Compare commits
1 Commits
restructur
...
d35ef995a3
Author | SHA1 | Date | |
---|---|---|---|
d35ef995a3 |
@@ -4,9 +4,7 @@
|
||||
"Bash(mkdir:*)",
|
||||
"Bash(uv run:*)",
|
||||
"Bash(uv add:*)",
|
||||
"Bash(uv sync:*)",
|
||||
"Bash(tree:*)",
|
||||
"WebFetch(domain:www.dash-bootstrap-components.com)"
|
||||
"Bash(uv sync:*)"
|
||||
],
|
||||
"deny": [],
|
||||
"ask": [],
|
||||
|
@@ -22,13 +22,11 @@ uv sync
|
||||
**Run the application:**
|
||||
|
||||
Development mode (with auto-reload):
|
||||
|
||||
```bash
|
||||
uv run run_dev.py
|
||||
```
|
||||
|
||||
Production mode (with Gunicorn WSGI server):
|
||||
|
||||
```bash
|
||||
# First install production dependencies
|
||||
uv sync --extra prod
|
||||
@@ -38,12 +36,11 @@ uv run run_prod.py
|
||||
```
|
||||
|
||||
Legacy mode (basic Dash server):
|
||||
|
||||
```bash
|
||||
uv run main.py
|
||||
```
|
||||
|
||||
The app will be available at <http://127.0.0.1:8050>
|
||||
The app will be available at http://127.0.0.1:8050
|
||||
|
||||
**Run tests:**
|
||||
|
||||
|
@@ -65,11 +65,6 @@ ENV EMBEDDINGBUDDY_ENV=production
|
||||
# Expose port
|
||||
EXPOSE 8050
|
||||
|
||||
# Create non-root user
|
||||
RUN groupadd -r appuser && useradd -r -g appuser appuser
|
||||
RUN chown -R appuser:appuser /app
|
||||
USER appuser
|
||||
|
||||
# Health check
|
||||
HEALTHCHECK --interval=30s --timeout=10s --start-period=30s --retries=3 \
|
||||
CMD python -c "import requests; requests.get('http://localhost:8050/', timeout=5)" || exit 1
|
||||
|
48
README.md
48
README.md
@@ -152,38 +152,22 @@ The application follows a modular architecture for improved maintainability and
|
||||
|
||||
```text
|
||||
src/embeddingbuddy/
|
||||
├── app.py # Main application entry point and factory
|
||||
├── config/ # Configuration management
|
||||
│ └── settings.py # Centralized app settings
|
||||
├── data/ # Data parsing and processing
|
||||
│ ├── parser.py # NDJSON parsing logic
|
||||
│ ├── processor.py # Data transformation utilities
|
||||
│ └── sources/ # Data source integrations
|
||||
│ └── opensearch.py # OpenSearch data source
|
||||
├── models/ # Data schemas and algorithms
|
||||
│ ├── schemas.py # Pydantic data models
|
||||
│ ├── reducers.py # Dimensionality reduction algorithms
|
||||
│ └── field_mapper.py # Field mapping utilities
|
||||
├── visualization/ # Plot creation and styling
|
||||
│ ├── plots.py # Plot factory and creation logic
|
||||
│ └── colors.py # Color mapping utilities
|
||||
├── ui/ # User interface components
|
||||
│ ├── layout.py # Main application layout
|
||||
│ ├── components/ # Reusable UI components
|
||||
│ │ ├── sidebar.py # Sidebar component
|
||||
│ │ ├── upload.py # Upload components
|
||||
│ │ ├── textinput.py # Text input components
|
||||
│ │ └── datasource.py # Data source components
|
||||
│ └── callbacks/ # Organized callback functions
|
||||
│ ├── data_processing.py # Data upload/processing callbacks
|
||||
│ ├── visualization.py # Plot update callbacks
|
||||
│ └── interactions.py # User interaction callbacks
|
||||
└── utils/ # Utility functions
|
||||
|
||||
main.py # Application runner (at project root)
|
||||
main.py # Application runner (at project root)
|
||||
run_dev.py # Development server runner
|
||||
run_prod.py # Production server runner
|
||||
├── config/ # Configuration management
|
||||
│ └── settings.py # Centralized app settings
|
||||
├── data/ # Data parsing and processing
|
||||
│ ├── parser.py # NDJSON parsing logic
|
||||
│ └── processor.py # Data transformation utilities
|
||||
├── models/ # Data schemas and algorithms
|
||||
│ ├── schemas.py # Pydantic data models
|
||||
│ └── reducers.py # Dimensionality reduction algorithms
|
||||
├── visualization/ # Plot creation and styling
|
||||
│ ├── plots.py # Plot factory and creation logic
|
||||
│ └── colors.py # Color mapping utilities
|
||||
├── ui/ # User interface components
|
||||
│ ├── layout.py # Main application layout
|
||||
│ ├── components/ # Reusable UI components
|
||||
│ └── callbacks/ # Organized callback functions
|
||||
└── utils/ # Utility functions
|
||||
```
|
||||
|
||||
### Testing
|
||||
|
@@ -1,17 +0,0 @@
|
||||
/* CSS override for transparent hover boxes in Plotly plots */
|
||||
|
||||
/* Make hover boxes transparent while preserving text readability */
|
||||
.hovertext {
|
||||
fill-opacity: 0.8 !important;
|
||||
stroke-opacity: 1 !important;
|
||||
}
|
||||
|
||||
/* Alternative selector for different Plotly versions */
|
||||
g.hovertext > path {
|
||||
opacity: 0.8 !important;
|
||||
}
|
||||
|
||||
/* Ensure text remains fully visible */
|
||||
.hovertext text {
|
||||
opacity: 1 !important;
|
||||
}
|
@@ -45,12 +45,28 @@ class TransformersEmbedder {
|
||||
console.log('✅ Using globally loaded Transformers.js pipeline');
|
||||
}
|
||||
|
||||
this.extractor = await window.transformers.pipeline('feature-extraction', modelName);
|
||||
|
||||
// Show loading progress to user
|
||||
if (window.updateModelLoadingProgress) {
|
||||
window.updateModelLoadingProgress(0, `Loading ${modelName}...`);
|
||||
}
|
||||
|
||||
this.extractor = await window.transformers.pipeline('feature-extraction', modelName, {
|
||||
progress_callback: (data) => {
|
||||
if (window.updateModelLoadingProgress && data.progress !== undefined) {
|
||||
const progress = Math.round(data.progress);
|
||||
window.updateModelLoadingProgress(progress, data.status || 'Loading...');
|
||||
}
|
||||
}
|
||||
});
|
||||
|
||||
this.modelCache.set(modelName, this.extractor);
|
||||
this.currentModel = modelName;
|
||||
this.isLoading = false;
|
||||
|
||||
|
||||
if (window.updateModelLoadingProgress) {
|
||||
window.updateModelLoadingProgress(100, 'Model loaded successfully');
|
||||
}
|
||||
|
||||
return { success: true, model: modelName };
|
||||
} catch (error) {
|
||||
this.isLoading = false;
|
||||
@@ -100,8 +116,17 @@ class TransformersEmbedder {
|
||||
}
|
||||
});
|
||||
|
||||
// Update progress
|
||||
const progress = Math.min(100, ((i + batch.length) / texts.length) * 100);
|
||||
if (window.updateEmbeddingProgress) {
|
||||
window.updateEmbeddingProgress(progress, `Processing ${i + batch.length}/${texts.length} texts`);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (window.updateEmbeddingProgress) {
|
||||
window.updateEmbeddingProgress(100, `Generated ${embeddings.length} embeddings successfully`);
|
||||
}
|
||||
|
||||
return embeddings;
|
||||
} catch (error) {
|
||||
console.error('Embedding generation error:', error);
|
||||
@@ -114,6 +139,30 @@ class TransformersEmbedder {
|
||||
window.transformersEmbedder = new TransformersEmbedder();
|
||||
console.log('📦 TransformersEmbedder instance created');
|
||||
|
||||
// Global progress update functions
|
||||
window.updateModelLoadingProgress = function(progress, status) {
|
||||
const progressBar = document.getElementById('model-loading-progress');
|
||||
const statusText = document.getElementById('model-loading-status');
|
||||
if (progressBar) {
|
||||
progressBar.style.width = progress + '%';
|
||||
progressBar.setAttribute('aria-valuenow', progress);
|
||||
}
|
||||
if (statusText) {
|
||||
statusText.textContent = status;
|
||||
}
|
||||
};
|
||||
|
||||
window.updateEmbeddingProgress = function(progress, status) {
|
||||
const progressBar = document.getElementById('embedding-progress');
|
||||
const statusText = document.getElementById('embedding-status');
|
||||
if (progressBar) {
|
||||
progressBar.style.width = progress + '%';
|
||||
progressBar.setAttribute('aria-valuenow', progress);
|
||||
}
|
||||
if (statusText) {
|
||||
statusText.textContent = status;
|
||||
}
|
||||
};
|
||||
|
||||
// Dash clientside callback functions
|
||||
window.dash_clientside = window.dash_clientside || {};
|
||||
@@ -121,28 +170,31 @@ console.log('🔧 Setting up window.dash_clientside.transformers');
|
||||
window.dash_clientside.transformers = {
|
||||
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
||||
console.log('🚀 generateEmbeddings called with:', { nClicks, modelName, tokenizationMethod, textLength: textContent?.length });
|
||||
|
||||
|
||||
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
||||
console.log('⚠️ Early return - missing required parameters');
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
|
||||
try {
|
||||
// Initialize model if needed
|
||||
const initResult = await window.transformersEmbedder.initializeModel(modelName);
|
||||
if (!initResult.success) {
|
||||
return [
|
||||
{ error: `Model loading error: ${initResult.error}` },
|
||||
{ error: initResult.error },
|
||||
`❌ Model loading error: ${initResult.error}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
|
||||
// Tokenize text based on method
|
||||
let textChunks;
|
||||
const trimmedText = textContent.trim();
|
||||
|
||||
|
||||
switch (tokenizationMethod) {
|
||||
case 'sentence':
|
||||
// Simple sentence splitting - can be enhanced with proper NLP
|
||||
textChunks = trimmedText
|
||||
.split(/[.!?]+/)
|
||||
.map(s => s.trim())
|
||||
@@ -163,24 +215,28 @@ window.dash_clientside.transformers = {
|
||||
default:
|
||||
textChunks = [trimmedText];
|
||||
}
|
||||
|
||||
|
||||
if (textChunks.length === 0) {
|
||||
return [
|
||||
{ error: 'No valid text chunks found after tokenization' },
|
||||
'❌ Error: No valid text chunks found after tokenization',
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = await window.transformersEmbedder.generateEmbeddings(textChunks);
|
||||
|
||||
|
||||
if (!embeddings || embeddings.length !== textChunks.length) {
|
||||
return [
|
||||
{ error: 'Embedding generation failed' },
|
||||
{ error: 'Embedding generation failed - mismatch in text chunks and embeddings' },
|
||||
'❌ Error: Embedding generation failed',
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
|
||||
|
||||
// Create documents structure
|
||||
const documents = textChunks.map((text, i) => ({
|
||||
id: `text_input_${Date.now()}_${i}`,
|
||||
@@ -190,36 +246,33 @@ window.dash_clientside.transformers = {
|
||||
subcategory: subcategory || "Generated",
|
||||
tags: []
|
||||
}));
|
||||
|
||||
// Return the successful embeddings data
|
||||
const embeddingsData = {
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
};
|
||||
|
||||
console.log('✅ Embeddings generated successfully:', embeddingsData);
|
||||
|
||||
|
||||
return [
|
||||
embeddingsData,
|
||||
{
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
},
|
||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
||||
"success",
|
||||
false
|
||||
];
|
||||
|
||||
|
||||
} catch (error) {
|
||||
console.error('Client-side embedding error:', error);
|
||||
return [
|
||||
{ error: error.message },
|
||||
`❌ Error: ${error.message}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
console.log('✅ Transformers.js client-side setup complete');
|
||||
console.log('Available:', {
|
||||
transformersEmbedder: !!window.transformersEmbedder,
|
||||
dashClientside: !!window.dash_clientside,
|
||||
transformersModule: !!window.dash_clientside?.transformers,
|
||||
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings,
|
||||
processAsync: typeof window.processEmbeddingsAsync
|
||||
generateFunction: typeof window.dash_clientside?.transformers?.generateEmbeddings
|
||||
});
|
@@ -104,28 +104,17 @@ window.dash_clientside = window.dash_clientside || {};
|
||||
window.dash_clientside.transformers = {
|
||||
generateEmbeddings: async function(nClicks, textContent, modelName, tokenizationMethod, category, subcategory) {
|
||||
console.log('🚀 Client-side generateEmbeddings called');
|
||||
|
||||
|
||||
if (!nClicks || !textContent || textContent.trim().length === 0) {
|
||||
console.log('⚠️ Missing required parameters');
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
|
||||
try {
|
||||
// Ensure Transformers.js is loaded
|
||||
if (!window.transformersLibraryLoaded) {
|
||||
const loaded = await initializeTransformers();
|
||||
if (!loaded) {
|
||||
return [
|
||||
{ error: 'Failed to load Transformers.js' },
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
|
||||
// Tokenize text
|
||||
let textChunks;
|
||||
const trimmedText = textContent.trim();
|
||||
|
||||
|
||||
switch (tokenizationMethod) {
|
||||
case 'sentence':
|
||||
textChunks = trimmedText.split(/[.!?]+/).map(s => s.trim()).filter(s => s.length > 0);
|
||||
@@ -139,50 +128,45 @@ window.dash_clientside.transformers = {
|
||||
default:
|
||||
textChunks = [trimmedText];
|
||||
}
|
||||
|
||||
|
||||
if (textChunks.length === 0) {
|
||||
return [
|
||||
{ error: 'No valid text chunks after tokenization' },
|
||||
false
|
||||
];
|
||||
throw new Error('No valid text chunks after tokenization');
|
||||
}
|
||||
|
||||
|
||||
// Generate embeddings
|
||||
const embeddings = await window.simpleEmbedder.generateEmbeddings(textChunks, modelName);
|
||||
|
||||
|
||||
// Create documents
|
||||
const documents = textChunks.map((text, i) => ({
|
||||
id: `text_input_${Date.now()}_${i}`,
|
||||
text: text,
|
||||
embedding: embeddings[i],
|
||||
category: category || "Text Input",
|
||||
subcategory: subcategory || "Generated",
|
||||
subcategory: subcategory || "Generated",
|
||||
tags: []
|
||||
}));
|
||||
|
||||
// Return the successful embeddings data
|
||||
const embeddingsData = {
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
};
|
||||
|
||||
console.log('✅ Embeddings generated successfully:', embeddingsData);
|
||||
|
||||
|
||||
return [
|
||||
embeddingsData,
|
||||
{
|
||||
documents: documents,
|
||||
embeddings: embeddings
|
||||
},
|
||||
`✅ Generated embeddings for ${documents.length} text chunks using ${modelName}`,
|
||||
"success",
|
||||
false
|
||||
];
|
||||
|
||||
|
||||
} catch (error) {
|
||||
console.error('❌ Error generating embeddings:', error);
|
||||
return [
|
||||
{ error: error.message },
|
||||
`❌ Error: ${error.message}`,
|
||||
"danger",
|
||||
false
|
||||
];
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
console.log('✅ Simple Transformers.js setup complete');
|
||||
console.log('Available functions:', Object.keys(window.dash_clientside.transformers));
|
Binary file not shown.
Before Width: | Height: | Size: 844 KiB After Width: | Height: | Size: 339 KiB |
File diff suppressed because one or more lines are too long
1
prompts-raw.ndjson
Normal file
1
prompts-raw.ndjson
Normal file
File diff suppressed because one or more lines are too long
64
prompts.ndjson
Normal file
64
prompts.ndjson
Normal file
File diff suppressed because one or more lines are too long
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "embeddingbuddy"
|
||||
version = "0.5.0"
|
||||
version = "0.4.0"
|
||||
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.11"
|
||||
|
@@ -25,7 +25,7 @@ def main():
|
||||
"--workers", str(AppSettings.GUNICORN_WORKERS),
|
||||
"--bind", AppSettings.GUNICORN_BIND,
|
||||
"--timeout", str(AppSettings.GUNICORN_TIMEOUT),
|
||||
"--keep-alive", str(AppSettings.GUNICORN_KEEPALIVE),
|
||||
"--keepalive", str(AppSettings.GUNICORN_KEEPALIVE),
|
||||
"--access-logfile", "-",
|
||||
"--error-logfile", "-",
|
||||
"--log-level", "info",
|
||||
|
@@ -15,12 +15,7 @@ def create_app():
|
||||
assets_path = os.path.join(project_root, "assets")
|
||||
|
||||
app = dash.Dash(
|
||||
__name__,
|
||||
external_stylesheets=[
|
||||
dbc.themes.BOOTSTRAP,
|
||||
"https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css",
|
||||
],
|
||||
assets_folder=assets_path,
|
||||
__name__, external_stylesheets=[dbc.themes.BOOTSTRAP], assets_folder=assets_path
|
||||
)
|
||||
|
||||
# Allow callbacks to components that are dynamically created in tabs
|
||||
@@ -50,22 +45,22 @@ def _register_client_side_callbacks(app):
|
||||
if (!nClicks || !textContent || !textContent.trim()) {
|
||||
return window.dash_clientside.no_update;
|
||||
}
|
||||
|
||||
|
||||
console.log('🔍 Checking for Transformers.js...');
|
||||
console.log('window.dash_clientside:', typeof window.dash_clientside);
|
||||
console.log('window.dash_clientside.transformers:', typeof window.dash_clientside?.transformers);
|
||||
console.log('generateEmbeddings function:', typeof window.dash_clientside?.transformers?.generateEmbeddings);
|
||||
|
||||
if (typeof window.dash_clientside !== 'undefined' &&
|
||||
|
||||
if (typeof window.dash_clientside !== 'undefined' &&
|
||||
typeof window.dash_clientside.transformers !== 'undefined' &&
|
||||
typeof window.dash_clientside.transformers.generateEmbeddings === 'function') {
|
||||
|
||||
|
||||
console.log('✅ Calling Transformers.js generateEmbeddings...');
|
||||
return window.dash_clientside.transformers.generateEmbeddings(
|
||||
nClicks, textContent, modelName, tokenizationMethod, category, subcategory
|
||||
);
|
||||
}
|
||||
|
||||
|
||||
// More detailed error information
|
||||
let errorMsg = '❌ Transformers.js not available. ';
|
||||
if (typeof window.dash_clientside === 'undefined') {
|
||||
@@ -75,17 +70,21 @@ def _register_client_side_callbacks(app):
|
||||
} else if (typeof window.dash_clientside.transformers.generateEmbeddings !== 'function') {
|
||||
errorMsg += 'generateEmbeddings function not found.';
|
||||
}
|
||||
|
||||
|
||||
console.error(errorMsg);
|
||||
|
||||
|
||||
return [
|
||||
{ error: 'Transformers.js not loaded. Please refresh the page and try again.' },
|
||||
errorMsg + ' Please refresh the page.',
|
||||
'danger',
|
||||
false
|
||||
];
|
||||
}
|
||||
""",
|
||||
[
|
||||
Output("embeddings-generated-trigger", "data"),
|
||||
Output("text-input-status-immediate", "children"),
|
||||
Output("text-input-status-immediate", "color"),
|
||||
Output("generate-embeddings-btn", "disabled", allow_duplicate=True),
|
||||
],
|
||||
[Input("generate-embeddings-btn", "n_clicks")],
|
||||
|
@@ -72,12 +72,10 @@ class AppSettings:
|
||||
DEBUG = os.getenv("EMBEDDINGBUDDY_DEBUG", "True").lower() == "true"
|
||||
HOST = os.getenv("EMBEDDINGBUDDY_HOST", "127.0.0.1")
|
||||
PORT = int(os.getenv("EMBEDDINGBUDDY_PORT", "8050"))
|
||||
|
||||
|
||||
# Environment Configuration
|
||||
ENVIRONMENT = os.getenv(
|
||||
"EMBEDDINGBUDDY_ENV", "development"
|
||||
) # development, production
|
||||
|
||||
ENVIRONMENT = os.getenv("EMBEDDINGBUDDY_ENV", "development") # development, production
|
||||
|
||||
# WSGI Server Configuration (for production)
|
||||
GUNICORN_WORKERS = int(os.getenv("GUNICORN_WORKERS", "4"))
|
||||
GUNICORN_BIND = os.getenv("GUNICORN_BIND", f"{HOST}:{PORT}")
|
||||
|
@@ -621,12 +621,6 @@ class DataProcessingCallbacks:
|
||||
if not embeddings_data:
|
||||
return no_update, no_update, no_update, no_update, no_update
|
||||
|
||||
# Check if this is a request trigger (contains textContent) vs actual embeddings data
|
||||
if isinstance(embeddings_data, dict) and "textContent" in embeddings_data:
|
||||
# This is a processing request trigger, not the actual results
|
||||
# The JavaScript will handle the async processing and update the UI directly
|
||||
return no_update, no_update, no_update, no_update, no_update
|
||||
|
||||
processed_data = self.processor.process_client_embeddings(embeddings_data)
|
||||
|
||||
if processed_data.error:
|
||||
|
@@ -1,5 +1,6 @@
|
||||
import dash
|
||||
from dash import callback, Input, Output
|
||||
from dash import callback, Input, Output, State, html
|
||||
import dash_bootstrap_components as dbc
|
||||
|
||||
|
||||
class InteractionCallbacks:
|
||||
@@ -7,16 +8,75 @@ class InteractionCallbacks:
|
||||
self._register_callbacks()
|
||||
|
||||
def _register_callbacks(self):
|
||||
@callback(
|
||||
Output("point-details", "children"),
|
||||
Input("embedding-plot", "clickData"),
|
||||
[State("processed-data", "data"), State("processed-prompts", "data")],
|
||||
)
|
||||
def display_click_data(clickData, data, prompts_data):
|
||||
if not clickData or not data:
|
||||
return "Click on a point to see details"
|
||||
|
||||
point_data = clickData["points"][0]
|
||||
trace_name = point_data.get("fullData", {}).get("name", "Documents")
|
||||
|
||||
if "pointIndex" in point_data:
|
||||
point_index = point_data["pointIndex"]
|
||||
elif "pointNumber" in point_data:
|
||||
point_index = point_data["pointNumber"]
|
||||
else:
|
||||
return "Could not identify clicked point"
|
||||
|
||||
if (
|
||||
trace_name.startswith("Prompts")
|
||||
and prompts_data
|
||||
and "prompts" in prompts_data
|
||||
):
|
||||
item = prompts_data["prompts"][point_index]
|
||||
item_type = "Prompt"
|
||||
else:
|
||||
item = data["documents"][point_index]
|
||||
item_type = "Document"
|
||||
|
||||
return self._create_detail_card(item, item_type)
|
||||
|
||||
@callback(
|
||||
[
|
||||
Output("processed-data", "data", allow_duplicate=True),
|
||||
Output("processed-prompts", "data", allow_duplicate=True),
|
||||
Output("point-details", "children", allow_duplicate=True),
|
||||
],
|
||||
Input("reset-button", "n_clicks"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def reset_data(n_clicks):
|
||||
if n_clicks is None or n_clicks == 0:
|
||||
return dash.no_update, dash.no_update
|
||||
return dash.no_update, dash.no_update, dash.no_update
|
||||
|
||||
return None, None
|
||||
return None, None, "Click on a point to see details"
|
||||
|
||||
@staticmethod
|
||||
def _create_detail_card(item, item_type):
|
||||
return dbc.Card(
|
||||
[
|
||||
dbc.CardBody(
|
||||
[
|
||||
html.H5(f"{item_type}: {item['id']}", className="card-title"),
|
||||
html.P(f"Text: {item['text']}", className="card-text"),
|
||||
html.P(
|
||||
f"Category: {item.get('category', 'Unknown')}",
|
||||
className="card-text",
|
||||
),
|
||||
html.P(
|
||||
f"Subcategory: {item.get('subcategory', 'Unknown')}",
|
||||
className="card-text",
|
||||
),
|
||||
html.P(
|
||||
f"Tags: {', '.join(item.get('tags', [])) if item.get('tags') else 'None'}",
|
||||
className="card-text",
|
||||
),
|
||||
html.P(f"Type: {item_type}", className="card-text text-muted"),
|
||||
]
|
||||
)
|
||||
]
|
||||
)
|
||||
|
@@ -1,11 +1,13 @@
|
||||
from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .upload import UploadComponent
|
||||
from .textinput import TextInputComponent
|
||||
|
||||
|
||||
class DataSourceComponent:
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
self.text_input_component = TextInputComponent()
|
||||
|
||||
def create_tabbed_interface(self):
|
||||
"""Create tabbed interface for different data sources."""
|
||||
@@ -17,6 +19,7 @@ class DataSourceComponent:
|
||||
[
|
||||
dbc.Tab(label="File Upload", tab_id="file-tab"),
|
||||
dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
|
||||
dbc.Tab(label="Text Input", tab_id="text-input-tab"),
|
||||
],
|
||||
id="data-source-tabs",
|
||||
active_tab="file-tab",
|
||||
@@ -208,6 +211,10 @@ class DataSourceComponent:
|
||||
]
|
||||
)
|
||||
|
||||
def create_text_input_tab(self):
|
||||
"""Create text input tab content for browser-based embedding generation."""
|
||||
return html.Div([self.text_input_component.create_text_input_interface()])
|
||||
|
||||
def _create_opensearch_section(self, section_type):
|
||||
"""Create a complete OpenSearch section for either 'data' or 'prompts'."""
|
||||
section_id = section_type # 'data' or 'prompts'
|
||||
|
@@ -2,26 +2,31 @@ from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .upload import UploadComponent
|
||||
from .datasource import DataSourceComponent
|
||||
from .textinput import TextInputComponent
|
||||
|
||||
|
||||
class SidebarComponent:
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
self.datasource_component = DataSourceComponent()
|
||||
self.textinput_component = TextInputComponent()
|
||||
|
||||
def create_layout(self):
|
||||
return dbc.Col(
|
||||
[
|
||||
dbc.Accordion(
|
||||
[
|
||||
self._create_data_sources_item(),
|
||||
self._create_generate_embeddings_item(),
|
||||
self._create_visualization_controls_item(),
|
||||
],
|
||||
always_open=True,
|
||||
)
|
||||
html.H5("Data Sources", className="mb-3"),
|
||||
self.datasource_component.create_error_alert(),
|
||||
self.datasource_component.create_success_alert(),
|
||||
self.datasource_component.create_tabbed_interface(),
|
||||
html.H5("Visualization Controls", className="mb-3 mt-4"),
|
||||
]
|
||||
+ self._create_method_dropdown()
|
||||
+ self._create_color_dropdown()
|
||||
+ self._create_dimension_toggle()
|
||||
+ self._create_prompts_toggle()
|
||||
+ [
|
||||
html.H5("Point Details", className="mb-3"),
|
||||
html.Div(
|
||||
id="point-details", children="Click on a point to see details"
|
||||
),
|
||||
],
|
||||
width=3,
|
||||
style={"padding-right": "20px"},
|
||||
@@ -81,63 +86,3 @@ class SidebarComponent:
|
||||
style={"margin-bottom": "20px"},
|
||||
),
|
||||
]
|
||||
|
||||
def _create_generate_embeddings_item(self):
|
||||
return dbc.AccordionItem(
|
||||
[
|
||||
self.textinput_component.create_text_input_interface(),
|
||||
],
|
||||
title=html.Span(
|
||||
[
|
||||
"Generate Embeddings ",
|
||||
html.I(
|
||||
className="fas fa-info-circle text-muted",
|
||||
style={"cursor": "pointer"},
|
||||
id="generate-embeddings-info-icon",
|
||||
title="Create new embeddings from text input using various in-browser models",
|
||||
),
|
||||
]
|
||||
),
|
||||
item_id="generate-embeddings-accordion",
|
||||
)
|
||||
|
||||
def _create_data_sources_item(self):
|
||||
return dbc.AccordionItem(
|
||||
[
|
||||
self.datasource_component.create_error_alert(),
|
||||
self.datasource_component.create_success_alert(),
|
||||
self.datasource_component.create_tabbed_interface(),
|
||||
],
|
||||
title=html.Span(
|
||||
[
|
||||
"Load Embeddings ",
|
||||
html.I(
|
||||
className="fas fa-info-circle text-muted",
|
||||
style={"cursor": "pointer"},
|
||||
id="load-embeddings-info-icon",
|
||||
title="Load existing embeddings: upload files or read from OpenSearch",
|
||||
),
|
||||
]
|
||||
),
|
||||
item_id="data-sources-accordion",
|
||||
)
|
||||
|
||||
def _create_visualization_controls_item(self):
|
||||
return dbc.AccordionItem(
|
||||
self._create_method_dropdown()
|
||||
+ self._create_color_dropdown()
|
||||
+ self._create_dimension_toggle()
|
||||
+ self._create_prompts_toggle(),
|
||||
title=html.Span(
|
||||
[
|
||||
"Visualization Controls ",
|
||||
html.I(
|
||||
className="fas fa-info-circle text-muted",
|
||||
style={"cursor": "pointer"},
|
||||
id="visualization-controls-info-icon",
|
||||
title="Configure plot settings: select dimensionality reduction method, colors, and display options",
|
||||
),
|
||||
]
|
||||
),
|
||||
item_id="visualization-controls-accordion",
|
||||
)
|
||||
|
@@ -30,6 +30,9 @@ class TextInputComponent:
|
||||
# Generation controls
|
||||
self._create_generation_controls(),
|
||||
html.Hr(),
|
||||
# Progress indicators
|
||||
self._create_progress_indicators(),
|
||||
html.Hr(),
|
||||
# Status and results
|
||||
self._create_status_section(),
|
||||
# Hidden components for data flow
|
||||
@@ -294,10 +297,65 @@ class TextInputComponent:
|
||||
]
|
||||
)
|
||||
|
||||
def _create_progress_indicators(self):
|
||||
"""Create progress bars for model loading and embedding generation."""
|
||||
return html.Div(
|
||||
[
|
||||
# Model loading progress
|
||||
html.Div(
|
||||
[
|
||||
html.H6("Model Loading Progress", className="mb-2"),
|
||||
dbc.Progress(
|
||||
id="model-loading-progress",
|
||||
value=0,
|
||||
striped=True,
|
||||
animated=True,
|
||||
className="mb-2",
|
||||
),
|
||||
html.Small(
|
||||
id="model-loading-status",
|
||||
children="No model loading in progress",
|
||||
className="text-muted",
|
||||
),
|
||||
],
|
||||
id="model-loading-section",
|
||||
style={"display": "none"},
|
||||
),
|
||||
html.Br(),
|
||||
# Embedding generation progress
|
||||
html.Div(
|
||||
[
|
||||
html.H6("Embedding Generation Progress", className="mb-2"),
|
||||
dbc.Progress(
|
||||
id="embedding-progress",
|
||||
value=0,
|
||||
striped=True,
|
||||
animated=True,
|
||||
className="mb-2",
|
||||
),
|
||||
html.Small(
|
||||
id="embedding-status",
|
||||
children="No embedding generation in progress",
|
||||
className="text-muted",
|
||||
),
|
||||
],
|
||||
id="embedding-progress-section",
|
||||
style={"display": "none"},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_status_section(self):
|
||||
"""Create status alerts and results preview."""
|
||||
return html.Div(
|
||||
[
|
||||
# Immediate status (from client-side)
|
||||
dbc.Alert(
|
||||
id="text-input-status-immediate",
|
||||
children="Ready to generate embeddings",
|
||||
color="light",
|
||||
className="mb-3",
|
||||
),
|
||||
# Server-side status
|
||||
dbc.Alert(
|
||||
id="text-input-status",
|
||||
|
@@ -5,75 +5,39 @@ import dash_bootstrap_components as dbc
|
||||
class UploadComponent:
|
||||
@staticmethod
|
||||
def create_data_upload():
|
||||
return html.Div(
|
||||
[
|
||||
dcc.Upload(
|
||||
id="upload-data",
|
||||
children=html.Div(
|
||||
[
|
||||
"Upload Data ",
|
||||
html.I(
|
||||
className="fas fa-info-circle",
|
||||
style={"color": "#6c757d", "fontSize": "14px"},
|
||||
id="data-upload-info",
|
||||
),
|
||||
]
|
||||
),
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
},
|
||||
multiple=False,
|
||||
),
|
||||
dbc.Tooltip(
|
||||
"Click here or drag and drop NDJSON files containing document embeddings",
|
||||
target="data-upload-info",
|
||||
placement="top",
|
||||
),
|
||||
]
|
||||
return dcc.Upload(
|
||||
id="upload-data",
|
||||
children=html.Div(["Drag and Drop or ", html.A("Select Files")]),
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
},
|
||||
multiple=False,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def create_prompts_upload():
|
||||
return html.Div(
|
||||
[
|
||||
dcc.Upload(
|
||||
id="upload-prompts",
|
||||
children=html.Div(
|
||||
[
|
||||
"Upload Prompts ",
|
||||
html.I(
|
||||
className="fas fa-info-circle",
|
||||
style={"color": "#6c757d", "fontSize": "14px"},
|
||||
id="prompts-upload-info",
|
||||
),
|
||||
]
|
||||
),
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
"borderColor": "#28a745",
|
||||
},
|
||||
multiple=False,
|
||||
),
|
||||
dbc.Tooltip(
|
||||
"Click here or drag and drop NDJSON files containing prompt embeddings",
|
||||
target="prompts-upload-info",
|
||||
placement="top",
|
||||
),
|
||||
]
|
||||
return dcc.Upload(
|
||||
id="upload-prompts",
|
||||
children=html.Div(["Drag and Drop Prompts or ", html.A("Select Files")]),
|
||||
style={
|
||||
"width": "100%",
|
||||
"height": "60px",
|
||||
"lineHeight": "60px",
|
||||
"borderWidth": "1px",
|
||||
"borderStyle": "dashed",
|
||||
"borderRadius": "5px",
|
||||
"textAlign": "center",
|
||||
"margin-bottom": "20px",
|
||||
"borderColor": "#28a745",
|
||||
},
|
||||
multiple=False,
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
|
@@ -38,9 +38,9 @@ class PlotFactory:
|
||||
if dimensions == "3d":
|
||||
fig = px.scatter_3d(
|
||||
df,
|
||||
x="x",
|
||||
y="y",
|
||||
z="z",
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
z="dim_3",
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f"3D Embedding Visualization - {method} (colored by {color_by})",
|
||||
@@ -49,8 +49,8 @@ class PlotFactory:
|
||||
else:
|
||||
fig = px.scatter(
|
||||
df,
|
||||
x="x",
|
||||
y="y",
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
color=color_values,
|
||||
hover_data=hover_fields,
|
||||
title=f"2D Embedding Visualization - {method} (colored by {color_by})",
|
||||
@@ -77,17 +77,17 @@ class PlotFactory:
|
||||
if dimensions == "3d":
|
||||
doc_fig = px.scatter_3d(
|
||||
doc_df,
|
||||
x="x",
|
||||
y="y",
|
||||
z="z",
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
z="dim_3",
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields,
|
||||
)
|
||||
else:
|
||||
doc_fig = px.scatter(
|
||||
doc_df,
|
||||
x="x",
|
||||
y="y",
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
color=doc_color_values,
|
||||
hover_data=hover_fields,
|
||||
)
|
||||
@@ -114,17 +114,17 @@ class PlotFactory:
|
||||
if dimensions == "3d":
|
||||
prompt_fig = px.scatter_3d(
|
||||
prompt_df,
|
||||
x="x",
|
||||
y="y",
|
||||
z="z",
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
z="dim_3",
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields,
|
||||
)
|
||||
else:
|
||||
prompt_fig = px.scatter(
|
||||
prompt_df,
|
||||
x="x",
|
||||
y="y",
|
||||
x="dim_1",
|
||||
y="dim_2",
|
||||
color=prompt_color_values,
|
||||
hover_data=hover_fields,
|
||||
)
|
||||
@@ -168,11 +168,11 @@ class PlotFactory:
|
||||
"category": doc.category,
|
||||
"subcategory": doc.subcategory,
|
||||
"tags_str": ", ".join(doc.tags) if doc.tags else "None",
|
||||
"x": coordinates[i, 0],
|
||||
"y": coordinates[i, 1],
|
||||
"dim_1": coordinates[i, 0],
|
||||
"dim_2": coordinates[i, 1],
|
||||
}
|
||||
if dimensions == "3d":
|
||||
row["z"] = coordinates[i, 2]
|
||||
row["dim_3"] = coordinates[i, 2]
|
||||
df_data.append(row)
|
||||
|
||||
return pd.DataFrame(df_data)
|
||||
|
Reference in New Issue
Block a user