Files
embedding-buddy/example/README_elasticsearch.md
Austin Godber 9cf2f0e6fa this will load data from Opensearch.
it doesn't have prompts as well
2025-08-14 13:49:46 -07:00

158 lines
4.1 KiB
Markdown

# Elasticsearch/OpenSearch Sample Data
This directory contains sample data files in Elasticsearch bulk index format for testing the OpenSearch integration in EmbeddingBuddy.
## Files
### Original NDJSON Files
- `sample_data.ndjson` - Original sample documents in EmbeddingBuddy format
- `sample_prompts.ndjson` - Original sample prompts in EmbeddingBuddy format
### Elasticsearch Bulk Files
- `sample_data_es_bulk.ndjson` - Documents in ES bulk format (index: "embeddings")
- `sample_prompts_es_bulk.ndjson` - Prompts in ES bulk format (index: "prompts")
## Usage
### 1. Index the data using curl
```bash
# Index main documents
curl -X POST "localhost:9200/_bulk" \
-H "Content-Type: application/x-ndjson" \
--data-binary @sample_data_es_bulk.ndjson
# Index prompts
curl -X POST "localhost:9200/_bulk" \
-H "Content-Type: application/x-ndjson" \
--data-binary @sample_prompts_es_bulk.ndjson
```
### 2. Create proper mappings (recommended)
First create the index with proper dense_vector mapping:
```bash
# Create embeddings index with dense_vector mapping
curl -X PUT "localhost:9200/embeddings" \
-H "Content-Type: application/json" \
-d '{
"settings": {
"index.knn": true
},
"mappings": {
"properties": {
"id": {"type": "keyword"},
"embedding": {
"type": "knn_vector",
"dimension": 8,
"method": {
"engine": "lucene",
"space_type": "cosinesimil",
"name": "hnsw",
"parameters": {}
}
},
"text": {"type": "text"},
"category": {"type": "keyword"},
"subcategory": {"type": "keyword"},
"tags": {"type": "keyword"}
}
}
}'
# Create dense vector index with alternative field names
curl -X PUT "localhost:9200/prompts" \
-H "Content-Type: application/json" \
-d '{
"settings": {
"index.knn": true
},
"mappings": {
"properties": {
"id": {"type": "keyword"},
"embedding": {
"type": "knn_vector",
"dimension": 8,
"method": {
"engine": "lucene",
"space_type": "cosinesimil",
"name": "hnsw",
"parameters": {}
}
},
"text": {"type": "text"},
"category": {"type": "keyword"},
"subcategory": {"type": "keyword"},
"tags": {"type": "keyword"}
}
}
}'
```
Then index the data using the bulk files above.
### 3. Test in EmbeddingBuddy
#### For "embeddings" index
- **OpenSearch URL**: `http://localhost:9200`
- **Index Name**: `embeddings`
- **Field Mapping**:
- Embedding Field: `embedding`
- Text Field: `text`
- ID Field: `id`
- Category Field: `category`
- Subcategory Field: `subcategory`
- Tags Field: `tags`
#### For "embeddings-dense" index (alternative field names)
- **OpenSearch URL**: `http://localhost:9200`
- **Index Name**: `embeddings-dense`
- **Field Mapping**:
- Embedding Field: `vector`
- Text Field: `content`
- ID Field: `doc_id`
- Category Field: `type`
- Subcategory Field: `subtopic`
- Tags Field: `keywords`
## Data Structure
### Original Format (from NDJSON files)
```json
{
"id": "doc_001",
"embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3],
"text": "Machine learning algorithms are transforming healthcare...",
"category": "technology",
"subcategory": "healthcare",
"tags": ["ai", "medicine", "prediction"]
}
```
### ES Bulk Format
```json
{"index": {"_index": "embeddings", "_id": "doc_001"}}
{"id": "doc_001", "embedding": [...], "text": "...", "category": "...", ...}
```
### Alternative Field Names (dense vector format)
```json
{"index": {"_index": "embeddings-dense", "_id": "doc_001"}}
{"doc_id": "doc_001", "vector": [...], "content": "...", "type": "...", ...}
```
## Notes
- All embedding vectors are 8-dimensional for these sample files
- The alternative format demonstrates how EmbeddingBuddy's field mapping handles different field names
- For production use, you may want larger embedding dimensions (e.g., 384, 768, 1536)
- The `dense_vector` field type in Elasticsearch/OpenSearch enables vector similarity search