Compare commits
3 Commits
add-os-loa
...
add-browse
Author | SHA1 | Date | |
---|---|---|---|
bced5e07ce | |||
cdaaffd735 | |||
14abc446b7 |
@@ -3,7 +3,8 @@
|
||||
"allow": [
|
||||
"Bash(mkdir:*)",
|
||||
"Bash(uv run:*)",
|
||||
"Bash(uv add:*)"
|
||||
"Bash(uv add:*)",
|
||||
"Bash(uv sync:*)"
|
||||
],
|
||||
"deny": [],
|
||||
"ask": [],
|
||||
|
5
.gitignore
vendored
5
.gitignore
vendored
@@ -81,4 +81,7 @@ safety-report.json
|
||||
pip-audit-report.json
|
||||
|
||||
# Temporary files
|
||||
*.tmp
|
||||
*.tmp
|
||||
|
||||
|
||||
examples/extra
|
278
assets/embeddings.js
Normal file
278
assets/embeddings.js
Normal file
@@ -0,0 +1,278 @@
|
||||
// Text input embedding generation using Transformers.js
|
||||
// This module runs entirely in the browser for privacy and performance
|
||||
|
||||
// Global flag to track initialization
|
||||
window.transformersLoading = false;
|
||||
window.transformersLoaded = false;
|
||||
|
||||
class TransformersEmbedder {
|
||||
constructor() {
|
||||
this.extractor = null;
|
||||
this.currentModel = null;
|
||||
this.modelCache = new Map();
|
||||
this.isLoading = false;
|
||||
}
|
||||
|
||||
async initializeModel(modelName = 'Xenova/all-MiniLM-L6-v2') {
|
||||
try {
|
||||
if (this.modelCache.has(modelName)) {
|
||||
this.extractor = this.modelCache.get(modelName);
|
||||
this.currentModel = modelName;
|
||||
return { success: true, model: modelName };
|
||||
}
|
||||
|
||||
if (this.isLoading) {
|
||||
return { success: false, error: 'Model loading already in progress' };
|
||||
}
|
||||
|
||||
this.isLoading = true;
|
||||
|
||||
// Use globally loaded Transformers.js pipeline
|
||||
if (!window.transformers) {
|
||||
if (!window.transformersPipeline) {
|
||||
// Wait for the pipeline to load
|
||||
let attempts = 0;
|
||||
while (!window.transformersPipeline && attempts < 50) { // Wait up to 5 seconds
|
||||
await new Promise(resolve => setTimeout(resolve, 100));
|
||||
attempts++;
|
||||
}
|
||||
if (!window.transformersPipeline) {
|
||||
throw new Error('Transformers.js pipeline not available. Please refresh the page.');
|
||||
}
|
||||
}
|
||||
window.transformers = { pipeline: window.transformersPipeline };
|
||||
window.transformersLoaded = true;
|
||||
console.log('✅ Using globally loaded Transformers.js pipeline');
|
||||
}
|
||||
|
||||
// Show loading progress to user
|
||||
if (window.updateModelLoadingProgress) {
|
||||
window.updateModelLoadingProgress(0, `Loading ${modelName}...`);
|
||||
}
|
||||
|
||||
this.extractor = await window.transformers.pipeline('feature-extraction', modelName, {
|
||||
progress_callback: (data) => {
|
||||
if (window.updateModelLoadingProgress && data.progress !== undefined) {
|
||||
const progress = Math.round(data.progress);
|
||||
window.updateModelLoadingProgress(progress, data.status || 'Loading...');
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
this.modelCache.set(modelName, this.extractor);
|
||||
this.currentModel = modelName;
|
||||
this.isLoading = false;
|
||||
|
||||
if (window.updateModelLoadingProgress) {
|
||||
window.updateModelLoadingProgress(100, 'Model loaded successfully');
|
||||
}
|
||||
|
||||
return { success: true, model: modelName };
|
||||
} catch (error) {
|
||||
this.isLoading = false;
|
||||
console.error('Model initialization error:', error);
|
||||
return { success: false, error: error.message };
|
||||
}
|
||||
}
|
||||
|
||||
async generateEmbeddings(texts, options = {}) {
|
||||
if (!this.extractor) {
|
||||
throw new Error('Model not initialized. Call initializeModel() first.');
|
||||
}
|
||||
|
||||
if (!texts || texts.length === 0) {
|
||||
throw new Error('No texts provided for embedding generation.');
|
||||
}
|
||||
|
||||
const embeddings = [];
|
||||
const defaultOptions = {
|
||||
pooling: 'mean',
|
||||
normalize: true,
|
||||
...options
|
||||
};
|
||||
|
||||
// Process in batches to avoid memory issues
|
||||
const batchSize = options.batchSize || 8;
|
||||
|
||||
try {
|
||||
for (let i = 0; i < texts.length; i += batchSize) {
|
||||
const batch = texts.slice(i, i + batchSize);
|
||||
|
||||
const batchResults = await Promise.all(
|
||||
batch.map(text => {
|
||||
if (!text || text.trim().length === 0) {
|
||||
throw new Error('Empty text found in batch');
|
||||
}
|
||||
return this.extractor(text.trim(), defaultOptions);
|
||||
})
|
||||
);
|
||||
|
||||
// Convert tensor output to arrays
|
||||
batchResults.forEach((result, idx) => {
|
||||
if (result && result.data) {
|
||||
embeddings.push(Array.from(result.data));
|
||||
} else {
|
||||
throw new Error(`Invalid embedding result for text: ${batch[idx]}`);
|
||||
}
|
||||
});
|
||||
|
||||
// Update progress
|
||||
const progress = Math.min(100, ((i + batch.length) / texts.length) * 100);
|
||||
if (window.updateEmbeddingProgress) {
|
||||
window.updateEmbeddingProgress(progress, `Processing ${i + batch.length}/${texts.length} texts`);
|
||||
}
|
||||
}
|
||||
|
||||
if (window.updateEmbeddingProgress) {
|
||||
window.updateEmbeddingProgress(100, `Generated ${embeddings.length} embeddings successfully`);
|
||||
}
|
||||
|
||||
return embeddings;
|
||||
} catch (error) {
|
||||
console.error('Embedding generation error:', error);
|
||||
throw error;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Global instance
|
||||
window.transformersEmbedder = new TransformersEmbedder();
|
||||
console.log('📦 TransformersEmbedder instance created');
|
||||
|
||||
// Global progress update functions
|
||||
window.updateModelLoadingProgress = function(progress, status) {
|
||||
const progressBar = document.getElementById('model-loading-progress');
|
||||
const statusText = document.getElementById('model-loading-status');
|
||||
if (progressBar) {
|
||||
progressBar.style.width = progress + '%';
|
||||
progressBar.setAttribute('aria-valuenow', progress);
|
||||
}
|
||||
if (statusText) {
|
||||
statusText.textContent = status;
|
||||
}
|
||||
};
|
||||
|
||||
window.updateEmbeddingProgress = function(progress, status) {
|
||||
const progressBar = document.getElementById('embedding-progress');
|
||||
const statusText = document.getElementById('embedding-status');
|
||||
if (progressBar) {
|
||||
progressBar.style.width = progress + '%';
|
||||
progressBar.setAttribute('aria-valuenow', progress);
|
||||
}
|
||||
if (statusText) {
|
||||
statusText.textContent = status;
|
||||
}
|
||||
};
|
||||
|
||||
// Dash clientside callback functions
|
||||
window.dash_clientside = window.dash_clientside || {};
|
||||
console.log('🔧 Setting up window.dash_clientside.transformers');
|
||||
window.dash_clientside.transformers = {
|
||||
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
||||
console.log('🚀 generateEmbeddings called with:', { nClicks, modelName, tokenizationMethod, textLength: textContent?.length });
|
||||
|
||||
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
||||
console.log('⚠️ Early return - missing required parameters');
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
try {
|
||||
// Initialize model if needed
|
||||
const initResult = await window.transformersEmbedder.initializeModel(modelName);
|
||||
if (!initResult.success) {
|
||||
return [
|
||||
{ error: initResult.error },
|
||||
`❌ Model loading error: ${initResult.error}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
// Tokenize text based on method
|
||||
let textChunks;
|
||||
const trimmedText = textContent.trim();
|
||||
|
||||
switch (tokenizationMethod) {
|
||||
case 'sentence':
|
||||
// Simple sentence splitting - can be enhanced with proper NLP
|
||||
textChunks = trimmedText
|
||||
.split(/[.!?]+/)
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 0);
|
||||
break;
|
||||
case 'paragraph':
|
||||
textChunks = trimmedText
|
||||
.split(/\n\s*\n/)
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 0);
|
||||
break;
|
||||
case 'manual':
|
||||
textChunks = trimmedText
|
||||
.split('\n')
|
||||
.map(s => s.trim())
|
||||
.filter(s => s.length > 0);
|
||||
break;
|
||||
default:
|
||||
textChunks = [trimmedText];
|
||||
}
|
||||
|
||||
if (textChunks.length === 0) {
|
||||
return [
|
||||
{ error: 'No valid text chunks found after tokenization' },
|
||||
'❌ Error: No valid text chunks found after tokenization',
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = await window.transformersEmbedder.generateEmbeddings(textChunks);
|
||||
|
||||
if (!embeddings || embeddings.length !== textChunks.length) {
|
||||
return [
|
||||
{ error: 'Embedding generation failed - mismatch in text chunks and embeddings' },
|
||||
'❌ Error: Embedding generation failed',
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
// Create documents structure
|
||||
const documents = textChunks.map((text, i) => ({
|
||||
id: `text_input_${Date.now()}_${i}`,
|
||||
text: text,
|
||||
embedding: embeddings[i],
|
||||
category: category || "Text Input",
|
||||
subcategory: subcategory || "Generated",
|
||||
tags: []
|
||||
}));
|
||||
|
||||
return [
|
||||
{
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
},
|
||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
||||
"success",
|
||||
false
|
||||
];
|
||||
|
||||
} catch (error) {
|
||||
console.error('Client-side embedding error:', error);
|
||||
return [
|
||||
{ error: error.message },
|
||||
`❌ Error: ${error.message}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
console.log('✅ Transformers.js client-side setup complete');
|
||||
console.log('Available:', {
|
||||
transformersEmbedder: !!window.transformersEmbedder,
|
||||
dashClientside: !!window.dash_clientside,
|
||||
transformersModule: !!window.dash_clientside?.transformers,
|
||||
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings
|
||||
});
|
9
assets/package.json
Normal file
9
assets/package.json
Normal file
@@ -0,0 +1,9 @@
|
||||
{
|
||||
"name": "embeddingbuddy-assets",
|
||||
"version": "1.0.0",
|
||||
"description": "JavaScript dependencies for EmbeddingBuddy text input functionality",
|
||||
"dependencies": {
|
||||
"@huggingface/transformers": "^3.0.0"
|
||||
},
|
||||
"type": "module"
|
||||
}
|
106
assets/sample-txt.md
Normal file
106
assets/sample-txt.md
Normal file
@@ -0,0 +1,106 @@
|
||||
The sun peeked through the clouds after a drizzly morning.
|
||||
A gentle breeze rustled the leaves as we walked along the shoreline.
|
||||
Heavy rains caused flooding in several low-lying neighborhoods.
|
||||
It was so hot that even the birds sought shade under the palm trees.
|
||||
By midnight, the temperature had dropped below freezing.
|
||||
Thunderstorms lit up the sky with flashes of lightning.
|
||||
A thick fog settled over the city streets at dawn.
|
||||
The air smelled of ozone after the sudden hailstorm.
|
||||
I watched the snowflakes drift silently onto the ground.
|
||||
A double rainbow appeared after the rain shower.
|
||||
The humidity soared to uncomfortable levels by midday.
|
||||
Dust devils formed in the dry desert plains.
|
||||
The barometer readings indicated an approaching front.
|
||||
A sudden gust of wind knocked over the garden chairs.
|
||||
Light drizzle turned into a torrential downpour within minutes.
|
||||
The new smartphone features a foldable display and 5G connectivity.
|
||||
In the world of AI, transformers have revolutionized natural language processing.
|
||||
Quantum computing promises to solve problems beyond classical computers' reach.
|
||||
Blockchain technology is being explored for secure voting systems.
|
||||
Virtual reality headsets are becoming more affordable and accessible.
|
||||
The rise of electric vehicles is reshaping the automotive industry.
|
||||
Cloud computing allows businesses to scale resources dynamically.
|
||||
Machine learning algorithms can now predict stock market trends with surprising accuracy.
|
||||
Augmented reality applications are transforming retail experiences.
|
||||
The Internet of Things connects everyday devices to the web for smarter living.
|
||||
Cybersecurity threats are evolving, requiring constant vigilance.
|
||||
3D printing is enabling rapid prototyping and custom manufacturing.
|
||||
Edge computing reduces latency by processing data closer to the source.
|
||||
Biometric authentication methods are enhancing security in devices.
|
||||
Wearable technology is tracking health metrics in real-time.
|
||||
Artificial intelligence is being used to create realistic deepfakes.
|
||||
Preheat the oven to 375°F before you start mixing the batter.
|
||||
She finely chopped the garlic and sautéed it in two tablespoons of olive oil.
|
||||
A pinch of saffron adds a beautiful color and aroma to traditional paella.
|
||||
If the soup is too salty, add a peeled potato to absorb excess sodium.
|
||||
Let the bread dough rise for at least an hour in a warm, draft-free spot.
|
||||
Marinate the chicken overnight in a blend of citrus and spices.
|
||||
Use a cast-iron skillet to sear the steak on high heat.
|
||||
Whisk the egg whites until they form stiff peaks.
|
||||
Fold in the chocolate chips gently to keep the batter airy.
|
||||
Brush the pastry with an egg wash for a golden finish.
|
||||
Slow-roast the pork shoulder until it falls off the bone.
|
||||
Garnish the salad with toasted nuts and fresh herbs.
|
||||
Deglaze the pan with white wine for a rich sauce.
|
||||
Simmer the curry paste until the aroma intensifies.
|
||||
Let the risotto rest before serving to thicken slightly.
|
||||
He dribbled past two defenders and sank a three-pointer at the buzzer.
|
||||
The marathon runner kept a steady pace despite the sweltering heat.
|
||||
Their home team clinched the championship with a last-minute goal.
|
||||
NASCAR fans cheered as the cars roared around the oval track.
|
||||
She landed a perfect triple axel at the figure skating championship.
|
||||
The cyclist pedaled up the steep hill in record time.
|
||||
He pitched a no-hitter during the high school baseball game.
|
||||
The quarterback threw a touchdown pass under heavy pressure.
|
||||
They scored a hat-trick in the hockey final.
|
||||
The boxer delivered a swift uppercut in the final round.
|
||||
Surfers caught massive waves at dawn on the Pacific coast.
|
||||
Fans erupted when the underdog scored the winning goal.
|
||||
The swimmer broke the national record in the 200m freestyle.
|
||||
The gymnast executed a flawless routine on the balance beam.
|
||||
The rugby team celebrated their victory with a traditional haka.
|
||||
The stock market rallied after positive earnings reports.
|
||||
Investors are closely watching interest rate changes by the Federal Reserve.
|
||||
Cryptocurrency prices have been extremely volatile this year.
|
||||
Diversification is key to managing investment risk effectively.
|
||||
Inflation rates have reached a 40-year high, impacting consumer spending.
|
||||
Many companies are adopting ESG criteria to attract socially conscious investors.
|
||||
The bond market is reacting to geopolitical tensions and supply chain disruptions.
|
||||
Venture capital funding for startups has surged in the tech sector.
|
||||
Exchange-traded funds (ETFs) offer a way to invest in diversified portfolios.
|
||||
The global economy is recovering from the pandemic, but challenges remain.
|
||||
Central banks are exploring digital currencies to modernize payment systems.
|
||||
Retail investors are increasingly participating in the stock market through apps.
|
||||
Hedge funds are using complex algorithms to gain an edge in trading.
|
||||
Real estate prices have skyrocketed in urban areas due to low inventory.
|
||||
The startup raised $10 million in its Series A funding round.
|
||||
The symphony orchestra played a hauntingly beautiful melody.
|
||||
She strummed her guitar softly, filling the room with a warm sound.
|
||||
The DJ mixed tracks seamlessly, keeping the crowd dancing all night.
|
||||
His voice soared during the high notes of the ballad.
|
||||
The band played an acoustic set in the intimate coffee shop.
|
||||
Jazz musicians often improvise solos based on the chord changes.
|
||||
The opera singer hit the high C with perfect pitch.
|
||||
The choir harmonized beautifully, filling the church with sound.
|
||||
He composed a symphony that was performed at the concert hall.
|
||||
The singer-songwriter wrote heartfelt lyrics about love and loss.
|
||||
The rock band headlined the festival, drawing a massive crowd.
|
||||
Hip-hop artists use rhythm and rhyme to tell powerful stories.
|
||||
The violinist played a virtuosic solo that left the audience in awe.
|
||||
Folk music often reflects the culture and traditions of a community.
|
||||
The gospel choir lifted spirits with their uplifting performance.
|
||||
The fall of the Berlin Wall in 1989 marked the end of the Cold War.
|
||||
Ancient Egypt's pyramids are a testament to their architectural prowess.
|
||||
Europe's Renaissance period sparked a revival in art and science.
|
||||
The signing of the Declaration of Independence in 1776 established the United States.
|
||||
The Industrial Revolution transformed economies and societies worldwide.
|
||||
Rome was the center of a vast empire that influenced law and governance.
|
||||
The discovery of the New World by Christopher Columbus in 1492 changed global trade.
|
||||
The French Revolution in 1789 led to significant political and social change.
|
||||
World War II was a global conflict that reshaped international relations.
|
||||
The fall of the Roman Empire in 476 AD marked the beginning of the Middle Ages.
|
||||
The invention of the printing press revolutionized the spread of knowledge.
|
||||
The Cold War was characterized by political tension between the U.S. and the Soviet Union.
|
||||
The ancient Silk Road connected East and West through trade routes.
|
||||
The signing of the Magna Carta in 1215 established principles of due process.
|
||||
Exploration during the Age of Discovery expanded European empires across the globe.
|
172
assets/transformers-loader.js
Normal file
172
assets/transformers-loader.js
Normal file
@@ -0,0 +1,172 @@
|
||||
// Simple script to load Transformers.js from CDN and initialize embedding functionality
|
||||
// This approach uses traditional script loading instead of ES6 modules
|
||||
|
||||
console.log('🔧 Transformers.js loader starting...');
|
||||
|
||||
// Global state
|
||||
window.transformersLibraryLoaded = false;
|
||||
window.transformersLibraryLoading = false;
|
||||
|
||||
// Function to dynamically load a script
|
||||
function loadScript(src) {
|
||||
return new Promise((resolve, reject) => {
|
||||
const script = document.createElement('script');
|
||||
script.src = src;
|
||||
script.type = 'module';
|
||||
script.onload = () => resolve();
|
||||
script.onerror = () => reject(new Error(`Failed to load script: ${src}`));
|
||||
document.head.appendChild(script);
|
||||
});
|
||||
}
|
||||
|
||||
// Function to initialize Transformers.js
|
||||
async function initializeTransformers() {
|
||||
if (window.transformersLibraryLoaded) {
|
||||
console.log('✅ Transformers.js already loaded');
|
||||
return true;
|
||||
}
|
||||
|
||||
if (window.transformersLibraryLoading) {
|
||||
console.log('⏳ Transformers.js already loading, waiting...');
|
||||
// Wait for loading to complete
|
||||
while (window.transformersLibraryLoading) {
|
||||
await new Promise(resolve => setTimeout(resolve, 100));
|
||||
}
|
||||
return window.transformersLibraryLoaded;
|
||||
}
|
||||
|
||||
window.transformersLibraryLoading = true;
|
||||
|
||||
try {
|
||||
console.log('📦 Loading Transformers.js from CDN...');
|
||||
|
||||
// Use dynamic import since this is more reliable with ES modules
|
||||
const transformers = await import('https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.0.0');
|
||||
window.transformersLibrary = transformers;
|
||||
window.transformersLibraryLoaded = true;
|
||||
|
||||
console.log('✅ Transformers.js loaded successfully');
|
||||
return true;
|
||||
} catch (error) {
|
||||
console.error('❌ Failed to load Transformers.js:', error);
|
||||
return false;
|
||||
} finally {
|
||||
window.transformersLibraryLoading = false;
|
||||
}
|
||||
}
|
||||
|
||||
// Simple embeddings class
|
||||
class SimpleEmbedder {
|
||||
constructor() {
|
||||
this.pipeline = null;
|
||||
this.modelCache = new Map();
|
||||
}
|
||||
|
||||
async generateEmbeddings(texts, modelName = 'Xenova/all-MiniLM-L6-v2') {
|
||||
console.log('🔄 Generating embeddings for', texts.length, 'texts with model', modelName);
|
||||
|
||||
// Ensure Transformers.js is loaded
|
||||
if (!window.transformersLibraryLoaded) {
|
||||
const loaded = await initializeTransformers();
|
||||
if (!loaded) {
|
||||
throw new Error('Failed to load Transformers.js');
|
||||
}
|
||||
}
|
||||
|
||||
// Create pipeline if not cached
|
||||
if (!this.modelCache.has(modelName)) {
|
||||
console.log('🏗️ Creating pipeline for', modelName);
|
||||
const { pipeline } = window.transformersLibrary;
|
||||
this.pipeline = await pipeline('feature-extraction', modelName);
|
||||
this.modelCache.set(modelName, this.pipeline);
|
||||
} else {
|
||||
this.pipeline = this.modelCache.get(modelName);
|
||||
}
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = [];
|
||||
for (let i = 0; i < texts.length; i++) {
|
||||
console.log(`Processing text ${i + 1}/${texts.length}...`);
|
||||
const result = await this.pipeline(texts[i], { pooling: 'mean', normalize: true });
|
||||
embeddings.push(Array.from(result.data));
|
||||
}
|
||||
|
||||
console.log('✅ Generated', embeddings.length, 'embeddings');
|
||||
return embeddings;
|
||||
}
|
||||
}
|
||||
|
||||
// Create global instance
|
||||
window.simpleEmbedder = new SimpleEmbedder();
|
||||
|
||||
// Set up Dash clientside callbacks
|
||||
window.dash_clientside = window.dash_clientside || {};
|
||||
window.dash_clientside.transformers = {
|
||||
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
||||
console.log('🚀 Client-side generateEmbeddings called');
|
||||
|
||||
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
||||
console.log('⚠️ Missing required parameters');
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
try {
|
||||
// Tokenize text
|
||||
let textChunks;
|
||||
const trimmedText = textContent.trim();
|
||||
|
||||
switch (tokenizationMethod) {
|
||||
case 'sentence':
|
||||
textChunks = trimmedText.split(/[.!?]+/).map(s => s.trim()).filter(s => s.length > 0);
|
||||
break;
|
||||
case 'paragraph':
|
||||
textChunks = trimmedText.split(/\n\s*\n/).map(s => s.trim()).filter(s => s.length > 0);
|
||||
break;
|
||||
case 'manual':
|
||||
textChunks = trimmedText.split('\n').map(s => s.trim()).filter(s => s.length > 0);
|
||||
break;
|
||||
default:
|
||||
textChunks = [trimmedText];
|
||||
}
|
||||
|
||||
if (textChunks.length === 0) {
|
||||
throw new Error('No valid text chunks after tokenization');
|
||||
}
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = await window.simpleEmbedder.generateEmbeddings(textChunks, modelName);
|
||||
|
||||
// Create documents
|
||||
const documents = textChunks.map((text, i) => ({
|
||||
id: `text_input_${Date.now()}_${i}`,
|
||||
text: text,
|
||||
embedding: embeddings[i],
|
||||
category: category || "Text Input",
|
||||
subcategory: subcategory || "Generated",
|
||||
tags: []
|
||||
}));
|
||||
|
||||
return [
|
||||
{
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
},
|
||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
||||
"success",
|
||||
false
|
||||
];
|
||||
|
||||
} catch (error) {
|
||||
console.error('❌ Error generating embeddings:', error);
|
||||
return [
|
||||
{ error: error.message },
|
||||
`❌ Error: ${error.message}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
console.log('✅ Simple Transformers.js setup complete');
|
||||
console.log('Available functions:', Object.keys(window.dash_clientside.transformers));
|
@@ -8,7 +8,15 @@ from .ui.callbacks.interactions import InteractionCallbacks
|
||||
|
||||
|
||||
def create_app():
|
||||
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||||
import os
|
||||
|
||||
# Get the project root directory (two levels up from this file)
|
||||
project_root = os.path.dirname(os.path.dirname(os.path.dirname(__file__)))
|
||||
assets_path = os.path.join(project_root, "assets")
|
||||
|
||||
app = dash.Dash(
|
||||
__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], assets_folder=assets_path
|
||||
)
|
||||
|
||||
# Allow callbacks to components that are dynamically created in tabs
|
||||
app.config.suppress_callback_exceptions = True
|
||||
@@ -20,9 +28,78 @@ def create_app():
|
||||
VisualizationCallbacks()
|
||||
InteractionCallbacks()
|
||||
|
||||
# Register client-side callback for embedding generation
|
||||
_register_client_side_callbacks(app)
|
||||
|
||||
return app
|
||||
|
||||
|
||||
def _register_client_side_callbacks(app):
|
||||
"""Register client-side callbacks for browser-based processing."""
|
||||
from dash import Input, Output, State
|
||||
|
||||
# Client-side callback for embedding generation
|
||||
app.clientside_callback(
|
||||
"""
|
||||
function(nClicks, textContent, modelName, tokenizationMethod, batchSize, category, subcategory) {
|
||||
if (!nClicks || !textContent || !textContent.trim()) {
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
console.log('🔍 Checking for Transformers.js...');
|
||||
console.log('window.dash_clientside:', typeof window.dash_clientside);
|
||||
console.log('window.dash_clientside.transformers:', typeof window.dash_clientside?.transformers);
|
||||
console.log('generateEmbeddings function:', typeof window.dash_clientside?.transformers?.generateEmbeddings);
|
||||
|
||||
if (typeof window.dash_clientside !== 'undefined' &&
|
||||
typeof window.dash_clientside.transformers !== 'undefined' &&
|
||||
typeof window.dash_clientside.transformers.generateEmbeddings === 'function') {
|
||||
|
||||
console.log('✅ Calling Transformers.js generateEmbeddings...');
|
||||
return window.dash_clientside.transformers.generateEmbeddings(
|
||||
nClicks, textContent, modelName, tokenizationMethod, category, subcategory
|
||||
);
|
||||
}
|
||||
|
||||
// More detailed error information
|
||||
let errorMsg = '❌ Transformers.js not available. ';
|
||||
if (typeof window.dash_clientside === 'undefined') {
|
||||
errorMsg += 'dash_clientside not found.';
|
||||
} else if (typeof window.dash_clientside.transformers === 'undefined') {
|
||||
errorMsg += 'transformers module not found.';
|
||||
} else if (typeof window.dash_clientside.transformers.generateEmbeddings !== 'function') {
|
||||
errorMsg += 'generateEmbeddings function not found.';
|
||||
}
|
||||
|
||||
console.error(errorMsg);
|
||||
|
||||
return [
|
||||
{ error: 'Transformers.js not loaded. Please refresh the page and try again.' },
|
||||
errorMsg + ' Please refresh the page.',
|
||||
'danger',
|
||||
false
|
||||
];
|
||||
}
|
||||
""",
|
||||
[
|
||||
Output("embeddings-generated-trigger", "data"),
|
||||
Output("text-input-status-immediate", "children"),
|
||||
Output("text-input-status-immediate", "color"),
|
||||
Output("generate-embeddings-btn", "disabled", allow_duplicate=True),
|
||||
],
|
||||
[Input("generate-embeddings-btn", "n_clicks")],
|
||||
[
|
||||
State("text-input-area", "value"),
|
||||
State("model-selection", "value"),
|
||||
State("tokenization-method", "value"),
|
||||
State("batch-size", "value"),
|
||||
State("text-category", "value"),
|
||||
State("text-subcategory", "value"),
|
||||
],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
|
||||
|
||||
def run_app(app=None, debug=None, host=None, port=None):
|
||||
if app is None:
|
||||
app = create_app()
|
||||
|
@@ -79,6 +79,71 @@ class AppSettings:
|
||||
OPENSEARCH_CONNECTION_TIMEOUT = 30
|
||||
OPENSEARCH_VERIFY_CERTS = True
|
||||
|
||||
# Text Input / Transformers.js Configuration
|
||||
DEFAULT_EMBEDDING_MODEL = "Xenova/all-mpnet-base-v2"
|
||||
MAX_TEXT_LENGTH = 50000 # Characters (browser memory limits)
|
||||
DEFAULT_TOKENIZATION_METHOD = "sentence"
|
||||
MAX_BATCH_SIZE = 8 # Process in smaller batches for memory management
|
||||
|
||||
# Available Transformers.js compatible models
|
||||
AVAILABLE_MODELS = [
|
||||
{
|
||||
"name": "Xenova/all-mpnet-base-v2",
|
||||
"label": "All-MPNet-Base-v2 (Quality, 768d)",
|
||||
"description": "Higher quality embeddings with better semantic understanding",
|
||||
"dimensions": 768,
|
||||
"size": "109 MB",
|
||||
"context_length": 512,
|
||||
"multilingual": False,
|
||||
"default": True,
|
||||
},
|
||||
{
|
||||
"name": "Xenova/all-MiniLM-L6-v2",
|
||||
"label": "All-MiniLM-L6-v2 (Fast, 384d)",
|
||||
"description": "Lightweight model, good for quick testing and general purpose",
|
||||
"dimensions": 384,
|
||||
"size": "23 MB",
|
||||
"context_length": 512,
|
||||
"multilingual": False,
|
||||
"default": False,
|
||||
},
|
||||
{
|
||||
"name": "Xenova/paraphrase-multilingual-MiniLM-L12-v2",
|
||||
"label": "Multilingual MiniLM (50+ languages)",
|
||||
"description": "Support for multiple languages with good performance",
|
||||
"dimensions": 384,
|
||||
"size": "127 MB",
|
||||
"context_length": 512,
|
||||
"multilingual": True,
|
||||
},
|
||||
{
|
||||
"name": "Xenova/bge-small-en-v1.5",
|
||||
"label": "BGE Small English (High quality, 384d)",
|
||||
"description": "Beijing Academy of AI model with excellent performance on retrieval tasks",
|
||||
"dimensions": 384,
|
||||
"size": "67 MB",
|
||||
"context_length": 512,
|
||||
"multilingual": False,
|
||||
},
|
||||
{
|
||||
"name": "Xenova/gte-small",
|
||||
"label": "GTE Small (General Text Embeddings, 384d)",
|
||||
"description": "Alibaba's general text embedding model, balanced performance",
|
||||
"dimensions": 384,
|
||||
"size": "67 MB",
|
||||
"context_length": 512,
|
||||
"multilingual": False,
|
||||
},
|
||||
]
|
||||
|
||||
# Browser compatibility requirements
|
||||
SUPPORTED_BROWSERS = {
|
||||
"chrome": ">=88",
|
||||
"firefox": ">=92",
|
||||
"safari": ">=15.4",
|
||||
"edge": ">=88",
|
||||
}
|
||||
|
||||
# Bootstrap Theme
|
||||
EXTERNAL_STYLESHEETS = [
|
||||
"https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"
|
||||
|
@@ -63,6 +63,90 @@ class DataProcessor:
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
def process_client_embeddings(self, embeddings_data: dict) -> ProcessedData:
|
||||
"""Process embeddings data received from client-side JavaScript."""
|
||||
try:
|
||||
if "error" in embeddings_data:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error=embeddings_data["error"],
|
||||
)
|
||||
|
||||
# Extract documents and embeddings from client data
|
||||
documents_data = embeddings_data.get("documents", [])
|
||||
embeddings_list = embeddings_data.get("embeddings", [])
|
||||
|
||||
if not documents_data or not embeddings_list:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error="No documents or embeddings in client data",
|
||||
)
|
||||
|
||||
if len(documents_data) != len(embeddings_list):
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error="Mismatch between number of documents and embeddings",
|
||||
)
|
||||
|
||||
# Convert embeddings to numpy array first
|
||||
try:
|
||||
embeddings = np.array(embeddings_list)
|
||||
|
||||
if embeddings.ndim != 2:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error="Invalid embedding dimensions",
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error=f"Error processing embeddings: {str(e)}",
|
||||
)
|
||||
|
||||
# Convert to Document objects with embeddings
|
||||
documents = []
|
||||
for i, doc_data in enumerate(documents_data):
|
||||
try:
|
||||
# Skip if we don't have a corresponding embedding
|
||||
if i >= len(embeddings):
|
||||
continue
|
||||
|
||||
# Ensure required fields are present
|
||||
if "id" not in doc_data or not doc_data["id"]:
|
||||
doc_data["id"] = f"text_input_{i}"
|
||||
if "text" not in doc_data or not doc_data["text"].strip():
|
||||
continue # Skip documents without text
|
||||
|
||||
# Add the embedding to doc_data
|
||||
doc_data["embedding"] = embeddings[i].tolist()
|
||||
|
||||
doc = Document(**doc_data)
|
||||
documents.append(doc)
|
||||
except Exception:
|
||||
# Skip invalid documents but continue processing
|
||||
continue
|
||||
|
||||
if not documents:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error="No valid documents found in client data",
|
||||
)
|
||||
|
||||
# Only keep embeddings for valid documents
|
||||
valid_embeddings = embeddings[: len(documents)]
|
||||
|
||||
return ProcessedData(documents=documents, embeddings=valid_embeddings)
|
||||
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
def _extract_embeddings(self, documents: List[Document]) -> np.ndarray:
|
||||
if not documents:
|
||||
return np.array([])
|
||||
|
@@ -1,4 +1,4 @@
|
||||
from dash import callback, Input, Output, State, no_update
|
||||
from dash import callback, Input, Output, State, no_update, html
|
||||
from ...data.processor import DataProcessor
|
||||
from ...data.sources.opensearch import OpenSearchClient
|
||||
from ...models.field_mapper import FieldMapper
|
||||
@@ -87,6 +87,8 @@ class DataProcessingCallbacks:
|
||||
|
||||
if active_tab == "opensearch-tab":
|
||||
return [datasource.create_opensearch_tab()]
|
||||
elif active_tab == "text-input-tab":
|
||||
return [datasource.create_text_input_tab()]
|
||||
else:
|
||||
return [datasource.create_file_upload_tab()]
|
||||
|
||||
@@ -97,6 +99,9 @@ class DataProcessingCallbacks:
|
||||
# Register collapsible section callbacks
|
||||
self._register_collapse_callbacks()
|
||||
|
||||
# Register text input callbacks
|
||||
self._register_text_input_callbacks()
|
||||
|
||||
def _register_opensearch_callbacks(self, section_type, opensearch_client):
|
||||
"""Register callbacks for a specific section (data or prompts)."""
|
||||
|
||||
@@ -463,6 +468,224 @@ class DataProcessingCallbacks:
|
||||
return new_state, icon_class
|
||||
return is_open, "fas fa-chevron-down me-2"
|
||||
|
||||
def _register_text_input_callbacks(self):
|
||||
"""Register callbacks for text input functionality."""
|
||||
|
||||
# Text length counter callback
|
||||
@callback(
|
||||
Output("text-length-counter", "children"),
|
||||
Input("text-input-area", "value"),
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
def update_text_length_counter(text_value):
|
||||
if not text_value:
|
||||
return "0"
|
||||
return f"{len(text_value):,}"
|
||||
|
||||
# Generate button enable/disable callback
|
||||
@callback(
|
||||
[
|
||||
Output("generate-embeddings-btn", "disabled"),
|
||||
Output("generation-help", "children"),
|
||||
Output("generation-help", "color"),
|
||||
],
|
||||
[
|
||||
Input("text-input-area", "value"),
|
||||
Input("model-selection", "value"),
|
||||
],
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
def toggle_generate_button(text_value, model_name):
|
||||
import dash_bootstrap_components as dbc
|
||||
|
||||
if not text_value or not text_value.strip():
|
||||
return (
|
||||
True,
|
||||
dbc.Alert(
|
||||
[
|
||||
html.I(className="fas fa-info-circle me-2"),
|
||||
"Enter some text above to enable embedding generation.",
|
||||
],
|
||||
color="light",
|
||||
),
|
||||
"light",
|
||||
)
|
||||
|
||||
if not model_name:
|
||||
return (
|
||||
True,
|
||||
dbc.Alert(
|
||||
[
|
||||
html.I(className="fas fa-exclamation-triangle me-2"),
|
||||
"Select an embedding model to continue.",
|
||||
],
|
||||
color="warning",
|
||||
),
|
||||
"warning",
|
||||
)
|
||||
|
||||
text_length = len(text_value.strip())
|
||||
if text_length > AppSettings.MAX_TEXT_LENGTH:
|
||||
return (
|
||||
True,
|
||||
dbc.Alert(
|
||||
[
|
||||
html.I(className="fas fa-exclamation-triangle me-2"),
|
||||
f"Text too long ({text_length:,} characters). Maximum allowed: {AppSettings.MAX_TEXT_LENGTH:,} characters.",
|
||||
],
|
||||
color="danger",
|
||||
),
|
||||
"danger",
|
||||
)
|
||||
|
||||
return (
|
||||
False,
|
||||
dbc.Alert(
|
||||
[
|
||||
html.I(className="fas fa-check-circle me-2"),
|
||||
f"Ready to generate embeddings for {text_length:,} characters using {model_name}.",
|
||||
],
|
||||
color="success",
|
||||
),
|
||||
"success",
|
||||
)
|
||||
|
||||
# Clear text callback
|
||||
@callback(
|
||||
Output("text-input-area", "value"),
|
||||
[Input("clear-text-btn", "n_clicks"), Input("load-sample-btn", "n_clicks")],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def handle_text_input_actions(clear_clicks, load_clicks):
|
||||
from dash import ctx
|
||||
|
||||
if not ctx.triggered:
|
||||
return no_update
|
||||
|
||||
button_id = ctx.triggered[0]["prop_id"].split(".")[0]
|
||||
|
||||
if button_id == "clear-text-btn" and clear_clicks:
|
||||
return ""
|
||||
elif button_id == "load-sample-btn" and load_clicks:
|
||||
return self._load_sample_text()
|
||||
|
||||
return no_update
|
||||
|
||||
# Model info callback
|
||||
@callback(
|
||||
Output("model-info", "children"),
|
||||
Input("model-selection", "value"),
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
def update_model_info(model_name):
|
||||
if not model_name:
|
||||
return html.Span("Please select a model", className="text-muted")
|
||||
|
||||
from ...config.settings import AppSettings
|
||||
|
||||
settings = AppSettings()
|
||||
|
||||
for model in settings.AVAILABLE_MODELS:
|
||||
if model["name"] == model_name:
|
||||
return html.Div(
|
||||
[
|
||||
html.Strong(
|
||||
f"Dimensions: {model['dimensions']} | Context Length: {model['context_length']}"
|
||||
),
|
||||
html.Br(),
|
||||
html.Span(model["description"]),
|
||||
html.Br(),
|
||||
html.Small(
|
||||
f"Multilingual: {'Yes' if model.get('multilingual', False) else 'No'} | Size: {model['size']}",
|
||||
className="text-muted",
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
return html.Span("Model information not available", className="text-muted")
|
||||
|
||||
# Process client-side embeddings result callback
|
||||
@callback(
|
||||
[
|
||||
Output("processed-data", "data", allow_duplicate=True),
|
||||
Output("text-input-status", "children"),
|
||||
Output("text-input-status", "color"),
|
||||
Output("text-input-status", "style"),
|
||||
Output("generate-embeddings-btn", "disabled", allow_duplicate=True),
|
||||
],
|
||||
[Input("embeddings-generated-trigger", "data")],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def process_embeddings_result(embeddings_data):
|
||||
"""Process embeddings generated client-side."""
|
||||
if not embeddings_data:
|
||||
return no_update, no_update, no_update, no_update, no_update
|
||||
|
||||
processed_data = self.processor.process_client_embeddings(embeddings_data)
|
||||
|
||||
if processed_data.error:
|
||||
return (
|
||||
{"error": processed_data.error},
|
||||
f"❌ Error: {processed_data.error}",
|
||||
"danger",
|
||||
{"display": "block"},
|
||||
False,
|
||||
)
|
||||
|
||||
return (
|
||||
{
|
||||
"documents": [
|
||||
self._document_to_dict(doc) for doc in processed_data.documents
|
||||
],
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
},
|
||||
f"✅ Generated embeddings for {len(processed_data.documents)} text chunks",
|
||||
"success",
|
||||
{"display": "block"},
|
||||
False,
|
||||
)
|
||||
|
||||
def _load_sample_text(self):
|
||||
"""Load sample text from assets/sample-txt.md file."""
|
||||
import os
|
||||
|
||||
try:
|
||||
# Get the project root directory (four levels up from this file)
|
||||
current_file = os.path.abspath(__file__)
|
||||
project_root = os.path.dirname(
|
||||
os.path.dirname(
|
||||
os.path.dirname(os.path.dirname(os.path.dirname(current_file)))
|
||||
)
|
||||
)
|
||||
sample_file_path = os.path.join(project_root, "assets", "sample-txt.md")
|
||||
|
||||
if os.path.exists(sample_file_path):
|
||||
with open(sample_file_path, "r", encoding="utf-8") as file:
|
||||
return file.read()
|
||||
else:
|
||||
# Fallback sample text if file doesn't exist
|
||||
return """The sun peeked through the clouds after a drizzly morning.
|
||||
A gentle breeze rustled the leaves as we walked along the shoreline.
|
||||
Heavy rains caused flooding in several low-lying neighborhoods.
|
||||
It was so hot that even the birds sought shade under the palm trees.
|
||||
By midnight, the temperature had dropped below freezing.
|
||||
|
||||
The new smartphone features a foldable display and 5G connectivity.
|
||||
In the world of AI, transformers have revolutionized natural language processing.
|
||||
Quantum computing promises to solve problems beyond classical computers' reach.
|
||||
Blockchain technology is being explored for secure voting systems.
|
||||
Virtual reality headsets are becoming more affordable and accessible.
|
||||
|
||||
Preheat the oven to 375°F before you start mixing the batter.
|
||||
She finely chopped the garlic and sautéed it in two tablespoons of olive oil.
|
||||
A pinch of saffron adds a beautiful color and aroma to traditional paella.
|
||||
If the soup is too salty, add a peeled potato to absorb excess sodium.
|
||||
Let the bread dough rise for at least an hour in a warm, draft-free spot."""
|
||||
|
||||
except Exception:
|
||||
# Return a simple fallback if there's any error
|
||||
return "This is sample text for testing embedding generation. You can replace this with your own text."
|
||||
|
||||
@staticmethod
|
||||
def _document_to_dict(doc):
|
||||
return {
|
||||
|
@@ -1,11 +1,13 @@
|
||||
from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .upload import UploadComponent
|
||||
from .textinput import TextInputComponent
|
||||
|
||||
|
||||
class DataSourceComponent:
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
self.text_input_component = TextInputComponent()
|
||||
|
||||
def create_tabbed_interface(self):
|
||||
"""Create tabbed interface for different data sources."""
|
||||
@@ -17,6 +19,7 @@ class DataSourceComponent:
|
||||
[
|
||||
dbc.Tab(label="File Upload", tab_id="file-tab"),
|
||||
dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
|
||||
dbc.Tab(label="Text Input", tab_id="text-input-tab"),
|
||||
],
|
||||
id="data-source-tabs",
|
||||
active_tab="file-tab",
|
||||
@@ -208,6 +211,10 @@ class DataSourceComponent:
|
||||
]
|
||||
)
|
||||
|
||||
def create_text_input_tab(self):
|
||||
"""Create text input tab content for browser-based embedding generation."""
|
||||
return html.Div([self.text_input_component.create_text_input_interface()])
|
||||
|
||||
def _create_opensearch_section(self, section_type):
|
||||
"""Create a complete OpenSearch section for either 'data' or 'prompts'."""
|
||||
section_id = section_type # 'data' or 'prompts'
|
||||
|
402
src/embeddingbuddy/ui/components/textinput.py
Normal file
402
src/embeddingbuddy/ui/components/textinput.py
Normal file
@@ -0,0 +1,402 @@
|
||||
"""Text input component for generating embeddings from user text."""
|
||||
|
||||
import dash_bootstrap_components as dbc
|
||||
from dash import dcc, html
|
||||
|
||||
from embeddingbuddy.config.settings import AppSettings
|
||||
|
||||
|
||||
class TextInputComponent:
|
||||
"""Component for text input and embedding generation."""
|
||||
|
||||
def __init__(self):
|
||||
self.settings = AppSettings()
|
||||
|
||||
def create_text_input_interface(self):
|
||||
"""Create the complete text input interface with model selection and processing options."""
|
||||
return html.Div(
|
||||
[
|
||||
# Model selection section
|
||||
self._create_model_selection(),
|
||||
html.Hr(),
|
||||
# Text input section
|
||||
self._create_text_input_area(),
|
||||
# Text action buttons
|
||||
self._create_text_action_buttons(),
|
||||
html.Hr(),
|
||||
# Processing options
|
||||
self._create_processing_options(),
|
||||
html.Hr(),
|
||||
# Generation controls
|
||||
self._create_generation_controls(),
|
||||
html.Hr(),
|
||||
# Progress indicators
|
||||
self._create_progress_indicators(),
|
||||
html.Hr(),
|
||||
# Status and results
|
||||
self._create_status_section(),
|
||||
# Hidden components for data flow
|
||||
self._create_hidden_components(),
|
||||
],
|
||||
className="p-3",
|
||||
)
|
||||
|
||||
def _create_model_selection(self):
|
||||
"""Create model selection dropdown with descriptions."""
|
||||
model_options = []
|
||||
for model in self.settings.AVAILABLE_MODELS:
|
||||
label = f"{model['label']} - {model['size']}"
|
||||
if model.get("default", False):
|
||||
label += " (Recommended)"
|
||||
|
||||
model_options.append({"label": label, "value": model["name"]})
|
||||
|
||||
return html.Div(
|
||||
[
|
||||
html.H5("Embedding Model", className="mb-3"),
|
||||
html.Div(
|
||||
[
|
||||
dcc.Dropdown(
|
||||
id="model-selection",
|
||||
options=model_options,
|
||||
value=self.settings.DEFAULT_EMBEDDING_MODEL,
|
||||
placeholder="Select an embedding model...",
|
||||
className="mb-2",
|
||||
),
|
||||
dbc.Alert(
|
||||
[
|
||||
html.Div(
|
||||
id="model-info",
|
||||
children=self._get_model_description(
|
||||
self.settings.DEFAULT_EMBEDDING_MODEL
|
||||
),
|
||||
)
|
||||
],
|
||||
color="info",
|
||||
className="small",
|
||||
),
|
||||
]
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_text_input_area(self):
|
||||
"""Create text input textarea with character limits."""
|
||||
return html.Div(
|
||||
[
|
||||
html.H5("Text Input", className="mb-3"),
|
||||
dcc.Textarea(
|
||||
id="text-input-area",
|
||||
placeholder="Paste your text here... Each sentence, paragraph, or line will become a separate data point depending on your tokenization method below.",
|
||||
value="",
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "300px",
|
||||
"resize": "vertical",
|
||||
"font-family": "monospace",
|
||||
"font-size": "14px",
|
||||
},
|
||||
maxLength=self.settings.MAX_TEXT_LENGTH,
|
||||
className="form-control",
|
||||
),
|
||||
html.Small(
|
||||
f"Maximum {self.settings.MAX_TEXT_LENGTH:,} characters. Current: ",
|
||||
className="text-muted",
|
||||
),
|
||||
html.Small(
|
||||
id="text-length-counter",
|
||||
children="0",
|
||||
className="text-muted fw-bold",
|
||||
),
|
||||
html.Small(" characters", className="text-muted"),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_text_action_buttons(self):
|
||||
"""Create action buttons for text input (Load Sample, Clear)."""
|
||||
return html.Div(
|
||||
[
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Button(
|
||||
[
|
||||
html.I(className="fas fa-file-text me-2"),
|
||||
"Load Sample Text",
|
||||
],
|
||||
id="load-sample-btn",
|
||||
color="info",
|
||||
size="sm",
|
||||
className="w-100",
|
||||
)
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Button(
|
||||
[
|
||||
html.I(className="fas fa-trash me-2"),
|
||||
"Clear Text",
|
||||
],
|
||||
id="clear-text-btn",
|
||||
color="outline-secondary",
|
||||
size="sm",
|
||||
className="w-100",
|
||||
)
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
],
|
||||
className="mt-2 mb-3",
|
||||
)
|
||||
]
|
||||
)
|
||||
|
||||
def _create_processing_options(self):
|
||||
"""Create tokenization and metadata options."""
|
||||
return html.Div(
|
||||
[
|
||||
html.H5("Processing Options", className="mb-3"),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
html.Label(
|
||||
"Text Splitting Method:", className="form-label"
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="tokenization-method",
|
||||
options=[
|
||||
{
|
||||
"label": "Sentences (split on . ! ?)",
|
||||
"value": "sentence",
|
||||
},
|
||||
{
|
||||
"label": "Paragraphs (split on double newline)",
|
||||
"value": "paragraph",
|
||||
},
|
||||
{
|
||||
"label": "Lines (split on single newline)",
|
||||
"value": "manual",
|
||||
},
|
||||
{
|
||||
"label": "Entire text as one document",
|
||||
"value": "whole",
|
||||
},
|
||||
],
|
||||
value=self.settings.DEFAULT_TOKENIZATION_METHOD,
|
||||
className="mb-3",
|
||||
),
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
html.Label("Batch Size:", className="form-label"),
|
||||
dcc.Dropdown(
|
||||
id="batch-size",
|
||||
options=[
|
||||
{
|
||||
"label": "Small batches (4) - Lower memory",
|
||||
"value": 4,
|
||||
},
|
||||
{
|
||||
"label": "Medium batches (8) - Balanced",
|
||||
"value": 8,
|
||||
},
|
||||
{
|
||||
"label": "Large batches (16) - Faster",
|
||||
"value": 16,
|
||||
},
|
||||
],
|
||||
value=self.settings.MAX_BATCH_SIZE,
|
||||
className="mb-3",
|
||||
),
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
html.Label(
|
||||
"Category (Optional):", className="form-label"
|
||||
),
|
||||
dcc.Input(
|
||||
id="text-category",
|
||||
type="text",
|
||||
placeholder="e.g., Notes, Articles, Ideas...",
|
||||
value="Text Input",
|
||||
className="form-control mb-3",
|
||||
),
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
html.Label(
|
||||
"Subcategory (Optional):", className="form-label"
|
||||
),
|
||||
dcc.Input(
|
||||
id="text-subcategory",
|
||||
type="text",
|
||||
placeholder="e.g., Meeting Notes, Research...",
|
||||
value="Generated",
|
||||
className="form-control mb-3",
|
||||
),
|
||||
],
|
||||
md=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_generation_controls(self):
|
||||
"""Create embedding generation button and controls."""
|
||||
return html.Div(
|
||||
[
|
||||
html.H5("Generate Embeddings", className="mb-3"),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Button(
|
||||
[
|
||||
html.I(className="fas fa-magic me-2"),
|
||||
"Generate Embeddings",
|
||||
],
|
||||
id="generate-embeddings-btn",
|
||||
color="primary",
|
||||
size="lg",
|
||||
disabled=True,
|
||||
className="w-100",
|
||||
)
|
||||
],
|
||||
md=12,
|
||||
),
|
||||
]
|
||||
),
|
||||
html.Div(
|
||||
[
|
||||
dbc.Alert(
|
||||
[
|
||||
html.I(className="fas fa-info-circle me-2"),
|
||||
"Enter some text above and select a model to enable embedding generation.",
|
||||
],
|
||||
color="light",
|
||||
className="mt-3",
|
||||
id="generation-help",
|
||||
)
|
||||
]
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_progress_indicators(self):
|
||||
"""Create progress bars for model loading and embedding generation."""
|
||||
return html.Div(
|
||||
[
|
||||
# Model loading progress
|
||||
html.Div(
|
||||
[
|
||||
html.H6("Model Loading Progress", className="mb-2"),
|
||||
dbc.Progress(
|
||||
id="model-loading-progress",
|
||||
value=0,
|
||||
striped=True,
|
||||
animated=True,
|
||||
className="mb-2",
|
||||
),
|
||||
html.Small(
|
||||
id="model-loading-status",
|
||||
children="No model loading in progress",
|
||||
className="text-muted",
|
||||
),
|
||||
],
|
||||
id="model-loading-section",
|
||||
style={"display": "none"},
|
||||
),
|
||||
html.Br(),
|
||||
# Embedding generation progress
|
||||
html.Div(
|
||||
[
|
||||
html.H6("Embedding Generation Progress", className="mb-2"),
|
||||
dbc.Progress(
|
||||
id="embedding-progress",
|
||||
value=0,
|
||||
striped=True,
|
||||
animated=True,
|
||||
className="mb-2",
|
||||
),
|
||||
html.Small(
|
||||
id="embedding-status",
|
||||
children="No embedding generation in progress",
|
||||
className="text-muted",
|
||||
),
|
||||
],
|
||||
id="embedding-progress-section",
|
||||
style={"display": "none"},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_status_section(self):
|
||||
"""Create status alerts and results preview."""
|
||||
return html.Div(
|
||||
[
|
||||
# Immediate status (from client-side)
|
||||
dbc.Alert(
|
||||
id="text-input-status-immediate",
|
||||
children="Ready to generate embeddings",
|
||||
color="light",
|
||||
className="mb-3",
|
||||
),
|
||||
# Server-side status
|
||||
dbc.Alert(
|
||||
id="text-input-status",
|
||||
children="",
|
||||
color="light",
|
||||
className="mb-3",
|
||||
style={"display": "none"},
|
||||
),
|
||||
# Results preview
|
||||
html.Div(id="embedding-results-preview"),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_hidden_components(self):
|
||||
"""Create hidden components for data flow."""
|
||||
return html.Div(
|
||||
[
|
||||
# Store for embeddings data from client-side
|
||||
dcc.Store(id="embeddings-generated-trigger"),
|
||||
# Store for tokenization preview
|
||||
dcc.Store(id="tokenization-preview-data"),
|
||||
]
|
||||
)
|
||||
|
||||
def _get_model_description(self, model_name):
|
||||
"""Get description for a specific model."""
|
||||
for model in self.settings.AVAILABLE_MODELS:
|
||||
if model["name"] == model_name:
|
||||
return html.Div(
|
||||
[
|
||||
html.Strong(
|
||||
f"Dimensions: {model['dimensions']} | Context Length: {model['context_length']}"
|
||||
),
|
||||
html.Br(),
|
||||
html.Span(model["description"]),
|
||||
html.Br(),
|
||||
html.Small(
|
||||
f"Multilingual: {'Yes' if model.get('multilingual', False) else 'No'} | Size: {model['size']}",
|
||||
className="text-muted",
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
return html.Span("Model information not available", className="text-muted")
|
@@ -20,6 +20,15 @@ class AppLayout:
|
||||
dbc.Col(
|
||||
[
|
||||
html.H1("EmbeddingBuddy", className="text-center mb-4"),
|
||||
# Load Transformers.js from CDN
|
||||
html.Script(
|
||||
"""
|
||||
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/transformers@3.7.2';
|
||||
window.transformersPipeline = pipeline;
|
||||
console.log('✅ Transformers.js pipeline loaded globally');
|
||||
""",
|
||||
type="module",
|
||||
),
|
||||
],
|
||||
width=12,
|
||||
)
|
||||
|
158
tests/test_client_embeddings.py
Normal file
158
tests/test_client_embeddings.py
Normal file
@@ -0,0 +1,158 @@
|
||||
"""Tests for client-side embedding processing functionality."""
|
||||
|
||||
import numpy as np
|
||||
|
||||
from src.embeddingbuddy.data.processor import DataProcessor
|
||||
from src.embeddingbuddy.models.schemas import ProcessedData
|
||||
|
||||
|
||||
class TestClientEmbeddingsProcessing:
|
||||
"""Test client-side embeddings processing functionality."""
|
||||
|
||||
def setup_method(self):
|
||||
"""Set up test instances."""
|
||||
self.processor = DataProcessor()
|
||||
|
||||
def test_process_client_embeddings_success(self):
|
||||
"""Test successful processing of client-side embeddings data."""
|
||||
client_data = {
|
||||
"documents": [
|
||||
{
|
||||
"id": "text_input_0",
|
||||
"text": "First test document",
|
||||
"category": "Text Input",
|
||||
"subcategory": "Generated",
|
||||
"tags": [],
|
||||
},
|
||||
{
|
||||
"id": "text_input_1",
|
||||
"text": "Second test document",
|
||||
"category": "Text Input",
|
||||
"subcategory": "Generated",
|
||||
"tags": [],
|
||||
},
|
||||
],
|
||||
"embeddings": [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]],
|
||||
}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert result.error is None
|
||||
assert len(result.documents) == 2
|
||||
assert result.embeddings.shape == (2, 4)
|
||||
|
||||
# Check document content
|
||||
assert result.documents[0].text == "First test document"
|
||||
assert result.documents[1].text == "Second test document"
|
||||
|
||||
# Check embeddings match
|
||||
np.testing.assert_array_equal(result.embeddings[0], [0.1, 0.2, 0.3, 0.4])
|
||||
np.testing.assert_array_equal(result.embeddings[1], [0.5, 0.6, 0.7, 0.8])
|
||||
|
||||
def test_process_client_embeddings_with_error(self):
|
||||
"""Test processing client data with error."""
|
||||
client_data = {"error": "Transformers.js not loaded"}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert result.error == "Transformers.js not loaded"
|
||||
assert len(result.documents) == 0
|
||||
assert result.embeddings.size == 0
|
||||
|
||||
def test_process_client_embeddings_missing_data(self):
|
||||
"""Test processing with missing documents or embeddings."""
|
||||
client_data = {"documents": []}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert "No documents or embeddings in client data" in result.error
|
||||
assert len(result.documents) == 0
|
||||
|
||||
def test_process_client_embeddings_mismatch_count(self):
|
||||
"""Test processing with mismatched document and embedding counts."""
|
||||
client_data = {
|
||||
"documents": [
|
||||
{
|
||||
"id": "test",
|
||||
"text": "Test document",
|
||||
"category": "Test",
|
||||
"subcategory": "Test",
|
||||
"tags": [],
|
||||
}
|
||||
],
|
||||
"embeddings": [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]],
|
||||
}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert "Mismatch between number of documents and embeddings" in result.error
|
||||
assert len(result.documents) == 0
|
||||
|
||||
def test_process_client_embeddings_invalid_document(self):
|
||||
"""Test processing with invalid document data."""
|
||||
client_data = {
|
||||
"documents": [
|
||||
{"text": ""}, # Empty text should be skipped
|
||||
{
|
||||
"id": "test2",
|
||||
"text": "Valid document",
|
||||
"category": "Test",
|
||||
"subcategory": "Test",
|
||||
"tags": [],
|
||||
},
|
||||
],
|
||||
"embeddings": [[0.1, 0.2, 0.3, 0.4], [0.5, 0.6, 0.7, 0.8]],
|
||||
}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert result.error is None
|
||||
assert len(result.documents) == 1 # Only valid document should be processed
|
||||
assert result.documents[0].text == "Valid document"
|
||||
|
||||
def test_process_client_embeddings_auto_id_generation(self):
|
||||
"""Test automatic ID generation for documents without IDs."""
|
||||
client_data = {
|
||||
"documents": [
|
||||
{
|
||||
"text": "Document without ID",
|
||||
"category": "Test",
|
||||
"subcategory": "Test",
|
||||
"tags": [],
|
||||
}
|
||||
],
|
||||
"embeddings": [[0.1, 0.2, 0.3, 0.4]],
|
||||
}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert result.error is None
|
||||
assert len(result.documents) == 1
|
||||
assert result.documents[0].id.startswith("text_input_")
|
||||
|
||||
def test_process_client_embeddings_invalid_embedding_format(self):
|
||||
"""Test processing with invalid embedding format."""
|
||||
client_data = {
|
||||
"documents": [
|
||||
{
|
||||
"id": "test",
|
||||
"text": "Test document",
|
||||
"category": "Test",
|
||||
"subcategory": "Test",
|
||||
"tags": [],
|
||||
}
|
||||
],
|
||||
"embeddings": 0.5, # Scalar instead of array
|
||||
}
|
||||
|
||||
result = self.processor.process_client_embeddings(client_data)
|
||||
|
||||
assert isinstance(result, ProcessedData)
|
||||
assert result.error is not None # Should have some error
|
||||
assert len(result.documents) == 0
|
Reference in New Issue
Block a user