||
World War II was a global conflict that reshaped international relations.
|
||||
The fall of the Roman Empire in 476 AD marked the beginning of the Middle Ages.
|
||||
The invention of the printing press revolutionized the spread of knowledge.
|
||||
The Cold War was characterized by political tension between the U.S. and the Soviet Union.
|
||||
The ancient Silk Road connected East and West through trade routes.
|
||||
The signing of the Magna Carta in 1215 established principles of due process.
|
||||
Exploration during the Age of Discovery expanded European empires across the globe.
|
172
assets/transformers-loader.js
Normal file
172
assets/transformers-loader.js
Normal file
@@ -0,0 +1,172 @@
|
||||
// Simple script to load Transformers.js from CDN and initialize embedding functionality
|
||||
// This approach uses traditional script loading instead of ES6 modules
|
||||
|
||||
console.log('🔧 Transformers.js loader starting...');
|
||||
|
||||
// Global state
|
||||
window.transformersLibraryLoaded = false;
|
||||
window.transformersLibraryLoading = false;
|
||||
|
||||
// Function to dynamically load a script
|
||||
function loadScript(src) {
|
||||
return new Promise((resolve, reject) => {
|
||||
const script = document.createElement('script');
|
||||
script.src = src;
|
||||
script.type = 'module';
|
||||
script.onload = () => resolve();
|
||||
script.onerror = () => reject(new Error(`Failed to load script: ${src}`));
|
||||
document.head.appendChild(script);
|
||||
});
|
||||
}
|
||||
|
||||
// Function to initialize Transformers.js
|
||||
async function initializeTransformers() {
|
||||
if (window.transformersLibraryLoaded) {
|
||||
console.log('✅ Transformers.js already loaded');
|
||||
return true;
|
||||
}
|
||||
|
||||
if (window.transformersLibraryLoading) {
|
||||
console.log('⏳ Transformers.js already loading, waiting...');
|
||||
// Wait for loading to complete
|
||||
while (window.transformersLibraryLoading) {
|
||||
await new Promise(resolve => setTimeout(resolve, 100));
|
||||
}
|
||||
return window.transformersLibraryLoaded;
|
||||
}
|
||||
|
||||
window.transformersLibraryLoading = true;
|
||||
|
||||
try {
|
||||
console.log('📦 Loading Transformers.js from CDN...');
|
||||
|
||||
// Use dynamic import since this is more reliable with ES modules
|
||||
const transformers = await import('https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.0.0');
|
||||
window.transformersLibrary = transformers;
|
||||
window.transformersLibraryLoaded = true;
|
||||
|
||||
console.log('✅ Transformers.js loaded successfully');
|
||||
return true;
|
||||
} catch (error) {
|
||||
console.error('❌ Failed to load Transformers.js:', error);
|
||||
return false;
|
||||
} finally {
|
||||
window.transformersLibraryLoading = false;
|
||||
}
|
||||
}
|
||||
|
||||
// Simple embeddings class
|
||||
class SimpleEmbedder {
|
||||
constructor() {
|
||||
this.pipeline = null;
|
||||
this.modelCache = new Map();
|
||||
}
|
||||
|
||||
async generateEmbeddings(texts, modelName = 'Xenova/all-MiniLM-L6-v2') {
|
||||
console.log('🔄 Generating embeddings for', texts.length, 'texts with model', modelName);
|
||||
|
||||
// Ensure Transformers.js is loaded
|
||||
if (!window.transformersLibraryLoaded) {
|
||||
const loaded = await initializeTransformers();
|
||||
if (!loaded) {
|
||||
throw new Error('Failed to load Transformers.js');
|
||||
}
|
||||
}
|
||||
|
||||
// Create pipeline if not cached
|
||||
if (!this.modelCache.has(modelName)) {
|
||||
console.log('🏗️ Creating pipeline for', modelName);
|
||||
const { pipeline } = window.transformersLibrary;
|
||||
this.pipeline = await pipeline('feature-extraction', modelName);
|
||||
this.modelCache.set(modelName, this.pipeline);
|
||||
} else {
|
||||
this.pipeline = this.modelCache.get(modelName);
|
||||
}
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = [];
|
||||
for (let i = 0; i < texts.length; i++) {
|
||||
console.log(`Processing text ${i + 1}/${texts.length}...`);
|
||||
const result = await this.pipeline(texts[i], { pooling: 'mean', normalize: true });
|
||||
embeddings.push(Array.from(result.data));
|
||||
}
|
||||
|
||||
console.log('✅ Generated', embeddings.length, 'embeddings');
|
||||
return embeddings;
|
||||
}
|
||||
}
|
||||
|
||||
// Create global instance
|
||||
window.simpleEmbedder = new SimpleEmbedder();
|
||||
|
||||
// Set up Dash clientside callbacks
|
||||
window.dash_clientside = window.dash_clientside || {};
|
||||
window.dash_clientside.transformers = {
|
||||
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
||||
console.log('🚀 Client-side generateEmbeddings called');
|
||||
|
||||
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
||||
console.log('⚠️ Missing required parameters');
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
try {
|
||||
// Tokenize text
|
||||
let textChunks;
|
||||
const trimmedText = textContent.trim();
|
||||
|
||||
switch (tokenizationMethod) {
|
||||
case 'sentence':
|
||||
textChunks = trimmedText.split(/[.!?]+/).map(s => s.trim()).filter(s => s.length > 0);
|
||||
break;
|
||||
case 'paragraph':
|
||||
textChunks = trimmedText.split(/\n\s*\n/).map(s => s.trim()).filter(s => s.length > 0);
|
||||
break;
|
||||
case 'manual':
|
||||
textChunks = trimmedText.split('\n').map(s => s.trim()).filter(s => s.length > 0);
|
||||
break;
|
||||
default:
|
||||
textChunks = [trimmedText];
|
||||
}
|
||||
|
||||
if (textChunks.length === 0) {
|
||||
throw new Error('No valid text chunks after tokenization');
|
||||
}
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = await window.simpleEmbedder.generateEmbeddings(textChunks, modelName);
|
||||
|
||||
// Create documents
|
||||
const documents = textChunks.map((text, i) => ({
|
||||
id: `text_input_${Date.now()}_${i}`,
|
||||
text: text,
|
||||
embedding: embeddings[i],
|
||||
category: category || "Text Input",
|
||||
subcategory: subcategory || "Generated",
|
||||
tags: []
|
||||
}));
|
||||
|
||||
return [
|
||||
{
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
},
|
||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
||||
"success",
|
||||
false
|
||||
];
|
||||
|
||||
} catch (error) {
|
||||
console.error('❌ Error generating embeddings:', error);
|
||||
return [
|
||||
{ error: error.message },
|
||||
`❌ Error: ${error.message}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
console.log('✅ Simple Transformers.js setup complete');
|
||||
console.log('Available functions:', Object.keys(window.dash_clientside.transformers));
|
133
bump_version.py
Executable file
133
bump_version.py
Executable file
@@ -0,0 +1,133 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Version bump script for EmbeddingBuddy.
|
||||
Automatically updates version in pyproject.toml following semantic versioning.
|
||||
"""
|
||||
import argparse
|
||||
import re
|
||||
import sys
|
||||
from pathlib import Path
|
||||
|
||||
|
||||
def get_current_version(pyproject_path: Path) -> str:
|
||||
"""Extract current version from pyproject.toml."""
|
||||
content = pyproject_path.read_text()
|
||||
match = re.search(r'version\s*=\s*"([^"]+)"', content)
|
||||
if not match:
|
||||
raise ValueError("Could not find version in pyproject.toml")
|
||||
return match.group(1)
|
||||
|
||||
|
||||
def parse_version(version_str: str) -> tuple[int, int, int]:
|
||||
"""Parse semantic version string into major, minor, patch tuple."""
|
||||
match = re.match(r'(\d+)\.(\d+)\.(\d+)', version_str)
|
||||
if not match:
|
||||
raise ValueError(f"Invalid version format: {version_str}")
|
||||
return int(match.group(1)), int(match.group(2)), int(match.group(3))
|
||||
|
||||
|
||||
def bump_version(current: str, bump_type: str) -> str:
|
||||
"""Bump version based on type (major, minor, patch)."""
|
||||
major, minor, patch = parse_version(current)
|
||||
|
||||
if bump_type == "major":
|
||||
return f"{major + 1}.0.0"
|
||||
elif bump_type == "minor":
|
||||
return f"{major}.{minor + 1}.0"
|
||||
elif bump_type == "patch":
|
||||
return f"{major}.{minor}.{patch + 1}"
|
||||
else:
|
||||
raise ValueError(f"Invalid bump type: {bump_type}")
|
||||
|
||||
|
||||
def update_version_in_file(pyproject_path: Path, new_version: str) -> None:
|
||||
"""Update version in pyproject.toml file."""
|
||||
content = pyproject_path.read_text()
|
||||
updated_content = re.sub(
|
||||
r'version\s*=\s*"[^"]+"',
|
||||
f'version = "{new_version}"',
|
||||
content
|
||||
)
|
||||
pyproject_path.write_text(updated_content)
|
||||
|
||||
|
||||
def main():
|
||||
"""Main version bump function."""
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Bump version in pyproject.toml",
|
||||
formatter_class=argparse.RawDescriptionHelpFormatter,
|
||||
epilog="""
|
||||
Examples:
|
||||
python bump_version.py patch # 0.3.0 -> 0.3.1
|
||||
python bump_version.py minor # 0.3.0 -> 0.4.0
|
||||
python bump_version.py major # 0.3.0 -> 1.0.0
|
||||
python bump_version.py --set 1.2.3 # Set specific version
|
||||
|
||||
Semantic versioning guide:
|
||||
- patch: Bug fixes, no API changes
|
||||
- minor: New features, backward compatible
|
||||
- major: Breaking changes, not backward compatible
|
||||
"""
|
||||
)
|
||||
|
||||
group = parser.add_mutually_exclusive_group(required=True)
|
||||
group.add_argument(
|
||||
"bump_type",
|
||||
nargs="?",
|
||||
choices=["major", "minor", "patch"],
|
||||
help="Type of version bump"
|
||||
)
|
||||
group.add_argument(
|
||||
"--set",
|
||||
dest="set_version",
|
||||
help="Set specific version (e.g., 1.2.3)"
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
"--dry-run",
|
||||
action="store_true",
|
||||
help="Show what would be changed without making changes"
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
# Find pyproject.toml
|
||||
pyproject_path = Path("pyproject.toml")
|
||||
if not pyproject_path.exists():
|
||||
print("❌ pyproject.toml not found in current directory")
|
||||
sys.exit(1)
|
||||
|
||||
try:
|
||||
current_version = get_current_version(pyproject_path)
|
||||
print(f"📦 Current version: {current_version}")
|
||||
|
||||
if args.set_version:
|
||||
# Validate the set version format
|
||||
parse_version(args.set_version)
|
||||
new_version = args.set_version
|
||||
else:
|
||||
new_version = bump_version(current_version, args.bump_type)
|
||||
|
||||
print(f"🚀 New version: {new_version}")
|
||||
|
||||
if args.dry_run:
|
||||
print("🔍 Dry run - no changes made")
|
||||
else:
|
||||
update_version_in_file(pyproject_path, new_version)
|
||||
print("✅ Version updated in pyproject.toml")
|
||||
print()
|
||||
print("💡 Next steps:")
|
||||
print(" 1. Review changes: git diff")
|
||||
print(" 2. Commit changes: git add . && git commit -m 'bump version to {}'".format(new_version))
|
||||
print(" 3. Tag release: git tag v{}".format(new_version))
|
||||
|
||||
except ValueError as e:
|
||||
print(f"❌ Error: {e}")
|
||||
sys.exit(1)
|
||||
except Exception as e:
|
||||
print(f"❌ Unexpected error: {e}")
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
69
docker-compose.yml
Normal file
69
docker-compose.yml
Normal file
@@ -0,0 +1,69 @@
|
||||
services:
|
||||
opensearch:
|
||||
image: opensearchproject/opensearch:2
|
||||
container_name: embeddingbuddy-opensearch
|
||||
profiles:
|
||||
- opensearch
|
||||
environment:
|
||||
- cluster.name=embeddingbuddy-cluster
|
||||
- node.name=embeddingbuddy-node
|
||||
- discovery.type=single-node
|
||||
- bootstrap.memory_lock=true
|
||||
- "OPENSEARCH_JAVA_OPTS=-Xms512m -Xmx512m"
|
||||
- "DISABLE_INSTALL_DEMO_CONFIG=true"
|
||||
- "DISABLE_SECURITY_PLUGIN=true"
|
||||
ulimits:
|
||||
memlock:
|
||||
soft: -1
|
||||
hard: -1
|
||||
nofile:
|
||||
soft: 65536
|
||||
hard: 65536
|
||||
volumes:
|
||||
- opensearch-data:/usr/share/opensearch/data
|
||||
ports:
|
||||
- "9200:9200"
|
||||
- "9600:9600"
|
||||
networks:
|
||||
- embeddingbuddy
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "curl -f http://localhost:9200/_cluster/health || exit 1"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 5
|
||||
start_period: 60s
|
||||
|
||||
embeddingbuddy:
|
||||
build: .
|
||||
container_name: embeddingbuddy-app
|
||||
environment:
|
||||
- EMBEDDINGBUDDY_HOST=0.0.0.0
|
||||
- EMBEDDINGBUDDY_PORT=8050
|
||||
- EMBEDDINGBUDDY_DEBUG=false
|
||||
- OPENSEARCH_HOST=opensearch
|
||||
- OPENSEARCH_PORT=9200
|
||||
- OPENSEARCH_SCHEME=http
|
||||
- OPENSEARCH_VERIFY_CERTS=false
|
||||
ports:
|
||||
- "8050:8050"
|
||||
networks:
|
||||
- embeddingbuddy
|
||||
depends_on:
|
||||
opensearch:
|
||||
condition: service_healthy
|
||||
required: false
|
||||
healthcheck:
|
||||
test: ["CMD-SHELL", "python -c 'import requests; requests.get(\"http://localhost:8050/\", timeout=5)'"]
|
||||
interval: 30s
|
||||
timeout: 10s
|
||||
retries: 3
|
||||
start_period: 30s
|
||||
restart: unless-stopped
|
||||
|
||||
volumes:
|
||||
opensearch-data:
|
||||
driver: local
|
||||
|
||||
networks:
|
||||
embeddingbuddy:
|
||||
driver: bridge
|
File diff suppressed because one or more lines are too long
157
example/README_elasticsearch.md
Normal file
157
example/README_elasticsearch.md
Normal file
@@ -0,0 +1,157 @@
|
||||
# Elasticsearch/OpenSearch Sample Data
|
||||
|
||||
This directory contains sample data files in Elasticsearch bulk index format for testing the OpenSearch integration in EmbeddingBuddy.
|
||||
|
||||
## Files
|
||||
|
||||
### Original NDJSON Files
|
||||
|
||||
- `sample_data.ndjson` - Original sample documents in EmbeddingBuddy format
|
||||
- `sample_prompts.ndjson` - Original sample prompts in EmbeddingBuddy format
|
||||
|
||||
### Elasticsearch Bulk Files
|
||||
|
||||
- `sample_data_es_bulk.ndjson` - Documents in ES bulk format (index: "embeddings")
|
||||
- `sample_prompts_es_bulk.ndjson` - Prompts in ES bulk format (index: "prompts")
|
||||
|
||||
## Usage
|
||||
|
||||
### 1. Index the data using curl
|
||||
|
||||
```bash
|
||||
# Index main documents
|
||||
curl -X POST "localhost:9200/_bulk" \
|
||||
-H "Content-Type: application/x-ndjson" \
|
||||
--data-binary @sample_data_es_bulk.ndjson
|
||||
|
||||
# Index prompts
|
||||
curl -X POST "localhost:9200/_bulk" \
|
||||
-H "Content-Type: application/x-ndjson" \
|
||||
--data-binary @sample_prompts_es_bulk.ndjson
|
||||
```
|
||||
|
||||
### 2. Create proper mappings (recommended)
|
||||
|
||||
First create the index with proper dense_vector mapping:
|
||||
|
||||
```bash
|
||||
# Create embeddings index with dense_vector mapping
|
||||
curl -X PUT "localhost:9200/embeddings" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"settings": {
|
||||
"index.knn": true
|
||||
},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"id": {"type": "keyword"},
|
||||
"embedding": {
|
||||
"type": "knn_vector",
|
||||
"dimension": 8,
|
||||
"method": {
|
||||
"engine": "lucene",
|
||||
"space_type": "cosinesimil",
|
||||
"name": "hnsw",
|
||||
"parameters": {}
|
||||
}
|
||||
},
|
||||
"text": {"type": "text"},
|
||||
"category": {"type": "keyword"},
|
||||
"subcategory": {"type": "keyword"},
|
||||
"tags": {"type": "keyword"}
|
||||
}
|
||||
}
|
||||
}'
|
||||
|
||||
# Create dense vector index with alternative field names
|
||||
curl -X PUT "localhost:9200/prompts" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"settings": {
|
||||
"index.knn": true
|
||||
},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"id": {"type": "keyword"},
|
||||
"embedding": {
|
||||
"type": "knn_vector",
|
||||
"dimension": 8,
|
||||
"method": {
|
||||
"engine": "lucene",
|
||||
"space_type": "cosinesimil",
|
||||
"name": "hnsw",
|
||||
"parameters": {}
|
||||
}
|
||||
},
|
||||
"text": {"type": "text"},
|
||||
"category": {"type": "keyword"},
|
||||
"subcategory": {"type": "keyword"},
|
||||
"tags": {"type": "keyword"}
|
||||
}
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
Then index the data using the bulk files above.
|
||||
|
||||
### 3. Test in EmbeddingBuddy
|
||||
|
||||
#### For "embeddings" index
|
||||
|
||||
- **OpenSearch URL**: `http://localhost:9200`
|
||||
- **Index Name**: `embeddings`
|
||||
- **Field Mapping**:
|
||||
- Embedding Field: `embedding`
|
||||
- Text Field: `text`
|
||||
- ID Field: `id`
|
||||
- Category Field: `category`
|
||||
- Subcategory Field: `subcategory`
|
||||
- Tags Field: `tags`
|
||||
|
||||
#### For "embeddings-dense" index (alternative field names)
|
||||
|
||||
- **OpenSearch URL**: `http://localhost:9200`
|
||||
- **Index Name**: `embeddings-dense`
|
||||
- **Field Mapping**:
|
||||
- Embedding Field: `vector`
|
||||
- Text Field: `content`
|
||||
- ID Field: `doc_id`
|
||||
- Category Field: `type`
|
||||
- Subcategory Field: `subtopic`
|
||||
- Tags Field: `keywords`
|
||||
|
||||
## Data Structure
|
||||
|
||||
### Original Format (from NDJSON files)
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "doc_001",
|
||||
"embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3],
|
||||
"text": "Machine learning algorithms are transforming healthcare...",
|
||||
"category": "technology",
|
||||
"subcategory": "healthcare",
|
||||
"tags": ["ai", "medicine", "prediction"]
|
||||
}
|
||||
```
|
||||
|
||||
### ES Bulk Format
|
||||
|
||||
```json
|
||||
{"index": {"_index": "embeddings", "_id": "doc_001"}}
|
||||
{"id": "doc_001", "embedding": [...], "text": "...", "category": "...", ...}
|
||||
```
|
||||
|
||||
### Alternative Field Names (dense vector format)
|
||||
|
||||
```json
|
||||
{"index": {"_index": "embeddings-dense", "_id": "doc_001"}}
|
||||
{"doc_id": "doc_001", "vector": [...], "content": "...", "type": "...", ...}
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- All embedding vectors are 8-dimensional for these sample files
|
||||
- The alternative format demonstrates how EmbeddingBuddy's field mapping handles different field names
|
||||
- For production use, you may want larger embedding dimensions (e.g., 384, 768, 1536)
|
||||
- The `dense_vector` field type in Elasticsearch/OpenSearch enables vector similarity search
|
40
example/sample_data_es_bulk.ndjson
Normal file
40
example/sample_data_es_bulk.ndjson
Normal file
@@ -0,0 +1,40 @@
|
||||
{"index": {"_index": "embeddings", "_id": "doc_001"}}
|
||||
{"id": "doc_001", "embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3], "text": "Machine learning algorithms are transforming healthcare by enabling predictive analytics and personalized medicine.", "category": "technology", "subcategory": "healthcare", "tags": ["ai", "medicine", "prediction"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_002"}}
|
||||
{"id": "doc_002", "embedding": [0.1, 0.4, -0.2, 0.6, 0.3, -0.4, 0.8, 0.2], "text": "Climate change poses significant challenges to global food security and agricultural sustainability.", "category": "environment", "subcategory": "agriculture", "tags": ["climate", "food", "sustainability"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_003"}}
|
||||
{"id": "doc_003", "embedding": [-0.3, 0.7, 0.1, -0.2, 0.9, 0.4, -0.1, 0.5], "text": "The rise of electric vehicles is reshaping the automotive industry and urban transportation systems.", "category": "technology", "subcategory": "automotive", "tags": ["electric", "transport", "urban"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_004"}}
|
||||
{"id": "doc_004", "embedding": [0.5, -0.6, 0.3, 0.8, -0.2, 0.1, 0.7, -0.4], "text": "Renewable energy sources like solar and wind are becoming increasingly cost-competitive with fossil fuels.", "category": "environment", "subcategory": "energy", "tags": ["renewable", "solar", "wind"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_005"}}
|
||||
{"id": "doc_005", "embedding": [0.8, 0.2, -0.5, 0.1, 0.6, -0.3, 0.4, 0.9], "text": "Financial markets are experiencing volatility due to geopolitical tensions and inflation concerns.", "category": "finance", "subcategory": "markets", "tags": ["volatility", "inflation", "geopolitics"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_006"}}
|
||||
{"id": "doc_006", "embedding": [-0.1, 0.5, 0.7, -0.4, 0.2, 0.8, -0.6, 0.3], "text": "Quantum computing research is advancing rapidly with potential applications in cryptography and drug discovery.", "category": "technology", "subcategory": "research", "tags": ["quantum", "cryptography", "research"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_007"}}
|
||||
{"id": "doc_007", "embedding": [0.4, -0.3, 0.6, 0.7, -0.8, 0.2, 0.5, -0.1], "text": "Ocean pollution from plastic waste is threatening marine ecosystems and biodiversity worldwide.", "category": "environment", "subcategory": "marine", "tags": ["pollution", "plastic", "marine"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_008"}}
|
||||
{"id": "doc_008", "embedding": [0.3, 0.8, -0.2, 0.5, 0.1, -0.7, 0.6, 0.4], "text": "Artificial intelligence is revolutionizing customer service through chatbots and automated support systems.", "category": "technology", "subcategory": "customer_service", "tags": ["ai", "chatbots", "automation"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_009"}}
|
||||
{"id": "doc_009", "embedding": [-0.5, 0.3, 0.9, -0.1, 0.7, 0.4, -0.2, 0.8], "text": "Global supply chains are being redesigned for resilience after pandemic-related disruptions.", "category": "business", "subcategory": "logistics", "tags": ["supply_chain", "pandemic", "resilience"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_010"}}
|
||||
{"id": "doc_010", "embedding": [0.7, -0.4, 0.2, 0.9, -0.3, 0.6, 0.1, -0.8], "text": "Space exploration missions are expanding our understanding of the solar system and potential for life.", "category": "science", "subcategory": "space", "tags": ["space", "exploration", "life"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_011"}}
|
||||
{"id": "doc_011", "embedding": [-0.2, 0.6, 0.4, -0.7, 0.8, 0.3, -0.5, 0.1], "text": "Cryptocurrency adoption is growing among institutional investors despite regulatory uncertainties.", "category": "finance", "subcategory": "crypto", "tags": ["cryptocurrency", "institutional", "regulation"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_012"}}
|
||||
{"id": "doc_012", "embedding": [0.6, 0.1, -0.8, 0.4, 0.5, -0.2, 0.9, -0.3], "text": "Remote work technologies are transforming traditional office environments and work-life balance.", "category": "technology", "subcategory": "workplace", "tags": ["remote", "work", "balance"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_013"}}
|
||||
{"id": "doc_013", "embedding": [0.1, -0.7, 0.5, 0.8, -0.4, 0.3, 0.2, 0.6], "text": "Gene therapy breakthroughs are offering new hope for treating previously incurable genetic diseases.", "category": "science", "subcategory": "medicine", "tags": ["gene_therapy", "genetics", "medicine"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_014"}}
|
||||
{"id": "doc_014", "embedding": [-0.4, 0.2, 0.7, -0.1, 0.9, -0.6, 0.3, 0.5], "text": "Urban planning is evolving to create more sustainable and livable cities for growing populations.", "category": "environment", "subcategory": "urban", "tags": ["urban_planning", "sustainability", "cities"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_015"}}
|
||||
{"id": "doc_015", "embedding": [0.9, -0.1, 0.3, 0.6, -0.5, 0.8, -0.2, 0.4], "text": "Social media platforms are implementing new policies to combat misinformation and protect user privacy.", "category": "technology", "subcategory": "social_media", "tags": ["social_media", "misinformation", "privacy"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_016"}}
|
||||
{"id": "doc_016", "embedding": [-0.3, 0.8, -0.1, 0.4, 0.7, -0.5, 0.6, -0.9], "text": "Educational technology is personalizing learning experiences and improving student outcomes.", "category": "education", "subcategory": "technology", "tags": ["education", "personalization", "technology"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_017"}}
|
||||
{"id": "doc_017", "embedding": [0.5, 0.3, -0.6, 0.2, 0.8, 0.1, -0.4, 0.7], "text": "Biodiversity conservation efforts are critical for maintaining ecosystem balance and preventing species extinction.", "category": "environment", "subcategory": "conservation", "tags": ["biodiversity", "conservation", "extinction"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_018"}}
|
||||
{"id": "doc_018", "embedding": [0.2, -0.8, 0.4, 0.7, -0.1, 0.5, 0.9, -0.3], "text": "Healthcare systems are adopting telemedicine to improve access and reduce costs for patients.", "category": "technology", "subcategory": "healthcare", "tags": ["telemedicine", "healthcare", "access"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_019"}}
|
||||
{"id": "doc_019", "embedding": [-0.7, 0.4, 0.8, -0.2, 0.3, 0.6, -0.1, 0.9], "text": "Autonomous vehicles are being tested extensively with promises of safer and more efficient transportation.", "category": "technology", "subcategory": "automotive", "tags": ["autonomous", "safety", "efficiency"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_020"}}
|
||||
{"id": "doc_020", "embedding": [0.4, 0.7, -0.3, 0.9, -0.6, 0.2, 0.5, -0.1], "text": "Mental health awareness is increasing with new approaches to therapy and workplace wellness programs.", "category": "health", "subcategory": "mental", "tags": ["mental_health", "therapy", "wellness"]}
|
20
example/sample_prompts_es_bulk.ndjson
Normal file
20
example/sample_prompts_es_bulk.ndjson
Normal file
@@ -0,0 +1,20 @@
|
||||
{"index": {"_index": "prompts", "_id": "prompt_001"}}
|
||||
{"id": "prompt_001", "embedding": [0.15, -0.28, 0.65, 0.42, -0.11, 0.33, 0.78, -0.52], "text": "Find articles about machine learning applications", "category": "search", "subcategory": "technology", "tags": ["AI", "research"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_002"}}
|
||||
{"id": "prompt_002", "embedding": [0.72, 0.18, -0.35, 0.51, 0.09, -0.44, 0.27, 0.63], "text": "Show me product reviews for smartphones", "category": "search", "subcategory": "product", "tags": ["mobile", "reviews"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_003"}}
|
||||
{"id": "prompt_003", "embedding": [-0.21, 0.59, 0.34, -0.67, 0.45, 0.12, -0.38, 0.76], "text": "What are the latest political developments?", "category": "search", "subcategory": "news", "tags": ["politics", "current events"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_004"}}
|
||||
{"id": "prompt_004", "embedding": [0.48, -0.15, 0.72, 0.31, -0.58, 0.24, 0.67, -0.39], "text": "Summarize recent tech industry trends", "category": "analysis", "subcategory": "technology", "tags": ["tech", "trends", "summary"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_005"}}
|
||||
{"id": "prompt_005", "embedding": [-0.33, 0.47, -0.62, 0.28, 0.71, -0.18, 0.54, 0.35], "text": "Compare different smartphone models", "category": "analysis", "subcategory": "product", "tags": ["comparison", "mobile", "evaluation"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_006"}}
|
||||
{"id": "prompt_006", "embedding": [0.64, 0.21, 0.39, -0.45, 0.13, 0.58, -0.27, 0.74], "text": "Analyze voter sentiment on recent policies", "category": "analysis", "subcategory": "politics", "tags": ["sentiment", "politics", "analysis"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_007"}}
|
||||
{"id": "prompt_007", "embedding": [0.29, -0.43, 0.56, 0.68, -0.22, 0.37, 0.14, -0.61], "text": "Generate a summary of machine learning research", "category": "generation", "subcategory": "technology", "tags": ["AI", "research", "summary"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_008"}}
|
||||
{"id": "prompt_008", "embedding": [-0.17, 0.52, -0.48, 0.36, 0.74, -0.29, 0.61, 0.18], "text": "Create a product recommendation report", "category": "generation", "subcategory": "product", "tags": ["recommendation", "report", "analysis"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_009"}}
|
||||
{"id": "prompt_009", "embedding": [0.55, 0.08, 0.41, -0.37, 0.26, 0.69, -0.14, 0.58], "text": "Write a news brief on election updates", "category": "generation", "subcategory": "news", "tags": ["election", "news", "brief"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_010"}}
|
||||
{"id": "prompt_010", "embedding": [0.23, -0.59, 0.47, 0.61, -0.35, 0.18, 0.72, -0.26], "text": "Explain how neural networks work", "category": "explanation", "subcategory": "technology", "tags": ["AI", "education", "neural networks"]}
|
1
prompts-raw.ndjson
Normal file
1
prompts-raw.ndjson
Normal file
File diff suppressed because one or more lines are too long
64
prompts.ndjson
Normal file
64
prompts.ndjson
Normal file
File diff suppressed because one or more lines are too long
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "embeddingbuddy"
|
||||
version = "0.2.0"
|
||||
version = "0.4.0"
|
||||
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.11"
|
||||
@@ -12,9 +12,9 @@ dependencies = [
|
||||
"scikit-learn>=1.3.2",
|
||||
"dash-bootstrap-components>=1.5.0",
|
||||
"umap-learn>=0.5.8",
|
||||
"numba>=0.56.4",
|
||||
"openTSNE>=1.0.0",
|
||||
"mypy>=1.17.1",
|
||||
"opensearch-py>=3.0.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
@@ -31,11 +31,14 @@ security = [
|
||||
"safety>=2.3.0",
|
||||
"pip-audit>=2.6.0",
|
||||
]
|
||||
prod = [
|
||||
"gunicorn>=21.2.0",
|
||||
]
|
||||
dev = [
|
||||
"embeddingbuddy[test,lint,security]",
|
||||
]
|
||||
all = [
|
||||
"embeddingbuddy[test,lint,security]",
|
||||
"embeddingbuddy[test,lint,security,prod]",
|
||||
]
|
||||
|
||||
[build-system]
|
||||
|
26
run_dev.py
Normal file
26
run_dev.py
Normal file
@@ -0,0 +1,26 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Development runner with auto-reload enabled.
|
||||
This runs the Dash development server with hot reloading.
|
||||
"""
|
||||
import os
|
||||
from src.embeddingbuddy.app import create_app, run_app
|
||||
|
||||
def main():
|
||||
"""Run the application in development mode with auto-reload."""
|
||||
# Force development settings
|
||||
os.environ["EMBEDDINGBUDDY_ENV"] = "development"
|
||||
os.environ["EMBEDDINGBUDDY_DEBUG"] = "true"
|
||||
|
||||
print("🚀 Starting EmbeddingBuddy in development mode...")
|
||||
print("📁 Auto-reload enabled - changes will trigger restart")
|
||||
print("🌐 Server will be available at http://127.0.0.1:8050")
|
||||
print("⏹️ Press Ctrl+C to stop")
|
||||
|
||||
app = create_app()
|
||||
|
||||
# Run with development server (includes auto-reload when debug=True)
|
||||
run_app(app, debug=True)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
49
run_prod.py
Normal file
49
run_prod.py
Normal file
@@ -0,0 +1,49 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Production runner using Gunicorn WSGI server.
|
||||
This provides better performance and stability for production deployments.
|
||||
"""
|
||||
import os
|
||||
import subprocess
|
||||
import sys
|
||||
from src.embeddingbuddy.config.settings import AppSettings
|
||||
|
||||
def main():
|
||||
"""Run the application in production mode with Gunicorn."""
|
||||
# Force production settings
|
||||
os.environ["EMBEDDINGBUDDY_ENV"] = "production"
|
||||
os.environ["EMBEDDINGBUDDY_DEBUG"] = "false"
|
||||
|
||||
print("🚀 Starting EmbeddingBuddy in production mode...")
|
||||
print(f"⚙️ Workers: {AppSettings.GUNICORN_WORKERS}")
|
||||
print(f"🌐 Server will be available at http://{AppSettings.GUNICORN_BIND}")
|
||||
print("⏹️ Press Ctrl+C to stop")
|
||||
|
||||
# Gunicorn command
|
||||
cmd = [
|
||||
"gunicorn",
|
||||
"--workers", str(AppSettings.GUNICORN_WORKERS),
|
||||
"--bind", AppSettings.GUNICORN_BIND,
|
||||
"--timeout", str(AppSettings.GUNICORN_TIMEOUT),
|
||||
"--keepalive", str(AppSettings.GUNICORN_KEEPALIVE),
|
||||
"--access-logfile", "-",
|
||||
"--error-logfile", "-",
|
||||
"--log-level", "info",
|
||||
"wsgi:application"
|
||||
]
|
||||
|
||||
try:
|
||||
subprocess.run(cmd, check=True)
|
||||
except KeyboardInterrupt:
|
||||
print("\n🛑 Shutting down...")
|
||||
sys.exit(0)
|
||||
except subprocess.CalledProcessError as e:
|
||||
print(f"❌ Error running Gunicorn: {e}")
|
||||
sys.exit(1)
|
||||
except FileNotFoundError:
|
||||
print("❌ Gunicorn not found. Install it with: uv add gunicorn")
|
||||
print("💡 Or run in development mode with: python run_dev.py")
|
||||
sys.exit(1)
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
@@ -8,7 +8,18 @@ from .ui.callbacks.interactions import InteractionCallbacks
|
||||
|
||||
|
||||
def create_app():
|
||||
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||||
import os
|
||||
|
||||
# Get the project root directory (two levels up from this file)
|
||||
project_root = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
|
||||
assets_path = os.path.join(project_root, "assets")
|
||||
|
||||
app = dash.Dash(
|
||||
__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], assets_folder=assets_path
|
||||
)
|
||||
|
||||
# Allow callbacks to components that are dynamically created in tabs
|
||||
app.config.suppress_callback_exceptions = True
|
||||
|
||||
layout_manager = AppLayout()
|
||||
app.layout = layout_manager.create_layout()
|
||||
@@ -17,9 +28,78 @@ def create_app():
|
||||
VisualizationCallbacks()
|
||||
InteractionCallbacks()
|
||||
|
||||
# Register client-side callback for embedding generation
|
||||
_register_client_side_callbacks(app)
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def _register_client_side_callbacks(app):
|
||||
"""Register client-side callbacks for browser-based processing."""
|
||||
from dash import Input, Output, State
|
||||
|
||||
# Client-side callback for embedding generation
|
||||
app.clientside_callback(
|
||||
"""
|
||||
function(nClicks, textContent, modelName, tokenizationMethod, batchSize, category, subcategory) {
|
||||
if (!nClicks || !textContent || !textContent.trim()) {
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
console.log('🔍 Checking for Transformers.js...');
|
||||
console.log('window.dash_clientside:', typeof window.dash_clientside);
|
||||
console.log('window.dash_clientside.transformers:', typeof window.dash_clientside?.transformers);
|
||||
console.log('generateEmbeddings function:', typeof window.dash_clientside?.transformers?.generateEmbeddings);
|
||||
|
||||
if (typeof window.dash_clientside !== 'undefined' &&
|
||||
typeof window.dash_clientside.transformers !== 'undefined' &&
|
||||
typeof window.dash_clientside.transformers.generateEmbeddings === 'function') {
|
||||
|
||||
console.log('✅ Calling Transformers.js generateEmbeddings...');
|
||||
return window.dash_clientside.transformers.generateEmbeddings(
|
||||
nClicks, textContent, modelName, tokenizationMethod, category, subcategory
|
||||
);
|
||||
}
|
||||
|
||||
// More detailed error information
|
||||
let errorMsg = '❌ Transformers.js not available. ';
|
||||
if (typeof window.dash_clientside === 'undefined') {
|
||||
errorMsg += 'dash_clientside not found.';
|
||||
} else if (typeof window.dash_clientside.transformers === 'undefined') {
|
||||
errorMsg += 'transformers module not found.';
|
||||
} else if (typeof window.dash_clientside.transformers.generateEmbeddings !== 'function') {
|
||||
errorMsg += 'generateEmbeddings function not found.';
|
||||
}
|
||||
|
||||
console.error(errorMsg);
|
||||
|
||||
return [
|
||||
{ error: 'Transformers.js not loaded. Please refresh the page and try again.' },
|
||||
errorMsg + ' Please refresh the page.',
|
||||
'danger',
|
||||
false
|
||||
];
|
||||
}
|
||||
""",
|
||||
[
|
||||
Output("embeddings-generated-trigger", "data"),
|
||||
Output("text-input-status-immediate", "children"),
|
||||
Output("text-input-status-immediate", "color"),
|
||||
Output("generate-embeddings-btn", "disabled", allow_duplicate=True),
|
||||
],
|
||||
[Input("generate-embeddings-btn", "n_clicks")],
|
||||
[
|
||||
State("text-input-area", "value"),
|
||||
State("model-selection", "value"),
|
||||
State("tokenization-method", "value"),
|
||||
State("batch-size", "value"),
|
||||
State("text-category", "value"),
|
||||
State("text-subcategory", "value"),
|
||||
],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
|
||||
|
||||
def run_app(app=None, debug=None, host=None, port=None):
|
||||
if app is None:
|
||||
app = create_app()
|
||||
|
@@ -72,6 +72,86 @@ class AppSettings:
|
||||
DEBUG = os.getenv("EMBEDDINGBUDDY_DEBUG", "True").lower() == "true"
|
||||
HOST = os.getenv("EMBEDDINGBUDDY_HOST", "127.0.0.1")
|
||||
PORT = int(os.getenv("EMBEDDINGBUDDY_PORT", "8050"))
|
||||
|
||||
# Environment Configuration
|
||||
ENVIRONMENT = os.getenv("EMBEDDINGBUDDY_ENV", "development") # development, production
|
||||
|
||||
# WSGI Server Configuration (for production)
|
||||
GUNICORN_WORKERS = int(os.getenv("GUNICORN_WORKERS", "4"))
|
||||
GUNICORN_BIND = os.getenv("GUNICORN_BIND", f"{HOST}:{PORT}")
|
||||
GUNICORN_TIMEOUT = int(os.getenv("GUNICORN_TIMEOUT", "120"))
|
||||
GUNICORN_KEEPALIVE = int(os.getenv("GUNICORN_KEEPALIVE", "5"))
|
||||
|
||||
# OpenSearch Configuration
|
||||
OPENSEARCH_DEFAULT_SIZE = 100
|
||||
OPENSEARCH_SAMPLE_SIZE = 5
|
||||
OPENSEARCH_CONNECTION_TIMEOUT = 30
|
||||
OPENSEARCH_VERIFY_CERTS = True
|
||||
|
||||
# Text Input / Transformers.js Configuration
|
||||
DEFAULT_EMBEDDING_MODEL = "Xenova/all-mpnet-base-v2"
|
||||
MAX_TEXT_LENGTH = 50000 # Characters (browser memory limits)
|
||||
DEFAULT_TOKENIZATION_METHOD = "sentence"
|
||||
MAX_BATCH_SIZE = 8 # Process in smaller batches for memory management
|
||||
|
||||
# Available Transformers.js compatible models
|
||||
AVAILABLE_MODELS = [
|
||||
{
|
||||
"name": "Xenova/all-mpnet-base-v2",
|
||||
"label": "All-MPNet-Base-v2 (Quality, 768d)",
|
||||
"description": "Higher quality embeddings with better semantic understanding",
|
||||
"dimensions": 768,
|
||||
"size": "109 MB",
|
||||
"context_length": 512,
|
||||
"multilingual": False,
|
||||
"default": True,
|
||||
},
|
||||
{
|
||||
"name": "Xenova/all-MiniLM-L6-v2",
|
||||
"label": "All-MiniLM-L6-v2 (Fast, 384d)",
|
||||
"description": "Lightweight model, good for quick testing and general purpose",
|
||||
"dimensions": 384,
|
||||
"size": "23 MB",
|
||||
"context_length": 512,
|
||||
"multilingual": False,
|
||||
"default": False,
|
||||
},
|
||||
{
|
||||
"name": "Xenova/paraphrase-multilingual-MiniLM-L12-v2",
|
||||
"label": "Multilingual MiniLM (50+ languages)",
|
||||
"description": "Support for multiple languages with good performance",
|
||||
"dimensions": 384,
|
||||
"size": "127 MB",
|
||||
"context_length": 512,
|
||||
"multilingual": True,
|
||||
},
|
||||
{
|
||||
"name": "Xenova/bge-small-en-v1.5",
|
||||
"label": "BGE Small English (High quality, 384d)",
|
||||
"description": "Beijing Academy of AI model with excellent performance on retrieval tasks",
|
||||
"dimensions": 384,
|
||||
"size": "67 MB",
|
||||
"context_length": 512,
|
||||
"multilingual": False,
|
||||
},
|
||||
{
|
||||
"name": "Xenova/gte-small",
|
||||
"label": "GTE Small (General Text Embeddings, 384d)",
|
||||
"description": "Alibaba's general text embedding model, balanced performance",
|
||||
"dimensions": 384,
|
||||
"size": "67 MB",
|
||||
"context_length": 512,
|
||||
"multilingual": False,
|
||||
},
|
||||
]
|
||||
|
||||
# Browser compatibility requirements
|
||||
SUPPORTED_BROWSERS = {
|
||||
"chrome": ">=88",
|
||||
"firefox": ">=92",
|
||||
"safari": ">=15.4",
|
||||
"edge": ">=88",
|
||||
}
|
||||
|
||||
# Bootstrap Theme
|
||||
EXTERNAL_STYLESHEETS = [
|
||||
|
@@ -1,6 +1,7 @@
|
||||
import numpy as np
|
||||
from typing import List, Optional, Tuple
|
||||
from ..models.schemas import Document, ProcessedData
|
||||
from ..models.field_mapper import FieldMapper
|
||||
from .parser import NDJSONParser
|
||||
|
||||
|
||||
@@ -26,6 +27,126 @@ class DataProcessor:
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
def process_opensearch_data(
|
||||
self, raw_documents: List[dict], field_mapping
|
||||
) -> ProcessedData:
|
||||
"""Process raw OpenSearch documents using field mapping."""
|
||||
try:
|
||||
# Transform documents using field mapping
|
||||
transformed_docs = FieldMapper.transform_documents(
|
||||
raw_documents, field_mapping
|
||||
)
|
||||
|
||||
# Parse transformed documents
|
||||
documents = []
|
||||
for doc_dict in transformed_docs:
|
||||
try:
|
||||
# Ensure required fields are present with defaults if needed
|
||||
if "id" not in doc_dict or not doc_dict["id"]:
|
||||
doc_dict["id"] = f"doc_{len(documents)}"
|
||||
|
||||
doc = Document(**doc_dict)
|
||||
documents.append(doc)
|
||||
except Exception:
|
||||
continue # Skip invalid documents
|
||||
|
||||
if not documents:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error="No valid documents after transformation",
|
||||
)
|
||||
|
||||
embeddings = self._extract_embeddings(documents)
|
||||
return ProcessedData(documents=documents, embeddings=embeddings)
|
||||
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
def process_client_embeddings(self, embeddings_data: dict) -> ProcessedData:
|
||||
"""Process embeddings data received from client-side JavaScript."""
|
||||
try:
|
||||
if "error" in embeddings_data:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error=embeddings_data["error"],
|
||||
)
|
||||
|
||||
# Extract documents and embeddings from client data
|
||||
documents_data = embeddings_data.get("documents", [])
|
||||
embeddings_list = embeddings_data.get("embeddings", [])
|
||||
|
||||
if not documents_data or not embeddings_list:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error="No documents or embeddings in client data",
|
||||
)
|
||||
|
||||
if len(documents_data) != len(embeddings_list):
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error="Mismatch between number of documents and embeddings",
|
||||
)
|
||||
|
||||
# Convert embeddings to numpy array first
|
||||
try:
|
||||
embeddings = np.array(embeddings_list)
|
||||
|
||||
if embeddings.ndim != 2:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error="Invalid embedding dimensions",
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error=f"Error processing embeddings: {str(e)}",
|
||||
)
|
||||
|
||||
# Convert to Document objects with embeddings
|
||||
documents = []
|
||||
for i, doc_data in enumerate(documents_data):
|
||||
try:
|
||||
# Skip if we don't have a corresponding embedding
|
||||
if i >= len(embeddings):
|
||||
continue
|
||||
|
||||
# Ensure required fields are present
|
||||
if "id" not in doc_data or not doc_data["id"]:
|
||||
doc_data["id"] = f"text_input_{i}"
|
||||
if "text" not in doc_data or not doc_data["text"].strip():
|
||||
continue # Skip documents without text
|
||||
|
||||
# Add the embedding to doc_data
|
||||
doc_data["embedding"] = embeddings[i].tolist()
|
||||
|
||||
doc = Document(**doc_data)
|
||||
documents.append(doc)
|
||||
except Exception:
|
||||
# Skip invalid documents but continue processing
|
||||
continue
|
||||
|
||||
if not documents:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error="No valid documents found in client data",
|
||||
)
|
||||
|
||||
# Only keep embeddings for valid documents
|
||||
valid_embeddings = embeddings[: len(documents)]
|
||||
|
||||
return ProcessedData(documents=documents, embeddings=valid_embeddings)
|
||||
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
def _extract_embeddings(self, documents: List[Document]) -> np.ndarray:
|
||||
if not documents:
|
||||
return np.array([])
|
||||
|
0
src/embeddingbuddy/data/sources/__init__.py
Normal file
0
src/embeddingbuddy/data/sources/__init__.py
Normal file
189
src/embeddingbuddy/data/sources/opensearch.py
Normal file
189
src/embeddingbuddy/data/sources/opensearch.py
Normal file
@@ -0,0 +1,189 @@
|
||||
from typing import Dict, List, Optional, Any, Tuple
|
||||
import logging
|
||||
from opensearchpy import OpenSearch
|
||||
from opensearchpy.exceptions import OpenSearchException
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OpenSearchClient:
|
||||
def __init__(self):
|
||||
self.client: Optional[OpenSearch] = None
|
||||
self.connection_info: Optional[Dict[str, Any]] = None
|
||||
|
||||
def connect(
|
||||
self,
|
||||
url: str,
|
||||
username: Optional[str] = None,
|
||||
password: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
verify_certs: bool = True,
|
||||
) -> Tuple[bool, str]:
|
||||
"""
|
||||
Connect to OpenSearch instance.
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, message: str)
|
||||
"""
|
||||
try:
|
||||
# Parse URL to extract host and port
|
||||
if url.startswith("http://") or url.startswith("https://"):
|
||||
host = url
|
||||
else:
|
||||
host = f"https://{url}"
|
||||
|
||||
# Build auth configuration
|
||||
auth_config = {}
|
||||
if username and password:
|
||||
auth_config["http_auth"] = (username, password)
|
||||
elif api_key:
|
||||
auth_config["api_key"] = api_key
|
||||
|
||||
# Create client
|
||||
self.client = OpenSearch([host], verify_certs=verify_certs, **auth_config)
|
||||
|
||||
# Test connection
|
||||
info = self.client.info()
|
||||
self.connection_info = {
|
||||
"url": host,
|
||||
"cluster_name": info.get("cluster_name", "Unknown"),
|
||||
"version": info.get("version", {}).get("number", "Unknown"),
|
||||
}
|
||||
|
||||
return (
|
||||
True,
|
||||
f"Connected to {info.get('cluster_name', 'OpenSearch cluster')}",
|
||||
)
|
||||
|
||||
except OpenSearchException as e:
|
||||
logger.error(f"OpenSearch connection error: {e}")
|
||||
return False, f"Connection failed: {str(e)}"
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error connecting to OpenSearch: {e}")
|
||||
return False, f"Unexpected error: {str(e)}"
|
||||
|
||||
def get_index_mapping(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
|
||||
"""
|
||||
Get the mapping for a specific index.
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, mapping: Dict or None, message: str)
|
||||
"""
|
||||
if not self.client:
|
||||
return False, None, "Not connected to OpenSearch"
|
||||
|
||||
try:
|
||||
mapping = self.client.indices.get_mapping(index=index_name)
|
||||
return True, mapping, "Mapping retrieved successfully"
|
||||
except OpenSearchException as e:
|
||||
logger.error(f"Error getting mapping for index {index_name}: {e}")
|
||||
return False, None, f"Failed to get mapping: {str(e)}"
|
||||
|
||||
def analyze_fields(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
|
||||
"""
|
||||
Analyze index fields to detect potential embedding and text fields.
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, analysis: Dict or None, message: str)
|
||||
"""
|
||||
success, mapping, message = self.get_index_mapping(index_name)
|
||||
if not success:
|
||||
return False, None, message
|
||||
|
||||
try:
|
||||
# Extract field information from mapping
|
||||
index_mapping = mapping[index_name]["mappings"]["properties"]
|
||||
|
||||
analysis = {
|
||||
"vector_fields": [],
|
||||
"text_fields": [],
|
||||
"keyword_fields": [],
|
||||
"numeric_fields": [],
|
||||
"all_fields": [],
|
||||
}
|
||||
|
||||
for field_name, field_info in index_mapping.items():
|
||||
field_type = field_info.get("type", "unknown")
|
||||
analysis["all_fields"].append(field_name)
|
||||
|
||||
if field_type == "dense_vector":
|
||||
analysis["vector_fields"].append(
|
||||
{
|
||||
"name": field_name,
|
||||
"dimension": field_info.get("dimension", "unknown"),
|
||||
}
|
||||
)
|
||||
elif field_type == "text":
|
||||
analysis["text_fields"].append(field_name)
|
||||
elif field_type == "keyword":
|
||||
analysis["keyword_fields"].append(field_name)
|
||||
elif field_type in ["integer", "long", "float", "double"]:
|
||||
analysis["numeric_fields"].append(field_name)
|
||||
|
||||
return True, analysis, "Field analysis completed"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error analyzing fields: {e}")
|
||||
return False, None, f"Field analysis failed: {str(e)}"
|
||||
|
||||
def fetch_sample_data(
|
||||
self, index_name: str, size: int = 5
|
||||
) -> Tuple[bool, List[Dict], str]:
|
||||
"""
|
||||
Fetch sample documents from the index.
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, documents: List[Dict], message: str)
|
||||
"""
|
||||
if not self.client:
|
||||
return False, [], "Not connected to OpenSearch"
|
||||
|
||||
try:
|
||||
response = self.client.search(
|
||||
index=index_name, body={"query": {"match_all": {}}, "size": size}
|
||||
)
|
||||
|
||||
documents = [hit["_source"] for hit in response["hits"]["hits"]]
|
||||
return True, documents, f"Retrieved {len(documents)} sample documents"
|
||||
|
||||
except OpenSearchException as e:
|
||||
logger.error(f"Error fetching sample data: {e}")
|
||||
return False, [], f"Failed to fetch sample data: {str(e)}"
|
||||
|
||||
def fetch_data(
|
||||
self, index_name: str, size: int = 100
|
||||
) -> Tuple[bool, List[Dict], str]:
|
||||
"""
|
||||
Fetch documents from the index.
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, documents: List[Dict], message: str)
|
||||
"""
|
||||
if not self.client:
|
||||
return False, [], "Not connected to OpenSearch"
|
||||
|
||||
try:
|
||||
response = self.client.search(
|
||||
index=index_name, body={"query": {"match_all": {}}, "size": size}
|
||||
)
|
||||
|
||||
documents = [hit["_source"] for hit in response["hits"]["hits"]]
|
||||
total_hits = response["hits"]["total"]["value"]
|
||||
|
||||
message = f"Retrieved {len(documents)} documents from {total_hits} total"
|
||||
return True, documents, message
|
||||
|
||||
except OpenSearchException as e:
|
||||
logger.error(f"Error fetching data: {e}")
|
||||
return False, [], f"Failed to fetch data: {str(e)}"
|
||||
|
||||
def disconnect(self):
|
||||
"""Disconnect from OpenSearch."""
|
||||
if self.client:
|
||||
self.client = None
|
||||
self.connection_info = None
|
||||
|
||||
def is_connected(self) -> bool:
|
||||
"""Check if connected to OpenSearch."""
|
||||
return self.client is not None
|
254
src/embeddingbuddy/models/field_mapper.py
Normal file
254
src/embeddingbuddy/models/field_mapper.py
Normal file
@@ -0,0 +1,254 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Any
|
||||
import logging
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FieldMapping:
|
||||
"""Configuration for mapping OpenSearch fields to standard format."""
|
||||
|
||||
embedding_field: str
|
||||
text_field: str
|
||||
id_field: Optional[str] = None
|
||||
category_field: Optional[str] = None
|
||||
subcategory_field: Optional[str] = None
|
||||
tags_field: Optional[str] = None
|
||||
|
||||
|
||||
class FieldMapper:
|
||||
"""Handles field mapping and data transformation from OpenSearch to standard format."""
|
||||
|
||||
@staticmethod
|
||||
def suggest_mappings(field_analysis: Dict) -> Dict[str, List[str]]:
|
||||
"""
|
||||
Suggest field mappings based on field analysis.
|
||||
|
||||
Each dropdown will show ALL available fields, but ordered by relevance
|
||||
with the most likely candidates first.
|
||||
|
||||
Args:
|
||||
field_analysis: Analysis results from OpenSearchClient.analyze_fields
|
||||
|
||||
Returns:
|
||||
Dictionary with suggested fields for each mapping (ordered by relevance)
|
||||
"""
|
||||
all_fields = field_analysis.get("all_fields", [])
|
||||
vector_fields = [vf["name"] for vf in field_analysis.get("vector_fields", [])]
|
||||
text_fields = field_analysis.get("text_fields", [])
|
||||
keyword_fields = field_analysis.get("keyword_fields", [])
|
||||
|
||||
# Helper function to create ordered suggestions
|
||||
def create_ordered_suggestions(primary_candidates, all_available_fields):
|
||||
# Start with primary candidates, then add all other fields
|
||||
ordered = []
|
||||
# Add primary candidates first
|
||||
for field in primary_candidates:
|
||||
if field in all_available_fields and field not in ordered:
|
||||
ordered.append(field)
|
||||
# Add remaining fields
|
||||
for field in all_available_fields:
|
||||
if field not in ordered:
|
||||
ordered.append(field)
|
||||
return ordered
|
||||
|
||||
suggestions = {}
|
||||
|
||||
# Embedding field suggestions (vector fields first, then name-based candidates, then all fields)
|
||||
embedding_candidates = vector_fields.copy()
|
||||
# Add fields that likely contain embeddings based on name
|
||||
embedding_name_candidates = [
|
||||
f
|
||||
for f in all_fields
|
||||
if any(
|
||||
keyword in f.lower()
|
||||
for keyword in ["embedding", "embeddings", "vector", "vectors", "embed"]
|
||||
)
|
||||
]
|
||||
# Add name-based candidates that aren't already in vector_fields
|
||||
for candidate in embedding_name_candidates:
|
||||
if candidate not in embedding_candidates:
|
||||
embedding_candidates.append(candidate)
|
||||
suggestions["embedding"] = create_ordered_suggestions(
|
||||
embedding_candidates, all_fields
|
||||
)
|
||||
|
||||
# Text field suggestions (text fields first, then all fields)
|
||||
text_candidates = text_fields.copy()
|
||||
suggestions["text"] = create_ordered_suggestions(text_candidates, all_fields)
|
||||
|
||||
# ID field suggestions (ID-like fields first, then all fields)
|
||||
id_candidates = [
|
||||
f
|
||||
for f in keyword_fields
|
||||
if any(keyword in f.lower() for keyword in ["id", "_id", "doc", "document"])
|
||||
]
|
||||
id_candidates.append("_id") # _id is always available
|
||||
suggestions["id"] = create_ordered_suggestions(id_candidates, all_fields)
|
||||
|
||||
# Category field suggestions (category-like fields first, then all fields)
|
||||
category_candidates = [
|
||||
f
|
||||
for f in keyword_fields
|
||||
if any(
|
||||
keyword in f.lower()
|
||||
for keyword in ["category", "class", "type", "label"]
|
||||
)
|
||||
]
|
||||
suggestions["category"] = create_ordered_suggestions(
|
||||
category_candidates, all_fields
|
||||
)
|
||||
|
||||
# Subcategory field suggestions (subcategory-like fields first, then all fields)
|
||||
subcategory_candidates = [
|
||||
f
|
||||
for f in keyword_fields
|
||||
if any(
|
||||
keyword in f.lower()
|
||||
for keyword in ["subcategory", "subclass", "subtype", "subtopic"]
|
||||
)
|
||||
]
|
||||
suggestions["subcategory"] = create_ordered_suggestions(
|
||||
subcategory_candidates, all_fields
|
||||
)
|
||||
|
||||
# Tags field suggestions (tag-like fields first, then all fields)
|
||||
tags_candidates = [
|
||||
f
|
||||
for f in keyword_fields
|
||||
if any(
|
||||
keyword in f.lower()
|
||||
for keyword in ["tag", "tags", "keyword", "keywords"]
|
||||
)
|
||||
]
|
||||
suggestions["tags"] = create_ordered_suggestions(tags_candidates, all_fields)
|
||||
|
||||
return suggestions
|
||||
|
||||
@staticmethod
|
||||
def validate_mapping(
|
||||
mapping: FieldMapping, available_fields: List[str]
|
||||
) -> List[str]:
|
||||
"""
|
||||
Validate that the field mapping is correct.
|
||||
|
||||
Returns:
|
||||
List of validation errors (empty if valid)
|
||||
"""
|
||||
errors = []
|
||||
|
||||
# Required fields validation
|
||||
if not mapping.embedding_field:
|
||||
errors.append("Embedding field is required")
|
||||
elif mapping.embedding_field not in available_fields:
|
||||
errors.append(
|
||||
f"Embedding field '{mapping.embedding_field}' not found in index"
|
||||
)
|
||||
|
||||
if not mapping.text_field:
|
||||
errors.append("Text field is required")
|
||||
elif mapping.text_field not in available_fields:
|
||||
errors.append(f"Text field '{mapping.text_field}' not found in index")
|
||||
|
||||
# Optional fields validation
|
||||
optional_fields = {
|
||||
"id_field": mapping.id_field,
|
||||
"category_field": mapping.category_field,
|
||||
"subcategory_field": mapping.subcategory_field,
|
||||
"tags_field": mapping.tags_field,
|
||||
}
|
||||
|
||||
for field_name, field_value in optional_fields.items():
|
||||
if field_value and field_value not in available_fields:
|
||||
errors.append(
|
||||
f"Field '{field_value}' for {field_name} not found in index"
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
@staticmethod
|
||||
def transform_documents(
|
||||
documents: List[Dict[str, Any]], mapping: FieldMapping
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Transform OpenSearch documents to standard format using field mapping.
|
||||
|
||||
Args:
|
||||
documents: Raw documents from OpenSearch
|
||||
mapping: Field mapping configuration
|
||||
|
||||
Returns:
|
||||
List of transformed documents in standard format
|
||||
"""
|
||||
transformed = []
|
||||
|
||||
for doc in documents:
|
||||
try:
|
||||
# Build standard format document
|
||||
standard_doc = {}
|
||||
|
||||
# Required fields
|
||||
if mapping.embedding_field in doc:
|
||||
standard_doc["embedding"] = doc[mapping.embedding_field]
|
||||
else:
|
||||
logger.warning(
|
||||
f"Missing embedding field '{mapping.embedding_field}' in document"
|
||||
)
|
||||
continue
|
||||
|
||||
if mapping.text_field in doc:
|
||||
standard_doc["text"] = str(doc[mapping.text_field])
|
||||
else:
|
||||
logger.warning(
|
||||
f"Missing text field '{mapping.text_field}' in document"
|
||||
)
|
||||
continue
|
||||
|
||||
# Optional fields
|
||||
if mapping.id_field and mapping.id_field in doc:
|
||||
standard_doc["id"] = str(doc[mapping.id_field])
|
||||
|
||||
if mapping.category_field and mapping.category_field in doc:
|
||||
standard_doc["category"] = str(doc[mapping.category_field])
|
||||
|
||||
if mapping.subcategory_field and mapping.subcategory_field in doc:
|
||||
standard_doc["subcategory"] = str(doc[mapping.subcategory_field])
|
||||
|
||||
if mapping.tags_field and mapping.tags_field in doc:
|
||||
tags = doc[mapping.tags_field]
|
||||
# Handle both string and list tags
|
||||
if isinstance(tags, list):
|
||||
standard_doc["tags"] = [str(tag) for tag in tags]
|
||||
else:
|
||||
standard_doc["tags"] = [str(tags)]
|
||||
|
||||
transformed.append(standard_doc)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error transforming document: {e}")
|
||||
continue
|
||||
|
||||
logger.info(f"Transformed {len(transformed)} documents out of {len(documents)}")
|
||||
return transformed
|
||||
|
||||
@staticmethod
|
||||
def create_mapping_from_dict(mapping_dict: Dict[str, str]) -> FieldMapping:
|
||||
"""
|
||||
Create a FieldMapping from a dictionary.
|
||||
|
||||
Args:
|
||||
mapping_dict: Dictionary with field mappings
|
||||
|
||||
Returns:
|
||||
FieldMapping instance
|
||||
"""
|
||||
return FieldMapping(
|
||||
embedding_field=mapping_dict.get("embedding", ""),
|
||||
text_field=mapping_dict.get("text", ""),
|
||||
id_field=mapping_dict.get("id") or None,
|
||||
category_field=mapping_dict.get("category") or None,
|
||||
subcategory_field=mapping_dict.get("subcategory") or None,
|
||||
tags_field=mapping_dict.get("tags") or None,
|
||||
)
|
@@ -1,10 +1,15 @@
|
||||
from dash import callback, Input, Output, State
|
||||
from dash import callback, Input, Output, State, no_update, html
|
||||
from ...data.processor import DataProcessor
|
||||
from ...data.sources.opensearch import OpenSearchClient
|
||||
from ...models.field_mapper import FieldMapper
|
||||
from ...config.settings import AppSettings
|
||||
|
||||
|
||||
class DataProcessingCallbacks:
|
||||
def __init__(self):
|
||||
self.processor = DataProcessor()
|
||||
self.opensearch_client_data = OpenSearchClient() # For data/documents
|
||||
self.opensearch_client_prompts = OpenSearchClient() # For prompts
|
||||
self._register_callbacks()
|
||||
|
||||
def _register_callbacks(self):
|
||||
@@ -67,6 +72,620 @@ class DataProcessingCallbacks:
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
}
|
||||
|
||||
# OpenSearch callbacks
|
||||
@callback(
|
||||
[
|
||||
Output("tab-content", "children"),
|
||||
],
|
||||
[Input("data-source-tabs", "active_tab")],
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
def render_tab_content(active_tab):
|
||||
from ...ui.components.datasource import DataSourceComponent
|
||||
|
||||
datasource = DataSourceComponent()
|
||||
|
||||
if active_tab == "opensearch-tab":
|
||||
return [datasource.create_opensearch_tab()]
|
||||
elif active_tab == "text-input-tab":
|
||||
return [datasource.create_text_input_tab()]
|
||||
else:
|
||||
return [datasource.create_file_upload_tab()]
|
||||
|
||||
# Register callbacks for both data and prompts sections
|
||||
self._register_opensearch_callbacks("data", self.opensearch_client_data)
|
||||
self._register_opensearch_callbacks("prompts", self.opensearch_client_prompts)
|
||||
|
||||
# Register collapsible section callbacks
|
||||
self._register_collapse_callbacks()
|
||||
|
||||
# Register text input callbacks
|
||||
self._register_text_input_callbacks()
|
||||
|
||||
def _register_opensearch_callbacks(self, section_type, opensearch_client):
|
||||
"""Register callbacks for a specific section (data or prompts)."""
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-auth-collapse", "is_open"),
|
||||
[Input(f"{section_type}-auth-toggle", "n_clicks")],
|
||||
[State(f"{section_type}-auth-collapse", "is_open")],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def toggle_auth(n_clicks, is_open):
|
||||
if n_clicks:
|
||||
return not is_open
|
||||
return is_open
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-auth-toggle", "children"),
|
||||
[Input(f"{section_type}-auth-collapse", "is_open")],
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
def update_auth_button_text(is_open):
|
||||
return "Hide Authentication" if is_open else "Show Authentication"
|
||||
|
||||
@callback(
|
||||
[
|
||||
Output(f"{section_type}-connection-status", "children"),
|
||||
Output(f"{section_type}-field-mapping-section", "children"),
|
||||
Output(f"{section_type}-field-mapping-section", "style"),
|
||||
Output(f"{section_type}-load-data-section", "style"),
|
||||
Output(f"{section_type}-load-opensearch-data-btn", "disabled"),
|
||||
Output(f"{section_type}-embedding-field-dropdown", "options"),
|
||||
Output(f"{section_type}-text-field-dropdown", "options"),
|
||||
Output(f"{section_type}-id-field-dropdown", "options"),
|
||||
Output(f"{section_type}-category-field-dropdown", "options"),
|
||||
Output(f"{section_type}-subcategory-field-dropdown", "options"),
|
||||
Output(f"{section_type}-tags-field-dropdown", "options"),
|
||||
],
|
||||
[Input(f"{section_type}-test-connection-btn", "n_clicks")],
|
||||
[
|
||||
State(f"{section_type}-opensearch-url", "value"),
|
||||
State(f"{section_type}-opensearch-index", "value"),
|
||||
State(f"{section_type}-opensearch-username", "value"),
|
||||
State(f"{section_type}-opensearch-password", "value"),
|
||||
State(f"{section_type}-opensearch-api-key", "value"),
|
||||
],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def test_opensearch_connection(
|
||||
n_clicks, url, index_name, username, password, api_key
|
||||
):
|
||||
if not n_clicks or not url or not index_name:
|
||||
return (
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
)
|
||||
|
||||
# Test connection
|
||||
success, message = opensearch_client.connect(
|
||||
url=url,
|
||||
username=username,
|
||||
password=password,
|
||||
api_key=api_key,
|
||||
verify_certs=AppSettings.OPENSEARCH_VERIFY_CERTS,
|
||||
)
|
||||
|
||||
if not success:
|
||||
return (
|
||||
self._create_status_alert(f"❌ {message}", "danger"),
|
||||
[],
|
||||
{"display": "none"},
|
||||
{"display": "none"},
|
||||
True,
|
||||
[], # empty options for hidden dropdowns
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
)
|
||||
|
||||
# Analyze fields
|
||||
success, field_analysis, analysis_message = (
|
||||
opensearch_client.analyze_fields(index_name)
|
||||
)
|
||||
|
||||
if not success:
|
||||
return (
|
||||
self._create_status_alert(f"❌ {analysis_message}", "danger"),
|
||||
[],
|
||||
{"display": "none"},
|
||||
{"display": "none"},
|
||||
True,
|
||||
[], # empty options for hidden dropdowns
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
)
|
||||
|
||||
# Generate field suggestions
|
||||
field_suggestions = FieldMapper.suggest_mappings(field_analysis)
|
||||
|
||||
from ...ui.components.datasource import DataSourceComponent
|
||||
|
||||
datasource = DataSourceComponent()
|
||||
field_mapping_ui = datasource.create_field_mapping_interface(
|
||||
field_suggestions, section_type
|
||||
)
|
||||
|
||||
return (
|
||||
self._create_status_alert(f"✅ {message}", "success"),
|
||||
field_mapping_ui,
|
||||
{"display": "block"},
|
||||
{"display": "block"},
|
||||
False,
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("embedding", [])
|
||||
],
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("text", [])
|
||||
],
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("id", [])
|
||||
],
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("category", [])
|
||||
],
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("subcategory", [])
|
||||
],
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("tags", [])
|
||||
],
|
||||
)
|
||||
|
||||
# Determine output target based on section type
|
||||
output_target = (
|
||||
"processed-data" if section_type == "data" else "processed-prompts"
|
||||
)
|
||||
|
||||
@callback(
|
||||
[
|
||||
Output(output_target, "data", allow_duplicate=True),
|
||||
Output("opensearch-success-alert", "children", allow_duplicate=True),
|
||||
Output("opensearch-success-alert", "is_open", allow_duplicate=True),
|
||||
Output("opensearch-error-alert", "children", allow_duplicate=True),
|
||||
Output("opensearch-error-alert", "is_open", allow_duplicate=True),
|
||||
],
|
||||
[Input(f"{section_type}-load-opensearch-data-btn", "n_clicks")],
|
||||
[
|
||||
State(f"{section_type}-opensearch-index", "value"),
|
||||
State(f"{section_type}-opensearch-query-size", "value"),
|
||||
State(f"{section_type}-embedding-field-dropdown-ui", "value"),
|
||||
State(f"{section_type}-text-field-dropdown-ui", "value"),
|
||||
State(f"{section_type}-id-field-dropdown-ui", "value"),
|
||||
State(f"{section_type}-category-field-dropdown-ui", "value"),
|
||||
State(f"{section_type}-subcategory-field-dropdown-ui", "value"),
|
||||
State(f"{section_type}-tags-field-dropdown-ui", "value"),
|
||||
],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def load_opensearch_data(
|
||||
n_clicks,
|
||||
index_name,
|
||||
query_size,
|
||||
embedding_field,
|
||||
text_field,
|
||||
id_field,
|
||||
category_field,
|
||||
subcategory_field,
|
||||
tags_field,
|
||||
):
|
||||
if not n_clicks or not index_name or not embedding_field or not text_field:
|
||||
return no_update, no_update, no_update, no_update, no_update
|
||||
|
||||
try:
|
||||
# Validate and set query size
|
||||
if not query_size or query_size < 1:
|
||||
query_size = AppSettings.OPENSEARCH_DEFAULT_SIZE
|
||||
elif query_size > 1000:
|
||||
query_size = 1000 # Cap at reasonable maximum
|
||||
|
||||
# Create field mapping
|
||||
field_mapping = FieldMapper.create_mapping_from_dict(
|
||||
{
|
||||
"embedding": embedding_field,
|
||||
"text": text_field,
|
||||
"id": id_field,
|
||||
"category": category_field,
|
||||
"subcategory": subcategory_field,
|
||||
"tags": tags_field,
|
||||
}
|
||||
)
|
||||
|
||||
# Fetch data from OpenSearch
|
||||
success, raw_documents, message = opensearch_client.fetch_data(
|
||||
index_name, size=query_size
|
||||
)
|
||||
|
||||
if not success:
|
||||
return (
|
||||
no_update,
|
||||
"",
|
||||
False,
|
||||
f"❌ Failed to fetch {section_type}: {message}",
|
||||
True,
|
||||
)
|
||||
|
||||
# Process the data
|
||||
processed_data = self.processor.process_opensearch_data(
|
||||
raw_documents, field_mapping
|
||||
)
|
||||
|
||||
if processed_data.error:
|
||||
return (
|
||||
{"error": processed_data.error},
|
||||
"",
|
||||
False,
|
||||
f"❌ {section_type.title()} processing error: {processed_data.error}",
|
||||
True,
|
||||
)
|
||||
|
||||
success_message = f"✅ Successfully loaded {len(processed_data.documents)} {section_type} from OpenSearch"
|
||||
|
||||
# Format for appropriate target (data vs prompts)
|
||||
if section_type == "data":
|
||||
return (
|
||||
{
|
||||
"documents": [
|
||||
self._document_to_dict(doc)
|
||||
for doc in processed_data.documents
|
||||
],
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
},
|
||||
success_message,
|
||||
True,
|
||||
"",
|
||||
False,
|
||||
)
|
||||
else: # prompts
|
||||
return (
|
||||
{
|
||||
"prompts": [
|
||||
self._document_to_dict(doc)
|
||||
for doc in processed_data.documents
|
||||
],
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
},
|
||||
success_message,
|
||||
True,
|
||||
"",
|
||||
False,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
return (no_update, "", False, f"❌ Unexpected error: {str(e)}", True)
|
||||
|
||||
# Sync callbacks to update hidden dropdowns from UI dropdowns
|
||||
@callback(
|
||||
Output(f"{section_type}-embedding-field-dropdown", "value"),
|
||||
Input(f"{section_type}-embedding-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_embedding_dropdown(value):
|
||||
return value
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-text-field-dropdown", "value"),
|
||||
Input(f"{section_type}-text-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_text_dropdown(value):
|
||||
return value
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-id-field-dropdown", "value"),
|
||||
Input(f"{section_type}-id-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_id_dropdown(value):
|
||||
return value
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-category-field-dropdown", "value"),
|
||||
Input(f"{section_type}-category-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_category_dropdown(value):
|
||||
return value
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-subcategory-field-dropdown", "value"),
|
||||
Input(f"{section_type}-subcategory-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_subcategory_dropdown(value):
|
||||
return value
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-tags-field-dropdown", "value"),
|
||||
Input(f"{section_type}-tags-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_tags_dropdown(value):
|
||||
return value
|
||||
|
||||
def _register_collapse_callbacks(self):
|
||||
"""Register callbacks for collapsible sections."""
|
||||
|
||||
# Data section collapse callback
|
||||
@callback(
|
||||
[
|
||||
Output("data-collapse", "is_open"),
|
||||
Output("data-collapse-icon", "className"),
|
||||
],
|
||||
[Input("data-collapse-toggle", "n_clicks")],
|
||||
[State("data-collapse", "is_open")],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def toggle_data_collapse(n_clicks, is_open):
|
||||
if n_clicks:
|
||||
new_state = not is_open
|
||||
icon_class = (
|
||||
"fas fa-chevron-down me-2"
|
||||
if new_state
|
||||
else "fas fa-chevron-right me-2"
|
||||
)
|
||||
return new_state, icon_class
|
||||
return is_open, "fas fa-chevron-down me-2"
|
||||
|
||||
# Prompts section collapse callback
|
||||
@callback(
|
||||
[
|
||||
Output("prompts-collapse", "is_open"),
|
||||
Output("prompts-collapse-icon", "className"),
|
||||
],
|
||||
[Input("prompts-collapse-toggle", "n_clicks")],
|
||||
[State("prompts-collapse", "is_open")],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def toggle_prompts_collapse(n_clicks, is_open):
|
||||
if n_clicks:
|
||||
new_state = not is_open
|
||||
icon_class = (
|
||||
"fas fa-chevron-down me-2"
|
||||
if new_state
|
||||
else "fas fa-chevron-right me-2"
|
||||
)
|
||||
return new_state, icon_class
|
||||
return is_open, "fas fa-chevron-down me-2"
|
||||
|
||||
def _register_text_input_callbacks(self):
|
||||
"""Register callbacks for text input functionality."""
|
||||
|
||||
# Text length counter callback
|
||||
@callback(
|
||||
Output("text-length-counter", "children"),
|
||||
Input("text-input-area", "value"),
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
def update_text_length_counter(text_value):
|
||||
if not text_value:
|
||||
return "0"
|
||||
return f"{len(text_value):,}"
|
||||
|
||||
# Generate button enable/disable callback
|
||||
@callback(
|
||||
[
|
||||
Output("generate-embeddings-btn", "disabled"),
|
||||
Output("generation-help", "children"),
|
||||
Output("generation-help", "color"),
|
||||
],
|
||||
[
|
||||
Input("text-input-area", "value"),
|
||||
Input("model-selection", "value"),
|
||||
],
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
def toggle_generate_button(text_value, model_name):
|
||||
import dash_bootstrap_components as dbc
|
||||
|
||||
if not text_value or not text_value.strip():
|
||||
return (
|
||||
True,
|
||||
dbc.Alert(
|
||||
[
|
||||
html.I(className="fas fa-info-circle me-2"),
|
||||
"Enter some text above to enable embedding generation.",
|
||||
],
|
||||
color="light",
|
||||
),
|
||||
"light",
|
||||
)
|
||||
|
||||
if not model_name:
|
||||
return (
|
||||
True,
|
||||
dbc.Alert(
|
||||
[
|
||||
html.I(className="fas fa-exclamation-triangle me-2"),
|
||||
"Select an embedding model to continue.",
|
||||
],
|
||||
color="warning",
|
||||
),
|
||||
"warning",
|
||||
)
|
||||
|
||||
text_length = len(text_value.strip())
|
||||
if text_length > AppSettings.MAX_TEXT_LENGTH:
|
||||
return (
|
||||
True,
|
||||
dbc.Alert(
|
||||
[
|
||||
html.I(className="fas fa-exclamation-triangle me-2"),
|
||||
f"Text too long ({text_length:,} characters). Maximum allowed: {AppSettings.MAX_TEXT_LENGTH:,} characters.",
|
||||
],
|
||||
color="danger",
|
||||
),
|
||||
"danger",
|
||||
)
|
||||
|
||||
return (
|
||||
False,
|
||||
dbc.Alert(
|
||||
[
|
||||
html.I(className="fas fa-check-circle me-2"),
|
||||
f"Ready to generate embeddings for {text_length:,} characters using {model_name}.",
|
||||
],
|
||||
color="success",
|
||||
),
|
||||
"success",
|
||||
)
|
||||
|
||||
# Clear text callback
|
||||
@callback(
|
||||
Output("text-input-area", "value"),
|
||||
[Input("clear-text-btn", "n_clicks"), Input("load-sample-btn", "n_clicks")],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def handle_text_input_actions(clear_clicks, load_clicks):
|
||||
from dash import ctx
|
||||
|
||||
if not ctx.triggered:
|
||||
return no_update
|
||||
|
||||
button_id = ctx.triggered[0]["prop_id"].split(".")[0]
|
||||
|
||||
if button_id == "clear-text-btn" and clear_clicks:
|
||||
return ""
|
||||
elif button_id == "load-sample-btn" and load_clicks:
|
||||
return self._load_sample_text()
|
||||
|
||||
return no_update
|
||||
|
||||
# Model info callback
|
||||
@callback(
|
||||
Output("model-info", "children"),
|
||||
Input("model-selection", "value"),
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
def update_model_info(model_name):
|
||||
if not model_name:
|
||||
return html.Span("Please select a model", className="text-muted")
|
||||
|
||||
from ...config.settings import AppSettings
|
||||
|
||||
settings = AppSettings()
|
||||
|
||||
for model in settings.AVAILABLE_MODELS:
|
||||
if model["name"] == model_name:
|
||||
return html.Div(
|
||||
[
|
||||
html.Strong(
|
||||
f"Dimensions: {model['dimensions']} | Context Length: {model['context_length']}"
|
||||
),
|
||||
html.Br(),
|
||||
html.Span(model["description"]),
|
||||
html.Br(),
|
||||
html.Small(
|
||||
f"Multilingual: {'Yes' if model.get('multilingual', False) else 'No'} | Size: {model['size']}",
|
||||
className="text-muted",
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
return html.Span("Model information not available", className="text-muted")
|
||||
|
||||
# Process client-side embeddings result callback
|
||||
@callback(
|
||||
[
|
||||
Output("processed-data", "data", allow_duplicate=True),
|
||||
Output("text-input-status", "children"),
|
||||
Output("text-input-status", "color"),
|
||||
Output("text-input-status", "style"),
|
||||
Output("generate-embeddings-btn", "disabled", allow_duplicate=True),
|
||||
],
|
||||
[Input("embeddings-generated-trigger", "data")],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def process_embeddings_result(embeddings_data):
|
||||
"""Process embeddings generated client-side."""
|
||||
if not embeddings_data:
|
||||
return no_update, no_update, no_update, no_update, no_update
|
||||
|
||||
processed_data = self.processor.process_client_embeddings(embeddings_data)
|
||||
|
||||
if processed_data.error:
|
||||
return (
|
||||
{"error": processed_data.error},
|
||||
f"❌ Error: {processed_data.error}",
|
||||
"danger",
|
||||
{"display": "block"},
|
||||
False,
|
||||
)
|
||||
|
||||
return (
|
||||
{
|
||||
"documents": [
|
||||
self._document_to_dict(doc) for doc in processed_data.documents
|
||||
],
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
},
|
||||
f"✅ Generated embeddings for {len(processed_data.documents)} text chunks",
|
||||
"success",
|
||||
{"display": "block"},
|
||||
False,
|
||||
)
|
||||
|
||||
def _load_sample_text(self):
|
||||
"""Load sample text from assets/sample-txt.md file."""
|
||||
import os
|
||||
|
||||
try:
|
||||
# Get the project root directory (four levels up from this file)
|
||||
current_file = os.path.abspath(__file__)
|
||||
project_root = os.path.dirname(
|
||||
os.path.dirname(
|
||||
os.path.dirname(os.path.dirname(os.path.dirname(current_file)))
|
||||
)
|
||||
)
|
||||
sample_file_path = os.path.join(project_root, "assets", "sample-txt.md")
|
||||
|
||||
if os.path.exists(sample_file_path):
|
||||
with open(sample_file_path, "r", encoding="utf-8") as file:
|
||||
return file.read()
|
||||
else:
|
||||
# Fallback sample text if file doesn't exist
|
||||
return """The sun peeked through the clouds after a drizzly morning.
|
||||
A gentle breeze rustled the leaves as we walked along the shoreline.
|
||||
Heavy rains caused flooding in several low-lying neighborhoods.
|
||||
It was so hot that even the birds sought shade under the palm trees.
|
||||
By midnight, the temperature had dropped below freezing.
|
||||
|
||||
The new smartphone features a foldable display and 5G connectivity.
|
||||
In the world of AI, transformers have revolutionized natural language processing.
|
||||
Quantum computing promises to solve problems beyond classical computers' reach.
|
||||
Blockchain technology is being explored for secure voting systems.
|
||||
Virtual reality headsets are becoming more affordable and accessible.
|
||||
|
||||
Preheat the oven to 375°F before you start mixing the batter.
|
||||
She finely chopped the garlic and sautéed it in two tablespoons of olive oil.
|
||||
A pinch of saffron adds a beautiful color and aroma to traditional paella.
|
||||
If the soup is too salty, add a peeled potato to absorb excess sodium.
|
||||
Let the bread dough rise for at least an hour in a warm, draft-free spot."""
|
||||
|
||||
except Exception:
|
||||
# Return a simple fallback if there's any error
|
||||
return "This is sample text for testing embedding generation. You can replace this with your own text."
|
||||
|
||||
@staticmethod
|
||||
def _document_to_dict(doc):
|
||||
return {
|
||||
@@ -118,3 +737,10 @@ class DataProcessingCallbacks:
|
||||
f"❌ Error processing file{file_part}: {error}. "
|
||||
"Please check that your file is valid NDJSON with required 'text' and 'embedding' fields."
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _create_status_alert(message: str, color: str):
|
||||
"""Create a status alert component."""
|
||||
import dash_bootstrap_components as dbc
|
||||
|
||||
return dbc.Alert(message, color=color, className="mb-2")
|
||||
|
526
src/embeddingbuddy/ui/components/datasource.py
Normal file
526
src/embeddingbuddy/ui/components/datasource.py
Normal file
@@ -0,0 +1,526 @@
|
||||
from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .upload import UploadComponent
|
||||
from .textinput import TextInputComponent
|
||||
|
||||
|
||||
class DataSourceComponent:
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
self.text_input_component = TextInputComponent()
|
||||
|
||||
def create_tabbed_interface(self):
|
||||
"""Create tabbed interface for different data sources."""
|
||||
return dbc.Card(
|
||||
[
|
||||
dbc.CardHeader(
|
||||
[
|
||||
dbc.Tabs(
|
||||
[
|
||||
dbc.Tab(label="File Upload", tab_id="file-tab"),
|
||||
dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
|
||||
dbc.Tab(label="Text Input", tab_id="text-input-tab"),
|
||||
],
|
||||
id="data-source-tabs",
|
||||
active_tab="file-tab",
|
||||
)
|
||||
]
|
||||
),
|
||||
dbc.CardBody([html.Div(id="tab-content")]),
|
||||
]
|
||||
)
|
||||
|
||||
def create_file_upload_tab(self):
|
||||
"""Create file upload tab content."""
|
||||
return html.Div(
|
||||
[
|
||||
self.upload_component.create_error_alert(),
|
||||
self.upload_component.create_data_upload(),
|
||||
self.upload_component.create_prompts_upload(),
|
||||
self.upload_component.create_reset_button(),
|
||||
]
|
||||
)
|
||||
|
||||
def create_opensearch_tab(self):
|
||||
"""Create OpenSearch tab content with separate Data and Prompts sections."""
|
||||
return html.Div(
|
||||
[
|
||||
# Data Section
|
||||
dbc.Card(
|
||||
[
|
||||
dbc.CardHeader(
|
||||
[
|
||||
dbc.Button(
|
||||
[
|
||||
html.I(
|
||||
className="fas fa-chevron-down me-2",
|
||||
id="data-collapse-icon",
|
||||
),
|
||||
"📄 Documents/Data",
|
||||
],
|
||||
id="data-collapse-toggle",
|
||||
color="link",
|
||||
className="text-start p-0 w-100 text-decoration-none",
|
||||
style={
|
||||
"border": "none",
|
||||
"font-size": "1.25rem",
|
||||
"font-weight": "500",
|
||||
},
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Collapse(
|
||||
[dbc.CardBody([self._create_opensearch_section("data")])],
|
||||
id="data-collapse",
|
||||
is_open=True,
|
||||
),
|
||||
],
|
||||
className="mb-4",
|
||||
),
|
||||
# Prompts Section
|
||||
dbc.Card(
|
||||
[
|
||||
dbc.CardHeader(
|
||||
[
|
||||
dbc.Button(
|
||||
[
|
||||
html.I(
|
||||
className="fas fa-chevron-down me-2",
|
||||
id="prompts-collapse-icon",
|
||||
),
|
||||
"💬 Prompts",
|
||||
],
|
||||
id="prompts-collapse-toggle",
|
||||
color="link",
|
||||
className="text-start p-0 w-100 text-decoration-none",
|
||||
style={
|
||||
"border": "none",
|
||||
"font-size": "1.25rem",
|
||||
"font-weight": "500",
|
||||
},
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Collapse(
|
||||
[
|
||||
dbc.CardBody(
|
||||
[self._create_opensearch_section("prompts")]
|
||||
)
|
||||
],
|
||||
id="prompts-collapse",
|
||||
is_open=True,
|
||||
),
|
||||
],
|
||||
className="mb-4",
|
||||
),
|
||||
# Hidden dropdowns to prevent callback errors (for both sections)
|
||||
html.Div(
|
||||
[
|
||||
# Data dropdowns (hidden sync targets)
|
||||
dcc.Dropdown(
|
||||
id="data-embedding-field-dropdown",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-text-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-id-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-category-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-subcategory-field-dropdown",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-tags-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
# Data UI dropdowns (hidden placeholders)
|
||||
dcc.Dropdown(
|
||||
id="data-embedding-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-text-field-dropdown-ui", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-id-field-dropdown-ui", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-category-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-subcategory-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-tags-field-dropdown-ui", style={"display": "none"}
|
||||
),
|
||||
# Prompts dropdowns (hidden sync targets)
|
||||
dcc.Dropdown(
|
||||
id="prompts-embedding-field-dropdown",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-text-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-id-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-category-field-dropdown",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-subcategory-field-dropdown",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-tags-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
# Prompts UI dropdowns (hidden placeholders)
|
||||
dcc.Dropdown(
|
||||
id="prompts-embedding-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-text-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-id-field-dropdown-ui", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-category-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-subcategory-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-tags-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
],
|
||||
style={"display": "none"},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def create_text_input_tab(self):
|
||||
"""Create text input tab content for browser-based embedding generation."""
|
||||
return html.Div([self.text_input_component.create_text_input_interface()])
|
||||
|
||||
def _create_opensearch_section(self, section_type):
|
||||
"""Create a complete OpenSearch section for either 'data' or 'prompts'."""
|
||||
section_id = section_type # 'data' or 'prompts'
|
||||
|
||||
return html.Div(
|
||||
[
|
||||
# Connection section
|
||||
html.H6("Connection", className="mb-2"),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("OpenSearch URL:"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-url",
|
||||
type="text",
|
||||
placeholder="https://opensearch.example.com:9200",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=12,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Index Name:"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-index",
|
||||
type="text",
|
||||
placeholder="my-embeddings-index",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Query Size:"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-query-size",
|
||||
type="number",
|
||||
value=100,
|
||||
min=1,
|
||||
max=1000,
|
||||
placeholder="100",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Button(
|
||||
"Test Connection",
|
||||
id=f"{section_id}-test-connection-btn",
|
||||
color="primary",
|
||||
className="mb-3",
|
||||
),
|
||||
],
|
||||
width=12,
|
||||
),
|
||||
]
|
||||
),
|
||||
# Authentication section (collapsible)
|
||||
dbc.Collapse(
|
||||
[
|
||||
html.Hr(),
|
||||
html.H6("Authentication (Optional)", className="mb-2"),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Username:"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-username",
|
||||
type="text",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Password:"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-password",
|
||||
type="password",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Label("OR"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-api-key",
|
||||
type="text",
|
||||
placeholder="API Key",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
id=f"{section_id}-auth-collapse",
|
||||
is_open=False,
|
||||
),
|
||||
dbc.Button(
|
||||
"Show Authentication",
|
||||
id=f"{section_id}-auth-toggle",
|
||||
color="link",
|
||||
size="sm",
|
||||
className="p-0 mb-3",
|
||||
),
|
||||
# Connection status
|
||||
html.Div(id=f"{section_id}-connection-status", className="mb-3"),
|
||||
# Field mapping section (hidden initially)
|
||||
html.Div(
|
||||
id=f"{section_id}-field-mapping-section", style={"display": "none"}
|
||||
),
|
||||
# Load data button (hidden initially)
|
||||
html.Div(
|
||||
[
|
||||
dbc.Button(
|
||||
f"Load {section_type.title()}",
|
||||
id=f"{section_id}-load-opensearch-data-btn",
|
||||
color="success",
|
||||
className="mb-2",
|
||||
disabled=True,
|
||||
),
|
||||
],
|
||||
id=f"{section_id}-load-data-section",
|
||||
style={"display": "none"},
|
||||
),
|
||||
# OpenSearch status/results
|
||||
html.Div(id=f"{section_id}-opensearch-status", className="mb-3"),
|
||||
]
|
||||
)
|
||||
|
||||
def create_field_mapping_interface(self, field_suggestions, section_type="data"):
|
||||
"""Create field mapping interface based on detected fields."""
|
||||
return html.Div(
|
||||
[
|
||||
html.Hr(),
|
||||
html.H6("Field Mapping", className="mb-2"),
|
||||
html.P(
|
||||
"Map your OpenSearch fields to the required format:",
|
||||
className="text-muted small",
|
||||
),
|
||||
# Required fields
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label(
|
||||
"Embedding Field (required):", className="fw-bold"
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-embedding-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get(
|
||||
"embedding", []
|
||||
)
|
||||
],
|
||||
value=field_suggestions.get("embedding", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select embedding field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label(
|
||||
"Text Field (required):", className="fw-bold"
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-text-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("text", [])
|
||||
],
|
||||
value=field_suggestions.get("text", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select text field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
# Optional fields
|
||||
html.H6("Optional Fields", className="mb-2 mt-3"),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("ID Field:"),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-id-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("id", [])
|
||||
],
|
||||
value=field_suggestions.get("id", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select ID field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Category Field:"),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-category-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get(
|
||||
"category", []
|
||||
)
|
||||
],
|
||||
value=field_suggestions.get("category", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select category field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Subcategory Field:"),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-subcategory-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get(
|
||||
"subcategory", []
|
||||
)
|
||||
],
|
||||
value=field_suggestions.get("subcategory", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select subcategory field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Tags Field:"),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-tags-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("tags", [])
|
||||
],
|
||||
value=field_suggestions.get("tags", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select tags field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def create_error_alert(self):
|
||||
"""Create error alert component for OpenSearch issues."""
|
||||
return dbc.Alert(
|
||||
id="opensearch-error-alert",
|
||||
dismissable=True,
|
||||
is_open=False,
|
||||
color="danger",
|
||||
className="mb-3",
|
||||
)
|
||||
|
||||
def create_success_alert(self):
|
||||
"""Create success alert component for OpenSearch operations."""
|
||||
return dbc.Alert(
|
||||
id="opensearch-success-alert",
|
||||
dismissable=True,
|
||||
is_open=False,
|
||||
color="success",
|
||||
className="mb-3",
|
||||
)
|
@@ -1,21 +1,22 @@
|
||||
from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .upload import UploadComponent
|
||||
from .datasource import DataSourceComponent
|
||||
|
||||
|
||||
class SidebarComponent:
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
self.datasource_component = DataSourceComponent()
|
||||
|
||||
def create_layout(self):
|
||||
return dbc.Col(
|
||||
[
|
||||
html.H5("Upload Data", className="mb-3"),
|
||||
self.upload_component.create_error_alert(),
|
||||
self.upload_component.create_data_upload(),
|
||||
self.upload_component.create_prompts_upload(),
|
||||
self.upload_component.create_reset_button(),
|
||||
html.H5("Visualization Controls", className="mb-3"),
|
||||
html.H5("Data Sources", className="mb-3"),
|
||||
self.datasource_component.create_error_alert(),
|
||||
self.datasource_component.create_success_alert(),
|
||||
self.datasource_component.create_tabbed_interface(),
|
||||
html.H5("Visualization Controls", className="mb-3 mt-4"),
|
||||
]
|
||||
+ self._create_method_dropdown()
|
||||
+ self._create_color_dropdown()
|
||||
|
402
src/embeddingbuddy/ui/components/textinput.py
Normal file
402
src/embeddingbuddy/ui/components/textinput.py
Normal file
@@ -0,0 +1,402 @@
|
||||
"""Text input component for generating embeddings from user text."""
|
||||
|
||||
import dash_bootstrap_components as dbc
|
||||
from dash import dcc, html
|
||||
|
||||
from embeddingbuddy.config.settings import AppSettings
|
||||
|
||||
|
||||
class TextInputComponent:
|
||||
"""Component for text input and embedding generation."""
|
||||
|
||||
def __init__(self):
|
||||
self.settings = AppSettings()
|
||||
|
||||
def create_text_input_interface(self):
|
||||
"""Create the complete text input interface with model selection and processing options."""
|
||||
return html.Div(
|
||||
[
|
||||
# Model selection section
|
||||
self._create_model_selection(),
|
||||
html.Hr(),
|
||||
# Text input section
|
||||
self._create_text_input_area(),
|
||||
# Text action buttons
|
||||
self._create_text_action_buttons(),
|
||||
html.Hr(),
|
||||
# Processing options
|
||||
self._create_processing_options(),
|
||||
html.Hr(),
|
||||
# Generation controls
|
||||
self._create_generation_controls(),
|
||||
html.Hr(),
|
||||
# Progress indicators
|
||||
self._create_progress_indicators(),
|
||||
html.Hr(),
|
||||
# Status and results
|
||||
self._create_status_section(),
|
||||
# Hidden components for data flow
|
||||
self._create_hidden_components(),
|
||||
],
|
||||
className="p-3",
|
||||
)
|
||||
|
||||
def _create_model_selection(self):
|
||||
"""Create model selection dropdown with descriptions."""
|
||||
model_options = []
|
||||
for model in self.settings.AVAILABLE_MODELS:
|
||||
label = f"{model['label']} - {model['size']}"
|
||||
if model.get("default", False):
|
||||
label += " (Recommended)"
|
||||
|
||||
model_options.append({"label": label, "value": model["name"]})
|
||||
|
||||
return html.Div(
|
||||
[
|
||||
html.H5("Embedding Model", className="mb-3"),
|
||||
html.Div(
|
||||
[
|
||||
dcc.Dropdown(
|
||||
id="model-selection",
|
||||
options=model_options,
|
||||
value=self.settings.DEFAULT_EMBEDDING_MODEL,
|
||||
placeholder="Select an embedding model...",
|
||||
className="mb-2",
|
||||
),
|
||||
dbc.Alert(
|
||||
[
|
||||
html.Div(
|
||||
id="model-info",
|
||||
children=self._get_model_description(
|
||||
self.settings.DEFAULT_EMBEDDING_MODEL
|
||||
),
|
||||
)
|
||||
],
|
||||
color="info",
|
||||
className="small",
|
||||
),
|
||||
]
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_text_input_area(self):
|
||||
"""Create text input textarea with character limits."""
|
||||
return html.Div(
|
||||
[
|
||||
html.H5("Text Input", className="mb-3"),
|
||||
dcc.Textarea(
|
||||
id="text-input-area",
|
||||
placeholder="Paste your text here... Each sentence, paragraph, or line will become a separate data point depending on your tokenization method below.",
|
||||
value="",
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "300px",
|
||||
"resize": "vertical",
|
||||
"font-family": "monospace",
|
||||
"font-size": "14px",
|
||||
},
|
||||
maxLength=self.settings.MAX_TEXT_LENGTH,
|
||||
className="form-control",
|
||||
),
|
||||
html.Small(
|
||||
f"Maximum {self.settings.MAX_TEXT_LENGTH:,} characters. Current: ",
|
||||
className="text-muted",
|
||||
),
|
||||
html.Small(
|
||||
id="text-length-counter",
|
||||
children="0",
|
||||
className="text-muted fw-bold",
|
||||
),
|
||||
html.Small(" characters", className="text-muted"),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_text_action_buttons(self):
|
||||
"""Create action buttons for text input (Load Sample, Clear)."""
|
||||
return html.Div(
|
||||
[
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Button(
|
||||
[
|
||||
html.I(className="fas fa-file-text me-2"),
|
||||
"Load Sample Text",
|
||||
],
|
||||
id="load-sample-btn",
|
||||
color="info",
|
||||
size="sm",
|
||||
className="w-100",
|
||||
)
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Button(
|
||||
[
|
||||
html.I(className="fas fa-trash me-2"),
|
||||
"Clear Text",
|
||||
],
|
||||
id="clear-text-btn",
|
||||
color="outline-secondary",
|
||||
size="sm",
|
||||
className="w-100",
|
||||
)
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
],
|
||||
className="mt-2 mb-3",
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
def _create_processing_options(self):
|
||||
"""Create tokenization and metadata options."""
|
||||
return html.Div(
|
||||
[
|
||||
html.H5("Processing Options", className="mb-3"),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
html.Label(
|
||||
"Text Splitting Method:", className="form-label"
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="tokenization-method",
|
||||
options=[
|
||||
{
|
||||
"label": "Sentences (split on . ! ?)",
|
||||
"value": "sentence",
|
||||
},
|
||||
{
|
||||
"label": "Paragraphs (split on double newline)",
|
||||
"value": "paragraph",
|
||||
},
|
||||
{
|
||||
"label": "Lines (split on single newline)",
|
||||
"value": "manual",
|
||||
},
|
||||
{
|
||||
"label": "Entire text as one document",
|
||||
"value": "whole",
|
||||
},
|
||||
],
|
||||
value=self.settings.DEFAULT_TOKENIZATION_METHOD,
|
||||
className="mb-3",
|
||||
),
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
html.Label("Batch Size:", className="form-label"),
|
||||
dcc.Dropdown(
|
||||
id="batch-size",
|
||||
options=[
|
||||
{
|
||||
"label": "Small batches (4) - Lower memory",
|
||||
"value": 4,
|
||||
},
|
||||
{
|
||||
"label": "Medium batches (8) - Balanced",
|
||||
"value": 8,
|
||||
},
|
||||
{
|
||||
"label": "Large batches (16) - Faster",
|
||||
"value": 16,
|
||||
},
|
||||
],
|
||||
value=self.settings.MAX_BATCH_SIZE,
|
||||
className="mb-3",
|
||||
),
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
html.Label(
|
||||
"Category (Optional):", className="form-label"
|
||||
),
|
||||
dcc.Input(
|
||||
id="text-category",
|
||||
type="text",
|
||||
placeholder="e.g., Notes, Articles, Ideas...",
|
||||
value="Text Input",
|
||||
className="form-control mb-3",
|
||||
),
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
html.Label(
|
||||
"Subcategory (Optional):", className="form-label"
|
||||
),
|
||||
dcc.Input(
|
||||
id="text-subcategory",
|
||||
type="text",
|
||||
placeholder="e.g., Meeting Notes, Research...",
|
||||
value="Generated",
|
||||
className="form-control mb-3",
|
||||
),
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_generation_controls(self):
|
||||
"""Create embedding generation button and controls."""
|
||||
return html.Div(
|
||||
[
|
||||
html.H5("Generate Embeddings", className="mb-3"),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Button(
|
||||
[
|
||||
html.I(className="fas fa-magic me-2"),
|
||||
"Generate Embeddings",
|
||||
],
|
||||
id="generate-embeddings-btn",
|
||||
color="primary",
|
||||
size="lg",
|
||||
disabled=True,
|
||||
className="w-100",
|
||||
)
|
||||
],
|
||||
md=12,
|
||||
),
|
||||
]
|
||||
),
|
||||
html.Div(
|
||||
[
|
||||
dbc.Alert(
|
||||
[
|
||||
html.I(className="fas fa-info-circle me-2"),
|
||||
"Enter some text above and select a model to enable embedding generation.",
|
||||
],
|
||||
color="light",
|
||||
className="mt-3",
|
||||
id="generation-help",
|
||||
)
|
||||
]
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_progress_indicators(self):
|
||||
"""Create progress bars for model loading and embedding generation."""
|
||||
return html.Div(
|
||||
[
|
||||
# Model loading progress
|
||||
html.Div(
|
||||
[
|
||||
html.H6("Model Loading Progress", className="mb-2"),
|
||||
dbc.Progress(
|
||||
id="model-loading-progress",
|
||||
value=0,
|
||||
striped=True,
|
||||
animated=True,
|
||||
className="mb-2",
|
||||
),
|
||||
html.Small(
|
||||
id="model-loading-status",
|
||||
children="No model loading in progress",
|
||||
className="text-muted",
|
||||
),
|
||||
],
|
||||
id="model-loading-section",
|
||||
style={"display": "none"},
|
||||
),
|
||||
html.Br(),
|
||||
# Embedding generation progress
|
||||
html.Div(
|
||||
[
|
||||
html.H6("Embedding Generation Progress", className="mb-2"),
|
||||
dbc.Progress(
|
||||
id="embedding-progress",
|
||||
value=0,
|
||||
striped=True,
|
||||
animated=True,
|
||||
className="mb-2",
|
||||
),
|
||||
html.Small(
|
||||
id="embedding-status",
|
||||
children="No embedding generation in progress",
|
||||
className="text-muted",
|
||||
),
|
||||
],
|
||||
id="embedding-progress-section",
|
||||
style={"display": "none"},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_status_section(self):
|
||||
"""Create status alerts and results preview."""
|
||||
return html.Div(
|
||||
[
|
||||
# Immediate status (from client-side)
|
||||
dbc.Alert(
|
||||
id="text-input-status-immediate",
|
||||
children="Ready to generate embeddings",
|
||||
color="light",
|
||||
className="mb-3",
|
||||
),
|
||||
# Server-side status
|
||||
dbc.Alert(
|
||||
id="text-input-status",
|
||||
children="",
|
||||
color="light",
|
||||
className="mb-3",
|
||||
style={"display": "none"},
|
||||
),
|
||||
# Results preview
|
||||
html.Div(id="embedding-results-preview"),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_hidden_components(self):
|
||||
"""Create hidden components for data flow."""
|
||||
return html.Div(
|
||||
[
|
||||
# Store for embeddings data from client-side
|
||||
dcc.Store(id="embeddings-generated-trigger"),
|
||||
# Store for tokenization preview
|
||||
dcc.Store(id="tokenization-preview-data"),
|
||||
]
|
||||
)
|
||||
|
||||
def _get_model_description(self, model_name):
|
||||
"""Get description for a specific model."""
|
||||
for model in self.settings.AVAILABLE_MODELS:
|
||||
if model["name"] == model_name:
|
||||
return html.Div(
|
||||
[
|
||||
html.Strong(
|
||||
f"Dimensions: {model['dimensions']} | Context Length: {model['context_length']}"
|
||||
),
|
||||
html.Br(),
|
||||
html.Span(model["description"]),
|
||||
html.Br(),
|
||||
html.Small(
|
||||
f"Multilingual: {'Yes' if model.get('multilingual', False) else 'No'} | Size: {model['size']}",
|
||||
className="text-muted",
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
return html.Span("Model information not available", className="text-muted")
|
@@ -20,6 +20,15 @@ class AppLayout:
|
||||
dbc.Col(
|
||||
[
|
||||
html.H1("EmbeddingBuddy", className="text-center mb-4"),
|
||||
# Load Transformers.js from CDN
|
||||
html.Script(
|
||||
"""
|
||||
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.7.2';
|
||||
window.transformersPipeline = pipeline;
|
||||
console.log('✅ Transformers.js pipeline loaded globally');
|
||||
""",
|
||||
type="module",
|
||||
),
|
||||
],
|
||||
width=12,
|
||||
)
|
||||
|
158
tests/test_client_embeddings.py
Normal file
158
tests/test_client_embeddings.py
Normal file
@@ -0,0 +1,158 @@
|
||||
"""Tests for client-side embedding processing functionality."""
|
||||
|
||||
import numpy as np
|
||||
|
||||
from src.embeddingbuddy.data.processor import DataProcessor
|
||||
from src.embeddingbuddy.models.schemas import ProcessedData
|
||||
|
||||
|
||||
class TestClientEmbeddingsProcessing:
|
||||
"""Test client-side embeddings processing functionality."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Set up test instances."""
|
||||
self.processor = DataProcessor()
|
||||
|
||||
def test_process_client_embeddings_success(self):
|
||||
"""Test successful processing of client-side embeddings data."""
|
||||
client_data = {
|
||||
"documents": [
|
||||
{
|
||||
"id": "text_input_0",
|
||||
"text": "First test document",
|
||||
"category": "Text Input",
|
||||
"subcategory": "Generated",
|
||||
"tags": [],
|
||||
},
|
||||
{
|
||||
"id": "text_input_1",
|
||||
"text": "Second test document",
|
||||
"category": "Text Input",
|
||||
"subcategory": "Generated",
|
||||
"tags": [],
|
||||
},
|
||||
],
|
||||
"embeddings": [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]],
|
||||
}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert result.error is None
|
||||
assert len(result.documents) == 2
|
||||
assert result.embeddings.shape == (2, 4)
|
||||
|
||||
# Check document content
|
||||
assert result.documents[0].text == "First test document"
|
||||
assert result.documents[1].text == "Second test document"
|
||||
|
||||
# Check embeddings match
|
||||
np.testing.assert_array_equal(result.embeddings[0], [0.1, 0.2, 0.3, 0.4])
|
||||
np.testing.assert_array_equal(result.embeddings[1], [0.5, 0.6, 0.7, 0.8])
|
||||
|
||||
def test_process_client_embeddings_with_error(self):
|
||||
"""Test processing client data with error."""
|
||||
client_data = {"error": "Transformers.js not loaded"}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert result.error == "Transformers.js not loaded"
|
||||
assert len(result.documents) == 0
|
||||
assert result.embeddings.size == 0
|
||||
|
||||
def test_process_client_embeddings_missing_data(self):
|
||||
"""Test processing with missing documents or embeddings."""
|
||||
client_data = {"documents": []}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert "No documents or embeddings in client data" in result.error
|
||||
assert len(result.documents) == 0
|
||||
|
||||
def test_process_client_embeddings_mismatch_count(self):
|
||||
"""Test processing with mismatched document and embedding counts."""
|
||||
client_data = {
|
||||
"documents": [
|
||||
{
|
||||
"id": "test",
|
||||
"text": "Test document",
|
||||
"category": "Test",
|
||||
"subcategory": "Test",
|
||||
"tags": [],
|
||||
}
|
||||
],
|
||||
"embeddings": [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]],
|
||||
}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert "Mismatch between number of documents and embeddings" in result.error
|
||||
assert len(result.documents) == 0
|
||||
|
||||
def test_process_client_embeddings_invalid_document(self):
|
||||
"""Test processing with invalid document data."""
|
||||
client_data = {
|
||||
"documents": [
|
||||
{"text": ""}, # Empty text should be skipped
|
||||
{
|
||||
"id": "test2",
|
||||
"text": "Valid document",
|
||||
"category": "Test",
|
||||
"subcategory": "Test",
|
||||
"tags": [],
|
||||
},
|
||||
],
|
||||
"embeddings": [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]],
|
||||
}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert result.error is None
|
||||
assert len(result.documents) == 1 # Only valid document should be processed
|
||||
assert result.documents[0].text == "Valid document"
|
||||
|
||||
def test_process_client_embeddings_auto_id_generation(self):
|
||||
"""Test automatic ID generation for documents without IDs."""
|
||||
client_data = {
|
||||
"documents": [
|
||||
{
|
||||
"text": "Document without ID",
|
||||
"category": "Test",
|
||||
"subcategory": "Test",
|
||||
"tags": [],
|
||||
}
|
||||
],
|
||||
"embeddings": [[0.1, 0.2, 0.3, 0.4]],
|
||||
}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert result.error is None
|
||||
assert len(result.documents) == 1
|
||||
assert result.documents[0].id.startswith("text_input_")
|
||||
|
||||
def test_process_client_embeddings_invalid_embedding_format(self):
|
||||
"""Test processing with invalid embedding format."""
|
||||
client_data = {
|
||||
"documents": [
|
||||
{
|
||||
"id": "test",
|
||||
"text": "Test document",
|
||||
"category": "Test",
|
||||
"subcategory": "Test",
|
||||
"tags": [],
|
||||
}
|
||||
],
|
||||
"embeddings": 0.5, # Scalar instead of array
|
||||
}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert result.error is not None # Should have some error
|
||||
assert len(result.documents) == 0
|
155
tests/test_data_processor_opensearch.py
Normal file
155
tests/test_data_processor_opensearch.py
Normal file
@@ -0,0 +1,155 @@
|
||||
from unittest.mock import patch
|
||||
from src.embeddingbuddy.data.processor import DataProcessor
|
||||
from src.embeddingbuddy.models.field_mapper import FieldMapping
|
||||
|
||||
|
||||
class TestDataProcessorOpenSearch:
|
||||
def test_process_opensearch_data_success(self):
|
||||
processor = DataProcessor()
|
||||
|
||||
# Mock raw OpenSearch documents
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
"content": "Test document 1",
|
||||
"doc_id": "doc1",
|
||||
"type": "news",
|
||||
},
|
||||
{
|
||||
"vector": [0.4, 0.5, 0.6],
|
||||
"content": "Test document 2",
|
||||
"doc_id": "doc2",
|
||||
"type": "blog",
|
||||
},
|
||||
]
|
||||
|
||||
# Create field mapping
|
||||
field_mapping = FieldMapping(
|
||||
embedding_field="vector",
|
||||
text_field="content",
|
||||
id_field="doc_id",
|
||||
category_field="type",
|
||||
)
|
||||
|
||||
# Process the data
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
# Assertions
|
||||
assert processed_data.error is None
|
||||
assert len(processed_data.documents) == 2
|
||||
assert processed_data.embeddings.shape == (2, 3)
|
||||
|
||||
# Check first document
|
||||
doc1 = processed_data.documents[0]
|
||||
assert doc1.text == "Test document 1"
|
||||
assert doc1.embedding == [0.1, 0.2, 0.3]
|
||||
assert doc1.id == "doc1"
|
||||
assert doc1.category == "news"
|
||||
|
||||
# Check second document
|
||||
doc2 = processed_data.documents[1]
|
||||
assert doc2.text == "Test document 2"
|
||||
assert doc2.embedding == [0.4, 0.5, 0.6]
|
||||
assert doc2.id == "doc2"
|
||||
assert doc2.category == "blog"
|
||||
|
||||
def test_process_opensearch_data_with_tags(self):
|
||||
processor = DataProcessor()
|
||||
|
||||
# Mock raw OpenSearch documents with tags
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
"content": "Test document with tags",
|
||||
"keywords": ["tag1", "tag2"],
|
||||
}
|
||||
]
|
||||
|
||||
# Create field mapping
|
||||
field_mapping = FieldMapping(
|
||||
embedding_field="vector", text_field="content", tags_field="keywords"
|
||||
)
|
||||
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
assert processed_data.error is None
|
||||
assert len(processed_data.documents) == 1
|
||||
doc = processed_data.documents[0]
|
||||
assert doc.tags == ["tag1", "tag2"]
|
||||
|
||||
def test_process_opensearch_data_invalid_documents(self):
|
||||
processor = DataProcessor()
|
||||
|
||||
# Mock raw documents with missing required fields
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
# Missing text field
|
||||
}
|
||||
]
|
||||
|
||||
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
# Should return error since no valid documents
|
||||
assert processed_data.error is not None
|
||||
assert "No valid documents" in processed_data.error
|
||||
assert len(processed_data.documents) == 0
|
||||
|
||||
def test_process_opensearch_data_partial_success(self):
|
||||
processor = DataProcessor()
|
||||
|
||||
# Mix of valid and invalid documents
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
"content": "Valid document",
|
||||
},
|
||||
{
|
||||
"vector": [0.4, 0.5, 0.6],
|
||||
# Missing content field - should be skipped
|
||||
},
|
||||
{
|
||||
"vector": [0.7, 0.8, 0.9],
|
||||
"content": "Another valid document",
|
||||
},
|
||||
]
|
||||
|
||||
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
# Should process valid documents only
|
||||
assert processed_data.error is None
|
||||
assert len(processed_data.documents) == 2
|
||||
assert processed_data.documents[0].text == "Valid document"
|
||||
assert processed_data.documents[1].text == "Another valid document"
|
||||
|
||||
@patch("src.embeddingbuddy.models.field_mapper.FieldMapper.transform_documents")
|
||||
def test_process_opensearch_data_transformation_error(self, mock_transform):
|
||||
processor = DataProcessor()
|
||||
|
||||
# Mock transformation error
|
||||
mock_transform.side_effect = Exception("Transformation failed")
|
||||
|
||||
raw_documents = [{"vector": [0.1], "content": "test"}]
|
||||
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
assert processed_data.error is not None
|
||||
assert "Transformation failed" in processed_data.error
|
||||
assert len(processed_data.documents) == 0
|
||||
|
||||
def test_process_opensearch_data_empty_input(self):
|
||||
processor = DataProcessor()
|
||||
|
||||
raw_documents = []
|
||||
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
assert processed_data.error is not None
|
||||
assert "No valid documents" in processed_data.error
|
||||
assert len(processed_data.documents) == 0
|
310
tests/test_opensearch.py
Normal file
310
tests/test_opensearch.py
Normal file
@@ -0,0 +1,310 @@
|
||||
from unittest.mock import Mock, patch
|
||||
from src.embeddingbuddy.data.sources.opensearch import OpenSearchClient
|
||||
from src.embeddingbuddy.models.field_mapper import FieldMapper, FieldMapping
|
||||
|
||||
|
||||
class TestOpenSearchClient:
|
||||
def test_init(self):
|
||||
client = OpenSearchClient()
|
||||
assert client.client is None
|
||||
assert client.connection_info is None
|
||||
|
||||
@patch("src.embeddingbuddy.data.sources.opensearch.OpenSearch")
|
||||
def test_connect_success(self, mock_opensearch):
|
||||
# Mock the OpenSearch client
|
||||
mock_client_instance = Mock()
|
||||
mock_client_instance.info.return_value = {
|
||||
"cluster_name": "test-cluster",
|
||||
"version": {"number": "2.0.0"},
|
||||
}
|
||||
mock_opensearch.return_value = mock_client_instance
|
||||
|
||||
client = OpenSearchClient()
|
||||
success, message = client.connect("https://localhost:9200")
|
||||
|
||||
assert success is True
|
||||
assert "test-cluster" in message
|
||||
assert client.client is not None
|
||||
assert client.connection_info["cluster_name"] == "test-cluster"
|
||||
|
||||
@patch("src.embeddingbuddy.data.sources.opensearch.OpenSearch")
|
||||
def test_connect_failure(self, mock_opensearch):
|
||||
# Mock connection failure
|
||||
mock_opensearch.side_effect = Exception("Connection failed")
|
||||
|
||||
client = OpenSearchClient()
|
||||
success, message = client.connect("https://localhost:9200")
|
||||
|
||||
assert success is False
|
||||
assert "Connection failed" in message
|
||||
assert client.client is None
|
||||
|
||||
def test_analyze_fields(self):
|
||||
client = OpenSearchClient()
|
||||
client.client = Mock()
|
||||
|
||||
# Mock mapping response
|
||||
mock_mapping = {
|
||||
"test-index": {
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"embedding": {"type": "dense_vector", "dimension": 768},
|
||||
"text": {"type": "text"},
|
||||
"category": {"type": "keyword"},
|
||||
"id": {"type": "keyword"},
|
||||
"count": {"type": "integer"},
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
client.client.indices.get_mapping.return_value = mock_mapping
|
||||
|
||||
success, analysis, message = client.analyze_fields("test-index")
|
||||
|
||||
assert success is True
|
||||
assert len(analysis["vector_fields"]) == 1
|
||||
assert analysis["vector_fields"][0]["name"] == "embedding"
|
||||
assert analysis["vector_fields"][0]["dimension"] == 768
|
||||
assert "text" in analysis["text_fields"]
|
||||
assert "category" in analysis["keyword_fields"]
|
||||
assert "count" in analysis["numeric_fields"]
|
||||
|
||||
def test_fetch_sample_data(self):
|
||||
client = OpenSearchClient()
|
||||
client.client = Mock()
|
||||
|
||||
# Mock search response
|
||||
mock_response = {
|
||||
"hits": {
|
||||
"hits": [
|
||||
{"_source": {"text": "doc1", "embedding": [0.1, 0.2]}},
|
||||
{"_source": {"text": "doc2", "embedding": [0.3, 0.4]}},
|
||||
]
|
||||
}
|
||||
}
|
||||
client.client.search.return_value = mock_response
|
||||
|
||||
success, documents, message = client.fetch_sample_data("test-index", size=2)
|
||||
|
||||
assert success is True
|
||||
assert len(documents) == 2
|
||||
assert documents[0]["text"] == "doc1"
|
||||
assert documents[1]["text"] == "doc2"
|
||||
|
||||
|
||||
class TestFieldMapper:
|
||||
def test_suggest_mappings(self):
|
||||
field_analysis = {
|
||||
"vector_fields": [{"name": "embedding", "dimension": 768}],
|
||||
"text_fields": ["content", "description"],
|
||||
"keyword_fields": ["doc_id", "category", "type", "tags"],
|
||||
"numeric_fields": ["count"],
|
||||
"all_fields": [
|
||||
"embedding",
|
||||
"content",
|
||||
"description",
|
||||
"doc_id",
|
||||
"category",
|
||||
"type",
|
||||
"tags",
|
||||
"count",
|
||||
],
|
||||
}
|
||||
|
||||
suggestions = FieldMapper.suggest_mappings(field_analysis)
|
||||
|
||||
# Check that all dropdowns contain all fields
|
||||
all_fields = [
|
||||
"embedding",
|
||||
"content",
|
||||
"description",
|
||||
"doc_id",
|
||||
"category",
|
||||
"type",
|
||||
"tags",
|
||||
"count",
|
||||
]
|
||||
for field_type in [
|
||||
"embedding",
|
||||
"text",
|
||||
"id",
|
||||
"category",
|
||||
"subcategory",
|
||||
"tags",
|
||||
]:
|
||||
for field in all_fields:
|
||||
assert field in suggestions[field_type], (
|
||||
f"Field '{field}' missing from {field_type} suggestions"
|
||||
)
|
||||
|
||||
# Check that best candidates are first
|
||||
assert (
|
||||
suggestions["embedding"][0] == "embedding"
|
||||
) # vector field should be first
|
||||
assert suggestions["text"][0] in [
|
||||
"content",
|
||||
"description",
|
||||
] # text fields should be first
|
||||
assert suggestions["id"][0] == "doc_id" # ID-like field should be first
|
||||
assert suggestions["category"][0] in [
|
||||
"category",
|
||||
"type",
|
||||
] # category-like field should be first
|
||||
assert suggestions["tags"][0] == "tags" # tags field should be first
|
||||
|
||||
def test_suggest_mappings_name_based_embedding(self):
|
||||
"""Test that fields named 'embedding' are prioritized even without vector type."""
|
||||
field_analysis = {
|
||||
"vector_fields": [], # No explicit vector fields detected
|
||||
"text_fields": ["content", "description"],
|
||||
"keyword_fields": ["doc_id", "category", "type", "tags"],
|
||||
"numeric_fields": ["count"],
|
||||
"all_fields": [
|
||||
"content",
|
||||
"description",
|
||||
"doc_id",
|
||||
"category",
|
||||
"embedding",
|
||||
"type",
|
||||
"tags",
|
||||
"count",
|
||||
],
|
||||
}
|
||||
|
||||
suggestions = FieldMapper.suggest_mappings(field_analysis)
|
||||
|
||||
# Check that 'embedding' field is prioritized despite not being detected as vector type
|
||||
assert suggestions["embedding"][0] == "embedding", (
|
||||
"Field named 'embedding' should be first priority"
|
||||
)
|
||||
|
||||
# Check that all fields are still available
|
||||
all_fields = [
|
||||
"content",
|
||||
"description",
|
||||
"doc_id",
|
||||
"category",
|
||||
"embedding",
|
||||
"type",
|
||||
"tags",
|
||||
"count",
|
||||
]
|
||||
for field_type in [
|
||||
"embedding",
|
||||
"text",
|
||||
"id",
|
||||
"category",
|
||||
"subcategory",
|
||||
"tags",
|
||||
]:
|
||||
for field in all_fields:
|
||||
assert field in suggestions[field_type], (
|
||||
f"Field '{field}' missing from {field_type} suggestions"
|
||||
)
|
||||
|
||||
def test_validate_mapping_success(self):
|
||||
mapping = FieldMapping(
|
||||
embedding_field="embedding", text_field="text", id_field="doc_id"
|
||||
)
|
||||
available_fields = ["embedding", "text", "doc_id", "category"]
|
||||
|
||||
errors = FieldMapper.validate_mapping(mapping, available_fields)
|
||||
|
||||
assert len(errors) == 0
|
||||
|
||||
def test_validate_mapping_missing_required(self):
|
||||
mapping = FieldMapping(embedding_field="missing_field", text_field="text")
|
||||
available_fields = ["text", "category"]
|
||||
|
||||
errors = FieldMapper.validate_mapping(mapping, available_fields)
|
||||
|
||||
assert len(errors) == 1
|
||||
assert "missing_field" in errors[0]
|
||||
assert "not found" in errors[0]
|
||||
|
||||
def test_validate_mapping_missing_optional(self):
|
||||
mapping = FieldMapping(
|
||||
embedding_field="embedding",
|
||||
text_field="text",
|
||||
category_field="missing_category",
|
||||
)
|
||||
available_fields = ["embedding", "text"]
|
||||
|
||||
errors = FieldMapper.validate_mapping(mapping, available_fields)
|
||||
|
||||
assert len(errors) == 1
|
||||
assert "missing_category" in errors[0]
|
||||
|
||||
def test_transform_documents(self):
|
||||
mapping = FieldMapping(
|
||||
embedding_field="vector",
|
||||
text_field="content",
|
||||
id_field="doc_id",
|
||||
category_field="type",
|
||||
)
|
||||
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
"content": "Test document 1",
|
||||
"doc_id": "doc1",
|
||||
"type": "news",
|
||||
},
|
||||
{
|
||||
"vector": [0.4, 0.5, 0.6],
|
||||
"content": "Test document 2",
|
||||
"doc_id": "doc2",
|
||||
"type": "blog",
|
||||
},
|
||||
]
|
||||
|
||||
transformed = FieldMapper.transform_documents(raw_documents, mapping)
|
||||
|
||||
assert len(transformed) == 2
|
||||
assert transformed[0]["embedding"] == [0.1, 0.2, 0.3]
|
||||
assert transformed[0]["text"] == "Test document 1"
|
||||
assert transformed[0]["id"] == "doc1"
|
||||
assert transformed[0]["category"] == "news"
|
||||
|
||||
def test_transform_documents_missing_required(self):
|
||||
mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
# Missing content field
|
||||
}
|
||||
]
|
||||
|
||||
transformed = FieldMapper.transform_documents(raw_documents, mapping)
|
||||
|
||||
assert len(transformed) == 0 # Document should be skipped
|
||||
|
||||
def test_create_mapping_from_dict(self):
|
||||
mapping_dict = {
|
||||
"embedding": "vector_field",
|
||||
"text": "text_field",
|
||||
"id": "doc_id",
|
||||
"category": "cat_field",
|
||||
"subcategory": "subcat_field",
|
||||
"tags": "tags_field",
|
||||
}
|
||||
|
||||
mapping = FieldMapper.create_mapping_from_dict(mapping_dict)
|
||||
|
||||
assert mapping.embedding_field == "vector_field"
|
||||
assert mapping.text_field == "text_field"
|
||||
assert mapping.id_field == "doc_id"
|
||||
assert mapping.category_field == "cat_field"
|
||||
assert mapping.subcategory_field == "subcat_field"
|
||||
assert mapping.tags_field == "tags_field"
|
||||
|
||||
def test_create_mapping_from_dict_minimal(self):
|
||||
mapping_dict = {"embedding": "vector_field", "text": "text_field"}
|
||||
|
||||
mapping = FieldMapper.create_mapping_from_dict(mapping_dict)
|
||||
|
||||
assert mapping.embedding_field == "vector_field"
|
||||
assert mapping.text_field == "text_field"
|
||||
assert mapping.id_field is None
|
||||
assert mapping.category_field is None
|
51
uv.lock
generated
51
uv.lock
generated
@@ -412,14 +412,14 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "embeddingbuddy"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
source = { editable = "." }
|
||||
dependencies = [
|
||||
{ name = "dash" },
|
||||
{ name = "dash-bootstrap-components" },
|
||||
{ name = "mypy" },
|
||||
{ name = "numba" },
|
||||
{ name = "numpy" },
|
||||
{ name = "opensearch-py" },
|
||||
{ name = "opentsne" },
|
||||
{ name = "pandas" },
|
||||
{ name = "plotly" },
|
||||
@@ -430,6 +430,7 @@ dependencies = [
|
||||
[package.optional-dependencies]
|
||||
all = [
|
||||
{ name = "bandit" },
|
||||
{ name = "gunicorn" },
|
||||
{ name = "mypy" },
|
||||
{ name = "pip-audit" },
|
||||
{ name = "pytest" },
|
||||
@@ -450,6 +451,9 @@ lint = [
|
||||
{ name = "mypy" },
|
||||
{ name = "ruff" },
|
||||
]
|
||||
prod = [
|
||||
{ name = "gunicorn" },
|
||||
]
|
||||
security = [
|
||||
{ name = "bandit" },
|
||||
{ name = "pip-audit" },
|
||||
@@ -465,12 +469,13 @@ requires-dist = [
|
||||
{ name = "bandit", extras = ["toml"], marker = "extra == 'security'", specifier = ">=1.7.5" },
|
||||
{ name = "dash", specifier = ">=2.17.1" },
|
||||
{ name = "dash-bootstrap-components", specifier = ">=1.5.0" },
|
||||
{ name = "embeddingbuddy", extras = ["test", "lint", "security"], marker = "extra == 'all'" },
|
||||
{ name = "embeddingbuddy", extras = ["test", "lint", "security"], marker = "extra == 'dev'" },
|
||||
{ name = "embeddingbuddy", extras = ["test", "lint", "security", "prod"], marker = "extra == 'all'" },
|
||||
{ name = "gunicorn", marker = "extra == 'prod'", specifier = ">=21.2.0" },
|
||||
{ name = "mypy", specifier = ">=1.17.1" },
|
||||
{ name = "mypy", marker = "extra == 'lint'", specifier = ">=1.5.0" },
|
||||
{ name = "numba", specifier = ">=0.56.4" },
|
||||
{ name = "numpy", specifier = ">=1.24.4" },
|
||||
{ name = "opensearch-py", specifier = ">=3.0.0" },
|
||||
{ name = "opentsne", specifier = ">=1.0.0" },
|
||||
{ name = "pandas", specifier = ">=2.1.4" },
|
||||
{ name = "pip-audit", marker = "extra == 'security'", specifier = ">=2.6.0" },
|
||||
@@ -482,7 +487,15 @@ requires-dist = [
|
||||
{ name = "scikit-learn", specifier = ">=1.3.2" },
|
||||
{ name = "umap-learn", specifier = ">=0.5.8" },
|
||||
]
|
||||
provides-extras = ["test", "lint", "security", "dev", "all"]
|
||||
provides-extras = ["test", "lint", "security", "prod", "dev", "all"]
|
||||
|
||||
[[package]]
|
||||
name = "events"
|
||||
version = "0.5"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/25/ed/e47dec0626edd468c84c04d97769e7ab4ea6457b7f54dcb3f72b17fcd876/Events-0.5-py3-none-any.whl", hash = "sha256:a7286af378ba3e46640ac9825156c93bdba7502174dd696090fdfcd4d80a1abd", size = 6758, upload-time = "2023-07-31T08:23:13.645Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "filelock"
|
||||
@@ -510,6 +523,18 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/3d/68/9d4508e893976286d2ead7f8f571314af6c2037af34853a30fd769c02e9d/flask-3.1.1-py3-none-any.whl", hash = "sha256:07aae2bb5eaf77993ef57e357491839f5fd9f4dc281593a81a9e4d79a24f295c", size = 103305, upload-time = "2025-05-13T15:01:15.591Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "gunicorn"
|
||||
version = "23.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "packaging" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/34/72/9614c465dc206155d93eff0ca20d42e1e35afc533971379482de953521a4/gunicorn-23.0.0.tar.gz", hash = "sha256:f014447a0101dc57e294f6c18ca6b40227a4c90e9bdb586042628030cba004ec", size = 375031, upload-time = "2024-08-10T20:25:27.378Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/cb/7d/6dac2a6e1eba33ee43f318edbed4ff29151a49b5d37f080aad1e6469bca4/gunicorn-23.0.0-py3-none-any.whl", hash = "sha256:ec400d38950de4dfd418cff8328b2c8faed0edb0d517d3394e457c317908ca4d", size = 85029, upload-time = "2024-08-10T20:25:24.996Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "h11"
|
||||
version = "0.16.0"
|
||||
@@ -913,6 +938,22 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/67/0e/35082d13c09c02c011cf21570543d202ad929d961c02a147493cb0c2bdf5/numpy-2.2.6-cp313-cp313t-win_amd64.whl", hash = "sha256:6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06", size = 12771374, upload-time = "2025-05-17T21:43:35.479Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "opensearch-py"
|
||||
version = "3.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "certifi" },
|
||||
{ name = "events" },
|
||||
{ name = "python-dateutil" },
|
||||
{ name = "requests" },
|
||||
{ name = "urllib3" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b8/58/ecec7f855aae7bcfb08f570088c6cb993f68c361a0727abab35dbf021acb/opensearch_py-3.0.0.tar.gz", hash = "sha256:ebb38f303f8a3f794db816196315bcddad880be0dc75094e3334bc271db2ed39", size = 248890, upload-time = "2025-06-17T05:39:48.453Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/71/e0/69fd114c607b0323d3f864ab4a5ecb87d76ec5a172d2e36a739c8baebea1/opensearch_py-3.0.0-py3-none-any.whl", hash = "sha256:842bf5d56a4a0d8290eda9bb921c50f3080e5dc4e5fefb9c9648289da3f6a8bb", size = 371491, upload-time = "2025-06-17T05:39:46.539Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "opentsne"
|
||||
version = "1.0.2"
|
||||
|
20
wsgi.py
Normal file
20
wsgi.py
Normal file
@@ -0,0 +1,20 @@
|
||||
"""
|
||||
WSGI entry point for production deployment.
|
||||
Use this with a production WSGI server like Gunicorn.
|
||||
"""
|
||||
from src.embeddingbuddy.app import create_app
|
||||
|
||||
# Create the application instance
|
||||
application = create_app()
|
||||
|
||||
# For compatibility with different WSGI servers
|
||||
app = application
|
||||
|
||||
if __name__ == "__main__":
|
||||
# This won't be used in production, but useful for testing
|
||||
from src.embeddingbuddy.config.settings import AppSettings
|
||||
application.run(
|
||||
host=AppSettings.HOST,
|
||||
port=AppSettings.PORT,
|
||||
debug=False
|
||||
)
|
Reference in New Issue
Block a user