Compare commits
3 Commits
v0.2.0
...
add-os-loa
Author | SHA1 | Date | |
---|---|---|---|
1b6845774b | |||
09e3c86f0a | |||
9cf2f0e6fa |
157
example/README_elasticsearch.md
Normal file
157
example/README_elasticsearch.md
Normal file
@@ -0,0 +1,157 @@
|
||||
# Elasticsearch/OpenSearch Sample Data
|
||||
|
||||
This directory contains sample data files in Elasticsearch bulk index format for testing the OpenSearch integration in EmbeddingBuddy.
|
||||
|
||||
## Files
|
||||
|
||||
### Original NDJSON Files
|
||||
|
||||
- `sample_data.ndjson` - Original sample documents in EmbeddingBuddy format
|
||||
- `sample_prompts.ndjson` - Original sample prompts in EmbeddingBuddy format
|
||||
|
||||
### Elasticsearch Bulk Files
|
||||
|
||||
- `sample_data_es_bulk.ndjson` - Documents in ES bulk format (index: "embeddings")
|
||||
- `sample_prompts_es_bulk.ndjson` - Prompts in ES bulk format (index: "prompts")
|
||||
|
||||
## Usage
|
||||
|
||||
### 1. Index the data using curl
|
||||
|
||||
```bash
|
||||
# Index main documents
|
||||
curl -X POST "localhost:9200/_bulk" \
|
||||
-H "Content-Type: application/x-ndjson" \
|
||||
--data-binary @sample_data_es_bulk.ndjson
|
||||
|
||||
# Index prompts
|
||||
curl -X POST "localhost:9200/_bulk" \
|
||||
-H "Content-Type: application/x-ndjson" \
|
||||
--data-binary @sample_prompts_es_bulk.ndjson
|
||||
```
|
||||
|
||||
### 2. Create proper mappings (recommended)
|
||||
|
||||
First create the index with proper dense_vector mapping:
|
||||
|
||||
```bash
|
||||
# Create embeddings index with dense_vector mapping
|
||||
curl -X PUT "localhost:9200/embeddings" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"settings": {
|
||||
"index.knn": true
|
||||
},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"id": {"type": "keyword"},
|
||||
"embedding": {
|
||||
"type": "knn_vector",
|
||||
"dimension": 8,
|
||||
"method": {
|
||||
"engine": "lucene",
|
||||
"space_type": "cosinesimil",
|
||||
"name": "hnsw",
|
||||
"parameters": {}
|
||||
}
|
||||
},
|
||||
"text": {"type": "text"},
|
||||
"category": {"type": "keyword"},
|
||||
"subcategory": {"type": "keyword"},
|
||||
"tags": {"type": "keyword"}
|
||||
}
|
||||
}
|
||||
}'
|
||||
|
||||
# Create dense vector index with alternative field names
|
||||
curl -X PUT "localhost:9200/prompts" \
|
||||
-H "Content-Type: application/json" \
|
||||
-d '{
|
||||
"settings": {
|
||||
"index.knn": true
|
||||
},
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"id": {"type": "keyword"},
|
||||
"embedding": {
|
||||
"type": "knn_vector",
|
||||
"dimension": 8,
|
||||
"method": {
|
||||
"engine": "lucene",
|
||||
"space_type": "cosinesimil",
|
||||
"name": "hnsw",
|
||||
"parameters": {}
|
||||
}
|
||||
},
|
||||
"text": {"type": "text"},
|
||||
"category": {"type": "keyword"},
|
||||
"subcategory": {"type": "keyword"},
|
||||
"tags": {"type": "keyword"}
|
||||
}
|
||||
}
|
||||
}'
|
||||
```
|
||||
|
||||
Then index the data using the bulk files above.
|
||||
|
||||
### 3. Test in EmbeddingBuddy
|
||||
|
||||
#### For "embeddings" index
|
||||
|
||||
- **OpenSearch URL**: `http://localhost:9200`
|
||||
- **Index Name**: `embeddings`
|
||||
- **Field Mapping**:
|
||||
- Embedding Field: `embedding`
|
||||
- Text Field: `text`
|
||||
- ID Field: `id`
|
||||
- Category Field: `category`
|
||||
- Subcategory Field: `subcategory`
|
||||
- Tags Field: `tags`
|
||||
|
||||
#### For "embeddings-dense" index (alternative field names)
|
||||
|
||||
- **OpenSearch URL**: `http://localhost:9200`
|
||||
- **Index Name**: `embeddings-dense`
|
||||
- **Field Mapping**:
|
||||
- Embedding Field: `vector`
|
||||
- Text Field: `content`
|
||||
- ID Field: `doc_id`
|
||||
- Category Field: `type`
|
||||
- Subcategory Field: `subtopic`
|
||||
- Tags Field: `keywords`
|
||||
|
||||
## Data Structure
|
||||
|
||||
### Original Format (from NDJSON files)
|
||||
|
||||
```json
|
||||
{
|
||||
"id": "doc_001",
|
||||
"embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3],
|
||||
"text": "Machine learning algorithms are transforming healthcare...",
|
||||
"category": "technology",
|
||||
"subcategory": "healthcare",
|
||||
"tags": ["ai", "medicine", "prediction"]
|
||||
}
|
||||
```
|
||||
|
||||
### ES Bulk Format
|
||||
|
||||
```json
|
||||
{"index": {"_index": "embeddings", "_id": "doc_001"}}
|
||||
{"id": "doc_001", "embedding": [...], "text": "...", "category": "...", ...}
|
||||
```
|
||||
|
||||
### Alternative Field Names (dense vector format)
|
||||
|
||||
```json
|
||||
{"index": {"_index": "embeddings-dense", "_id": "doc_001"}}
|
||||
{"doc_id": "doc_001", "vector": [...], "content": "...", "type": "...", ...}
|
||||
```
|
||||
|
||||
## Notes
|
||||
|
||||
- All embedding vectors are 8-dimensional for these sample files
|
||||
- The alternative format demonstrates how EmbeddingBuddy's field mapping handles different field names
|
||||
- For production use, you may want larger embedding dimensions (e.g., 384, 768, 1536)
|
||||
- The `dense_vector` field type in Elasticsearch/OpenSearch enables vector similarity search
|
40
example/sample_data_es_bulk.ndjson
Normal file
40
example/sample_data_es_bulk.ndjson
Normal file
@@ -0,0 +1,40 @@
|
||||
{"index": {"_index": "embeddings", "_id": "doc_001"}}
|
||||
{"id": "doc_001", "embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3], "text": "Machine learning algorithms are transforming healthcare by enabling predictive analytics and personalized medicine.", "category": "technology", "subcategory": "healthcare", "tags": ["ai", "medicine", "prediction"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_002"}}
|
||||
{"id": "doc_002", "embedding": [0.1, 0.4, -0.2, 0.6, 0.3, -0.4, 0.8, 0.2], "text": "Climate change poses significant challenges to global food security and agricultural sustainability.", "category": "environment", "subcategory": "agriculture", "tags": ["climate", "food", "sustainability"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_003"}}
|
||||
{"id": "doc_003", "embedding": [-0.3, 0.7, 0.1, -0.2, 0.9, 0.4, -0.1, 0.5], "text": "The rise of electric vehicles is reshaping the automotive industry and urban transportation systems.", "category": "technology", "subcategory": "automotive", "tags": ["electric", "transport", "urban"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_004"}}
|
||||
{"id": "doc_004", "embedding": [0.5, -0.6, 0.3, 0.8, -0.2, 0.1, 0.7, -0.4], "text": "Renewable energy sources like solar and wind are becoming increasingly cost-competitive with fossil fuels.", "category": "environment", "subcategory": "energy", "tags": ["renewable", "solar", "wind"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_005"}}
|
||||
{"id": "doc_005", "embedding": [0.8, 0.2, -0.5, 0.1, 0.6, -0.3, 0.4, 0.9], "text": "Financial markets are experiencing volatility due to geopolitical tensions and inflation concerns.", "category": "finance", "subcategory": "markets", "tags": ["volatility", "inflation", "geopolitics"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_006"}}
|
||||
{"id": "doc_006", "embedding": [-0.1, 0.5, 0.7, -0.4, 0.2, 0.8, -0.6, 0.3], "text": "Quantum computing research is advancing rapidly with potential applications in cryptography and drug discovery.", "category": "technology", "subcategory": "research", "tags": ["quantum", "cryptography", "research"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_007"}}
|
||||
{"id": "doc_007", "embedding": [0.4, -0.3, 0.6, 0.7, -0.8, 0.2, 0.5, -0.1], "text": "Ocean pollution from plastic waste is threatening marine ecosystems and biodiversity worldwide.", "category": "environment", "subcategory": "marine", "tags": ["pollution", "plastic", "marine"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_008"}}
|
||||
{"id": "doc_008", "embedding": [0.3, 0.8, -0.2, 0.5, 0.1, -0.7, 0.6, 0.4], "text": "Artificial intelligence is revolutionizing customer service through chatbots and automated support systems.", "category": "technology", "subcategory": "customer_service", "tags": ["ai", "chatbots", "automation"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_009"}}
|
||||
{"id": "doc_009", "embedding": [-0.5, 0.3, 0.9, -0.1, 0.7, 0.4, -0.2, 0.8], "text": "Global supply chains are being redesigned for resilience after pandemic-related disruptions.", "category": "business", "subcategory": "logistics", "tags": ["supply_chain", "pandemic", "resilience"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_010"}}
|
||||
{"id": "doc_010", "embedding": [0.7, -0.4, 0.2, 0.9, -0.3, 0.6, 0.1, -0.8], "text": "Space exploration missions are expanding our understanding of the solar system and potential for life.", "category": "science", "subcategory": "space", "tags": ["space", "exploration", "life"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_011"}}
|
||||
{"id": "doc_011", "embedding": [-0.2, 0.6, 0.4, -0.7, 0.8, 0.3, -0.5, 0.1], "text": "Cryptocurrency adoption is growing among institutional investors despite regulatory uncertainties.", "category": "finance", "subcategory": "crypto", "tags": ["cryptocurrency", "institutional", "regulation"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_012"}}
|
||||
{"id": "doc_012", "embedding": [0.6, 0.1, -0.8, 0.4, 0.5, -0.2, 0.9, -0.3], "text": "Remote work technologies are transforming traditional office environments and work-life balance.", "category": "technology", "subcategory": "workplace", "tags": ["remote", "work", "balance"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_013"}}
|
||||
{"id": "doc_013", "embedding": [0.1, -0.7, 0.5, 0.8, -0.4, 0.3, 0.2, 0.6], "text": "Gene therapy breakthroughs are offering new hope for treating previously incurable genetic diseases.", "category": "science", "subcategory": "medicine", "tags": ["gene_therapy", "genetics", "medicine"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_014"}}
|
||||
{"id": "doc_014", "embedding": [-0.4, 0.2, 0.7, -0.1, 0.9, -0.6, 0.3, 0.5], "text": "Urban planning is evolving to create more sustainable and livable cities for growing populations.", "category": "environment", "subcategory": "urban", "tags": ["urban_planning", "sustainability", "cities"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_015"}}
|
||||
{"id": "doc_015", "embedding": [0.9, -0.1, 0.3, 0.6, -0.5, 0.8, -0.2, 0.4], "text": "Social media platforms are implementing new policies to combat misinformation and protect user privacy.", "category": "technology", "subcategory": "social_media", "tags": ["social_media", "misinformation", "privacy"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_016"}}
|
||||
{"id": "doc_016", "embedding": [-0.3, 0.8, -0.1, 0.4, 0.7, -0.5, 0.6, -0.9], "text": "Educational technology is personalizing learning experiences and improving student outcomes.", "category": "education", "subcategory": "technology", "tags": ["education", "personalization", "technology"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_017"}}
|
||||
{"id": "doc_017", "embedding": [0.5, 0.3, -0.6, 0.2, 0.8, 0.1, -0.4, 0.7], "text": "Biodiversity conservation efforts are critical for maintaining ecosystem balance and preventing species extinction.", "category": "environment", "subcategory": "conservation", "tags": ["biodiversity", "conservation", "extinction"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_018"}}
|
||||
{"id": "doc_018", "embedding": [0.2, -0.8, 0.4, 0.7, -0.1, 0.5, 0.9, -0.3], "text": "Healthcare systems are adopting telemedicine to improve access and reduce costs for patients.", "category": "technology", "subcategory": "healthcare", "tags": ["telemedicine", "healthcare", "access"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_019"}}
|
||||
{"id": "doc_019", "embedding": [-0.7, 0.4, 0.8, -0.2, 0.3, 0.6, -0.1, 0.9], "text": "Autonomous vehicles are being tested extensively with promises of safer and more efficient transportation.", "category": "technology", "subcategory": "automotive", "tags": ["autonomous", "safety", "efficiency"]}
|
||||
{"index": {"_index": "embeddings", "_id": "doc_020"}}
|
||||
{"id": "doc_020", "embedding": [0.4, 0.7, -0.3, 0.9, -0.6, 0.2, 0.5, -0.1], "text": "Mental health awareness is increasing with new approaches to therapy and workplace wellness programs.", "category": "health", "subcategory": "mental", "tags": ["mental_health", "therapy", "wellness"]}
|
20
example/sample_prompts_es_bulk.ndjson
Normal file
20
example/sample_prompts_es_bulk.ndjson
Normal file
@@ -0,0 +1,20 @@
|
||||
{"index": {"_index": "prompts", "_id": "prompt_001"}}
|
||||
{"id": "prompt_001", "embedding": [0.15, -0.28, 0.65, 0.42, -0.11, 0.33, 0.78, -0.52], "text": "Find articles about machine learning applications", "category": "search", "subcategory": "technology", "tags": ["AI", "research"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_002"}}
|
||||
{"id": "prompt_002", "embedding": [0.72, 0.18, -0.35, 0.51, 0.09, -0.44, 0.27, 0.63], "text": "Show me product reviews for smartphones", "category": "search", "subcategory": "product", "tags": ["mobile", "reviews"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_003"}}
|
||||
{"id": "prompt_003", "embedding": [-0.21, 0.59, 0.34, -0.67, 0.45, 0.12, -0.38, 0.76], "text": "What are the latest political developments?", "category": "search", "subcategory": "news", "tags": ["politics", "current events"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_004"}}
|
||||
{"id": "prompt_004", "embedding": [0.48, -0.15, 0.72, 0.31, -0.58, 0.24, 0.67, -0.39], "text": "Summarize recent tech industry trends", "category": "analysis", "subcategory": "technology", "tags": ["tech", "trends", "summary"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_005"}}
|
||||
{"id": "prompt_005", "embedding": [-0.33, 0.47, -0.62, 0.28, 0.71, -0.18, 0.54, 0.35], "text": "Compare different smartphone models", "category": "analysis", "subcategory": "product", "tags": ["comparison", "mobile", "evaluation"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_006"}}
|
||||
{"id": "prompt_006", "embedding": [0.64, 0.21, 0.39, -0.45, 0.13, 0.58, -0.27, 0.74], "text": "Analyze voter sentiment on recent policies", "category": "analysis", "subcategory": "politics", "tags": ["sentiment", "politics", "analysis"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_007"}}
|
||||
{"id": "prompt_007", "embedding": [0.29, -0.43, 0.56, 0.68, -0.22, 0.37, 0.14, -0.61], "text": "Generate a summary of machine learning research", "category": "generation", "subcategory": "technology", "tags": ["AI", "research", "summary"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_008"}}
|
||||
{"id": "prompt_008", "embedding": [-0.17, 0.52, -0.48, 0.36, 0.74, -0.29, 0.61, 0.18], "text": "Create a product recommendation report", "category": "generation", "subcategory": "product", "tags": ["recommendation", "report", "analysis"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_009"}}
|
||||
{"id": "prompt_009", "embedding": [0.55, 0.08, 0.41, -0.37, 0.26, 0.69, -0.14, 0.58], "text": "Write a news brief on election updates", "category": "generation", "subcategory": "news", "tags": ["election", "news", "brief"]}
|
||||
{"index": {"_index": "prompts", "_id": "prompt_010"}}
|
||||
{"id": "prompt_010", "embedding": [0.23, -0.59, 0.47, 0.61, -0.35, 0.18, 0.72, -0.26], "text": "Explain how neural networks work", "category": "explanation", "subcategory": "technology", "tags": ["AI", "education", "neural networks"]}
|
@@ -1,6 +1,6 @@
|
||||
[project]
|
||||
name = "embeddingbuddy"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
|
||||
readme = "README.md"
|
||||
requires-python = ">=3.11"
|
||||
@@ -15,6 +15,7 @@ dependencies = [
|
||||
"numba>=0.56.4",
|
||||
"openTSNE>=1.0.0",
|
||||
"mypy>=1.17.1",
|
||||
"opensearch-py>=3.0.0",
|
||||
]
|
||||
|
||||
[project.optional-dependencies]
|
||||
|
@@ -10,6 +10,9 @@ from .ui.callbacks.interactions import InteractionCallbacks
|
||||
def create_app():
|
||||
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
||||
|
||||
# Allow callbacks to components that are dynamically created in tabs
|
||||
app.config.suppress_callback_exceptions = True
|
||||
|
||||
layout_manager = AppLayout()
|
||||
app.layout = layout_manager.create_layout()
|
||||
|
||||
|
@@ -73,6 +73,12 @@ class AppSettings:
|
||||
HOST = os.getenv("EMBEDDINGBUDDY_HOST", "127.0.0.1")
|
||||
PORT = int(os.getenv("EMBEDDINGBUDDY_PORT", "8050"))
|
||||
|
||||
# OpenSearch Configuration
|
||||
OPENSEARCH_DEFAULT_SIZE = 100
|
||||
OPENSEARCH_SAMPLE_SIZE = 5
|
||||
OPENSEARCH_CONNECTION_TIMEOUT = 30
|
||||
OPENSEARCH_VERIFY_CERTS = True
|
||||
|
||||
# Bootstrap Theme
|
||||
EXTERNAL_STYLESHEETS = [
|
||||
"https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"
|
||||
|
@@ -1,6 +1,7 @@
|
||||
import numpy as np
|
||||
from typing import List, Optional, Tuple
|
||||
from ..models.schemas import Document, ProcessedData
|
||||
from ..models.field_mapper import FieldMapper
|
||||
from .parser import NDJSONParser
|
||||
|
||||
|
||||
@@ -26,6 +27,42 @@ class DataProcessor:
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
def process_opensearch_data(
|
||||
self, raw_documents: List[dict], field_mapping
|
||||
) -> ProcessedData:
|
||||
"""Process raw OpenSearch documents using field mapping."""
|
||||
try:
|
||||
# Transform documents using field mapping
|
||||
transformed_docs = FieldMapper.transform_documents(
|
||||
raw_documents, field_mapping
|
||||
)
|
||||
|
||||
# Parse transformed documents
|
||||
documents = []
|
||||
for doc_dict in transformed_docs:
|
||||
try:
|
||||
# Ensure required fields are present with defaults if needed
|
||||
if "id" not in doc_dict or not doc_dict["id"]:
|
||||
doc_dict["id"] = f"doc_{len(documents)}"
|
||||
|
||||
doc = Document(**doc_dict)
|
||||
documents.append(doc)
|
||||
except Exception:
|
||||
continue # Skip invalid documents
|
||||
|
||||
if not documents:
|
||||
return ProcessedData(
|
||||
documents=[],
|
||||
embeddings=np.array([]),
|
||||
error="No valid documents after transformation",
|
||||
)
|
||||
|
||||
embeddings = self._extract_embeddings(documents)
|
||||
return ProcessedData(documents=documents, embeddings=embeddings)
|
||||
|
||||
except Exception as e:
|
||||
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
|
||||
|
||||
def _extract_embeddings(self, documents: List[Document]) -> np.ndarray:
|
||||
if not documents:
|
||||
return np.array([])
|
||||
|
0
src/embeddingbuddy/data/sources/__init__.py
Normal file
0
src/embeddingbuddy/data/sources/__init__.py
Normal file
189
src/embeddingbuddy/data/sources/opensearch.py
Normal file
189
src/embeddingbuddy/data/sources/opensearch.py
Normal file
@@ -0,0 +1,189 @@
|
||||
from typing import Dict, List, Optional, Any, Tuple
|
||||
import logging
|
||||
from opensearchpy import OpenSearch
|
||||
from opensearchpy.exceptions import OpenSearchException
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
class OpenSearchClient:
|
||||
def __init__(self):
|
||||
self.client: Optional[OpenSearch] = None
|
||||
self.connection_info: Optional[Dict[str, Any]] = None
|
||||
|
||||
def connect(
|
||||
self,
|
||||
url: str,
|
||||
username: Optional[str] = None,
|
||||
password: Optional[str] = None,
|
||||
api_key: Optional[str] = None,
|
||||
verify_certs: bool = True,
|
||||
) -> Tuple[bool, str]:
|
||||
"""
|
||||
Connect to OpenSearch instance.
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, message: str)
|
||||
"""
|
||||
try:
|
||||
# Parse URL to extract host and port
|
||||
if url.startswith("http://") or url.startswith("https://"):
|
||||
host = url
|
||||
else:
|
||||
host = f"https://{url}"
|
||||
|
||||
# Build auth configuration
|
||||
auth_config = {}
|
||||
if username and password:
|
||||
auth_config["http_auth"] = (username, password)
|
||||
elif api_key:
|
||||
auth_config["api_key"] = api_key
|
||||
|
||||
# Create client
|
||||
self.client = OpenSearch([host], verify_certs=verify_certs, **auth_config)
|
||||
|
||||
# Test connection
|
||||
info = self.client.info()
|
||||
self.connection_info = {
|
||||
"url": host,
|
||||
"cluster_name": info.get("cluster_name", "Unknown"),
|
||||
"version": info.get("version", {}).get("number", "Unknown"),
|
||||
}
|
||||
|
||||
return (
|
||||
True,
|
||||
f"Connected to {info.get('cluster_name', 'OpenSearch cluster')}",
|
||||
)
|
||||
|
||||
except OpenSearchException as e:
|
||||
logger.error(f"OpenSearch connection error: {e}")
|
||||
return False, f"Connection failed: {str(e)}"
|
||||
except Exception as e:
|
||||
logger.error(f"Unexpected error connecting to OpenSearch: {e}")
|
||||
return False, f"Unexpected error: {str(e)}"
|
||||
|
||||
def get_index_mapping(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
|
||||
"""
|
||||
Get the mapping for a specific index.
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, mapping: Dict or None, message: str)
|
||||
"""
|
||||
if not self.client:
|
||||
return False, None, "Not connected to OpenSearch"
|
||||
|
||||
try:
|
||||
mapping = self.client.indices.get_mapping(index=index_name)
|
||||
return True, mapping, "Mapping retrieved successfully"
|
||||
except OpenSearchException as e:
|
||||
logger.error(f"Error getting mapping for index {index_name}: {e}")
|
||||
return False, None, f"Failed to get mapping: {str(e)}"
|
||||
|
||||
def analyze_fields(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
|
||||
"""
|
||||
Analyze index fields to detect potential embedding and text fields.
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, analysis: Dict or None, message: str)
|
||||
"""
|
||||
success, mapping, message = self.get_index_mapping(index_name)
|
||||
if not success:
|
||||
return False, None, message
|
||||
|
||||
try:
|
||||
# Extract field information from mapping
|
||||
index_mapping = mapping[index_name]["mappings"]["properties"]
|
||||
|
||||
analysis = {
|
||||
"vector_fields": [],
|
||||
"text_fields": [],
|
||||
"keyword_fields": [],
|
||||
"numeric_fields": [],
|
||||
"all_fields": [],
|
||||
}
|
||||
|
||||
for field_name, field_info in index_mapping.items():
|
||||
field_type = field_info.get("type", "unknown")
|
||||
analysis["all_fields"].append(field_name)
|
||||
|
||||
if field_type == "dense_vector":
|
||||
analysis["vector_fields"].append(
|
||||
{
|
||||
"name": field_name,
|
||||
"dimension": field_info.get("dimension", "unknown"),
|
||||
}
|
||||
)
|
||||
elif field_type == "text":
|
||||
analysis["text_fields"].append(field_name)
|
||||
elif field_type == "keyword":
|
||||
analysis["keyword_fields"].append(field_name)
|
||||
elif field_type in ["integer", "long", "float", "double"]:
|
||||
analysis["numeric_fields"].append(field_name)
|
||||
|
||||
return True, analysis, "Field analysis completed"
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error analyzing fields: {e}")
|
||||
return False, None, f"Field analysis failed: {str(e)}"
|
||||
|
||||
def fetch_sample_data(
|
||||
self, index_name: str, size: int = 5
|
||||
) -> Tuple[bool, List[Dict], str]:
|
||||
"""
|
||||
Fetch sample documents from the index.
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, documents: List[Dict], message: str)
|
||||
"""
|
||||
if not self.client:
|
||||
return False, [], "Not connected to OpenSearch"
|
||||
|
||||
try:
|
||||
response = self.client.search(
|
||||
index=index_name, body={"query": {"match_all": {}}, "size": size}
|
||||
)
|
||||
|
||||
documents = [hit["_source"] for hit in response["hits"]["hits"]]
|
||||
return True, documents, f"Retrieved {len(documents)} sample documents"
|
||||
|
||||
except OpenSearchException as e:
|
||||
logger.error(f"Error fetching sample data: {e}")
|
||||
return False, [], f"Failed to fetch sample data: {str(e)}"
|
||||
|
||||
def fetch_data(
|
||||
self, index_name: str, size: int = 100
|
||||
) -> Tuple[bool, List[Dict], str]:
|
||||
"""
|
||||
Fetch documents from the index.
|
||||
|
||||
Returns:
|
||||
Tuple of (success: bool, documents: List[Dict], message: str)
|
||||
"""
|
||||
if not self.client:
|
||||
return False, [], "Not connected to OpenSearch"
|
||||
|
||||
try:
|
||||
response = self.client.search(
|
||||
index=index_name, body={"query": {"match_all": {}}, "size": size}
|
||||
)
|
||||
|
||||
documents = [hit["_source"] for hit in response["hits"]["hits"]]
|
||||
total_hits = response["hits"]["total"]["value"]
|
||||
|
||||
message = f"Retrieved {len(documents)} documents from {total_hits} total"
|
||||
return True, documents, message
|
||||
|
||||
except OpenSearchException as e:
|
||||
logger.error(f"Error fetching data: {e}")
|
||||
return False, [], f"Failed to fetch data: {str(e)}"
|
||||
|
||||
def disconnect(self):
|
||||
"""Disconnect from OpenSearch."""
|
||||
if self.client:
|
||||
self.client = None
|
||||
self.connection_info = None
|
||||
|
||||
def is_connected(self) -> bool:
|
||||
"""Check if connected to OpenSearch."""
|
||||
return self.client is not None
|
254
src/embeddingbuddy/models/field_mapper.py
Normal file
254
src/embeddingbuddy/models/field_mapper.py
Normal file
@@ -0,0 +1,254 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import Dict, List, Optional, Any
|
||||
import logging
|
||||
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@dataclass
|
||||
class FieldMapping:
|
||||
"""Configuration for mapping OpenSearch fields to standard format."""
|
||||
|
||||
embedding_field: str
|
||||
text_field: str
|
||||
id_field: Optional[str] = None
|
||||
category_field: Optional[str] = None
|
||||
subcategory_field: Optional[str] = None
|
||||
tags_field: Optional[str] = None
|
||||
|
||||
|
||||
class FieldMapper:
|
||||
"""Handles field mapping and data transformation from OpenSearch to standard format."""
|
||||
|
||||
@staticmethod
|
||||
def suggest_mappings(field_analysis: Dict) -> Dict[str, List[str]]:
|
||||
"""
|
||||
Suggest field mappings based on field analysis.
|
||||
|
||||
Each dropdown will show ALL available fields, but ordered by relevance
|
||||
with the most likely candidates first.
|
||||
|
||||
Args:
|
||||
field_analysis: Analysis results from OpenSearchClient.analyze_fields
|
||||
|
||||
Returns:
|
||||
Dictionary with suggested fields for each mapping (ordered by relevance)
|
||||
"""
|
||||
all_fields = field_analysis.get("all_fields", [])
|
||||
vector_fields = [vf["name"] for vf in field_analysis.get("vector_fields", [])]
|
||||
text_fields = field_analysis.get("text_fields", [])
|
||||
keyword_fields = field_analysis.get("keyword_fields", [])
|
||||
|
||||
# Helper function to create ordered suggestions
|
||||
def create_ordered_suggestions(primary_candidates, all_available_fields):
|
||||
# Start with primary candidates, then add all other fields
|
||||
ordered = []
|
||||
# Add primary candidates first
|
||||
for field in primary_candidates:
|
||||
if field in all_available_fields and field not in ordered:
|
||||
ordered.append(field)
|
||||
# Add remaining fields
|
||||
for field in all_available_fields:
|
||||
if field not in ordered:
|
||||
ordered.append(field)
|
||||
return ordered
|
||||
|
||||
suggestions = {}
|
||||
|
||||
# Embedding field suggestions (vector fields first, then name-based candidates, then all fields)
|
||||
embedding_candidates = vector_fields.copy()
|
||||
# Add fields that likely contain embeddings based on name
|
||||
embedding_name_candidates = [
|
||||
f
|
||||
for f in all_fields
|
||||
if any(
|
||||
keyword in f.lower()
|
||||
for keyword in ["embedding", "embeddings", "vector", "vectors", "embed"]
|
||||
)
|
||||
]
|
||||
# Add name-based candidates that aren't already in vector_fields
|
||||
for candidate in embedding_name_candidates:
|
||||
if candidate not in embedding_candidates:
|
||||
embedding_candidates.append(candidate)
|
||||
suggestions["embedding"] = create_ordered_suggestions(
|
||||
embedding_candidates, all_fields
|
||||
)
|
||||
|
||||
# Text field suggestions (text fields first, then all fields)
|
||||
text_candidates = text_fields.copy()
|
||||
suggestions["text"] = create_ordered_suggestions(text_candidates, all_fields)
|
||||
|
||||
# ID field suggestions (ID-like fields first, then all fields)
|
||||
id_candidates = [
|
||||
f
|
||||
for f in keyword_fields
|
||||
if any(keyword in f.lower() for keyword in ["id", "_id", "doc", "document"])
|
||||
]
|
||||
id_candidates.append("_id") # _id is always available
|
||||
suggestions["id"] = create_ordered_suggestions(id_candidates, all_fields)
|
||||
|
||||
# Category field suggestions (category-like fields first, then all fields)
|
||||
category_candidates = [
|
||||
f
|
||||
for f in keyword_fields
|
||||
if any(
|
||||
keyword in f.lower()
|
||||
for keyword in ["category", "class", "type", "label"]
|
||||
)
|
||||
]
|
||||
suggestions["category"] = create_ordered_suggestions(
|
||||
category_candidates, all_fields
|
||||
)
|
||||
|
||||
# Subcategory field suggestions (subcategory-like fields first, then all fields)
|
||||
subcategory_candidates = [
|
||||
f
|
||||
for f in keyword_fields
|
||||
if any(
|
||||
keyword in f.lower()
|
||||
for keyword in ["subcategory", "subclass", "subtype", "subtopic"]
|
||||
)
|
||||
]
|
||||
suggestions["subcategory"] = create_ordered_suggestions(
|
||||
subcategory_candidates, all_fields
|
||||
)
|
||||
|
||||
# Tags field suggestions (tag-like fields first, then all fields)
|
||||
tags_candidates = [
|
||||
f
|
||||
for f in keyword_fields
|
||||
if any(
|
||||
keyword in f.lower()
|
||||
for keyword in ["tag", "tags", "keyword", "keywords"]
|
||||
)
|
||||
]
|
||||
suggestions["tags"] = create_ordered_suggestions(tags_candidates, all_fields)
|
||||
|
||||
return suggestions
|
||||
|
||||
@staticmethod
|
||||
def validate_mapping(
|
||||
mapping: FieldMapping, available_fields: List[str]
|
||||
) -> List[str]:
|
||||
"""
|
||||
Validate that the field mapping is correct.
|
||||
|
||||
Returns:
|
||||
List of validation errors (empty if valid)
|
||||
"""
|
||||
errors = []
|
||||
|
||||
# Required fields validation
|
||||
if not mapping.embedding_field:
|
||||
errors.append("Embedding field is required")
|
||||
elif mapping.embedding_field not in available_fields:
|
||||
errors.append(
|
||||
f"Embedding field '{mapping.embedding_field}' not found in index"
|
||||
)
|
||||
|
||||
if not mapping.text_field:
|
||||
errors.append("Text field is required")
|
||||
elif mapping.text_field not in available_fields:
|
||||
errors.append(f"Text field '{mapping.text_field}' not found in index")
|
||||
|
||||
# Optional fields validation
|
||||
optional_fields = {
|
||||
"id_field": mapping.id_field,
|
||||
"category_field": mapping.category_field,
|
||||
"subcategory_field": mapping.subcategory_field,
|
||||
"tags_field": mapping.tags_field,
|
||||
}
|
||||
|
||||
for field_name, field_value in optional_fields.items():
|
||||
if field_value and field_value not in available_fields:
|
||||
errors.append(
|
||||
f"Field '{field_value}' for {field_name} not found in index"
|
||||
)
|
||||
|
||||
return errors
|
||||
|
||||
@staticmethod
|
||||
def transform_documents(
|
||||
documents: List[Dict[str, Any]], mapping: FieldMapping
|
||||
) -> List[Dict[str, Any]]:
|
||||
"""
|
||||
Transform OpenSearch documents to standard format using field mapping.
|
||||
|
||||
Args:
|
||||
documents: Raw documents from OpenSearch
|
||||
mapping: Field mapping configuration
|
||||
|
||||
Returns:
|
||||
List of transformed documents in standard format
|
||||
"""
|
||||
transformed = []
|
||||
|
||||
for doc in documents:
|
||||
try:
|
||||
# Build standard format document
|
||||
standard_doc = {}
|
||||
|
||||
# Required fields
|
||||
if mapping.embedding_field in doc:
|
||||
standard_doc["embedding"] = doc[mapping.embedding_field]
|
||||
else:
|
||||
logger.warning(
|
||||
f"Missing embedding field '{mapping.embedding_field}' in document"
|
||||
)
|
||||
continue
|
||||
|
||||
if mapping.text_field in doc:
|
||||
standard_doc["text"] = str(doc[mapping.text_field])
|
||||
else:
|
||||
logger.warning(
|
||||
f"Missing text field '{mapping.text_field}' in document"
|
||||
)
|
||||
continue
|
||||
|
||||
# Optional fields
|
||||
if mapping.id_field and mapping.id_field in doc:
|
||||
standard_doc["id"] = str(doc[mapping.id_field])
|
||||
|
||||
if mapping.category_field and mapping.category_field in doc:
|
||||
standard_doc["category"] = str(doc[mapping.category_field])
|
||||
|
||||
if mapping.subcategory_field and mapping.subcategory_field in doc:
|
||||
standard_doc["subcategory"] = str(doc[mapping.subcategory_field])
|
||||
|
||||
if mapping.tags_field and mapping.tags_field in doc:
|
||||
tags = doc[mapping.tags_field]
|
||||
# Handle both string and list tags
|
||||
if isinstance(tags, list):
|
||||
standard_doc["tags"] = [str(tag) for tag in tags]
|
||||
else:
|
||||
standard_doc["tags"] = [str(tags)]
|
||||
|
||||
transformed.append(standard_doc)
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error transforming document: {e}")
|
||||
continue
|
||||
|
||||
logger.info(f"Transformed {len(transformed)} documents out of {len(documents)}")
|
||||
return transformed
|
||||
|
||||
@staticmethod
|
||||
def create_mapping_from_dict(mapping_dict: Dict[str, str]) -> FieldMapping:
|
||||
"""
|
||||
Create a FieldMapping from a dictionary.
|
||||
|
||||
Args:
|
||||
mapping_dict: Dictionary with field mappings
|
||||
|
||||
Returns:
|
||||
FieldMapping instance
|
||||
"""
|
||||
return FieldMapping(
|
||||
embedding_field=mapping_dict.get("embedding", ""),
|
||||
text_field=mapping_dict.get("text", ""),
|
||||
id_field=mapping_dict.get("id") or None,
|
||||
category_field=mapping_dict.get("category") or None,
|
||||
subcategory_field=mapping_dict.get("subcategory") or None,
|
||||
tags_field=mapping_dict.get("tags") or None,
|
||||
)
|
@@ -1,10 +1,15 @@
|
||||
from dash import callback, Input, Output, State
|
||||
from dash import callback, Input, Output, State, no_update
|
||||
from ...data.processor import DataProcessor
|
||||
from ...data.sources.opensearch import OpenSearchClient
|
||||
from ...models.field_mapper import FieldMapper
|
||||
from ...config.settings import AppSettings
|
||||
|
||||
|
||||
class DataProcessingCallbacks:
|
||||
def __init__(self):
|
||||
self.processor = DataProcessor()
|
||||
self.opensearch_client_data = OpenSearchClient() # For data/documents
|
||||
self.opensearch_client_prompts = OpenSearchClient() # For prompts
|
||||
self._register_callbacks()
|
||||
|
||||
def _register_callbacks(self):
|
||||
@@ -67,6 +72,397 @@ class DataProcessingCallbacks:
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
}
|
||||
|
||||
# OpenSearch callbacks
|
||||
@callback(
|
||||
[
|
||||
Output("tab-content", "children"),
|
||||
],
|
||||
[Input("data-source-tabs", "active_tab")],
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
def render_tab_content(active_tab):
|
||||
from ...ui.components.datasource import DataSourceComponent
|
||||
|
||||
datasource = DataSourceComponent()
|
||||
|
||||
if active_tab == "opensearch-tab":
|
||||
return [datasource.create_opensearch_tab()]
|
||||
else:
|
||||
return [datasource.create_file_upload_tab()]
|
||||
|
||||
# Register callbacks for both data and prompts sections
|
||||
self._register_opensearch_callbacks("data", self.opensearch_client_data)
|
||||
self._register_opensearch_callbacks("prompts", self.opensearch_client_prompts)
|
||||
|
||||
# Register collapsible section callbacks
|
||||
self._register_collapse_callbacks()
|
||||
|
||||
def _register_opensearch_callbacks(self, section_type, opensearch_client):
|
||||
"""Register callbacks for a specific section (data or prompts)."""
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-auth-collapse", "is_open"),
|
||||
[Input(f"{section_type}-auth-toggle", "n_clicks")],
|
||||
[State(f"{section_type}-auth-collapse", "is_open")],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def toggle_auth(n_clicks, is_open):
|
||||
if n_clicks:
|
||||
return not is_open
|
||||
return is_open
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-auth-toggle", "children"),
|
||||
[Input(f"{section_type}-auth-collapse", "is_open")],
|
||||
prevent_initial_call=False,
|
||||
)
|
||||
def update_auth_button_text(is_open):
|
||||
return "Hide Authentication" if is_open else "Show Authentication"
|
||||
|
||||
@callback(
|
||||
[
|
||||
Output(f"{section_type}-connection-status", "children"),
|
||||
Output(f"{section_type}-field-mapping-section", "children"),
|
||||
Output(f"{section_type}-field-mapping-section", "style"),
|
||||
Output(f"{section_type}-load-data-section", "style"),
|
||||
Output(f"{section_type}-load-opensearch-data-btn", "disabled"),
|
||||
Output(f"{section_type}-embedding-field-dropdown", "options"),
|
||||
Output(f"{section_type}-text-field-dropdown", "options"),
|
||||
Output(f"{section_type}-id-field-dropdown", "options"),
|
||||
Output(f"{section_type}-category-field-dropdown", "options"),
|
||||
Output(f"{section_type}-subcategory-field-dropdown", "options"),
|
||||
Output(f"{section_type}-tags-field-dropdown", "options"),
|
||||
],
|
||||
[Input(f"{section_type}-test-connection-btn", "n_clicks")],
|
||||
[
|
||||
State(f"{section_type}-opensearch-url", "value"),
|
||||
State(f"{section_type}-opensearch-index", "value"),
|
||||
State(f"{section_type}-opensearch-username", "value"),
|
||||
State(f"{section_type}-opensearch-password", "value"),
|
||||
State(f"{section_type}-opensearch-api-key", "value"),
|
||||
],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def test_opensearch_connection(
|
||||
n_clicks, url, index_name, username, password, api_key
|
||||
):
|
||||
if not n_clicks or not url or not index_name:
|
||||
return (
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
no_update,
|
||||
)
|
||||
|
||||
# Test connection
|
||||
success, message = opensearch_client.connect(
|
||||
url=url,
|
||||
username=username,
|
||||
password=password,
|
||||
api_key=api_key,
|
||||
verify_certs=AppSettings.OPENSEARCH_VERIFY_CERTS,
|
||||
)
|
||||
|
||||
if not success:
|
||||
return (
|
||||
self._create_status_alert(f"❌ {message}", "danger"),
|
||||
[],
|
||||
{"display": "none"},
|
||||
{"display": "none"},
|
||||
True,
|
||||
[], # empty options for hidden dropdowns
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
)
|
||||
|
||||
# Analyze fields
|
||||
success, field_analysis, analysis_message = (
|
||||
opensearch_client.analyze_fields(index_name)
|
||||
)
|
||||
|
||||
if not success:
|
||||
return (
|
||||
self._create_status_alert(f"❌ {analysis_message}", "danger"),
|
||||
[],
|
||||
{"display": "none"},
|
||||
{"display": "none"},
|
||||
True,
|
||||
[], # empty options for hidden dropdowns
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
[],
|
||||
)
|
||||
|
||||
# Generate field suggestions
|
||||
field_suggestions = FieldMapper.suggest_mappings(field_analysis)
|
||||
|
||||
from ...ui.components.datasource import DataSourceComponent
|
||||
|
||||
datasource = DataSourceComponent()
|
||||
field_mapping_ui = datasource.create_field_mapping_interface(
|
||||
field_suggestions, section_type
|
||||
)
|
||||
|
||||
return (
|
||||
self._create_status_alert(f"✅ {message}", "success"),
|
||||
field_mapping_ui,
|
||||
{"display": "block"},
|
||||
{"display": "block"},
|
||||
False,
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("embedding", [])
|
||||
],
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("text", [])
|
||||
],
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("id", [])
|
||||
],
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("category", [])
|
||||
],
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("subcategory", [])
|
||||
],
|
||||
[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("tags", [])
|
||||
],
|
||||
)
|
||||
|
||||
# Determine output target based on section type
|
||||
output_target = (
|
||||
"processed-data" if section_type == "data" else "processed-prompts"
|
||||
)
|
||||
|
||||
@callback(
|
||||
[
|
||||
Output(output_target, "data", allow_duplicate=True),
|
||||
Output("opensearch-success-alert", "children", allow_duplicate=True),
|
||||
Output("opensearch-success-alert", "is_open", allow_duplicate=True),
|
||||
Output("opensearch-error-alert", "children", allow_duplicate=True),
|
||||
Output("opensearch-error-alert", "is_open", allow_duplicate=True),
|
||||
],
|
||||
[Input(f"{section_type}-load-opensearch-data-btn", "n_clicks")],
|
||||
[
|
||||
State(f"{section_type}-opensearch-index", "value"),
|
||||
State(f"{section_type}-opensearch-query-size", "value"),
|
||||
State(f"{section_type}-embedding-field-dropdown-ui", "value"),
|
||||
State(f"{section_type}-text-field-dropdown-ui", "value"),
|
||||
State(f"{section_type}-id-field-dropdown-ui", "value"),
|
||||
State(f"{section_type}-category-field-dropdown-ui", "value"),
|
||||
State(f"{section_type}-subcategory-field-dropdown-ui", "value"),
|
||||
State(f"{section_type}-tags-field-dropdown-ui", "value"),
|
||||
],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def load_opensearch_data(
|
||||
n_clicks,
|
||||
index_name,
|
||||
query_size,
|
||||
embedding_field,
|
||||
text_field,
|
||||
id_field,
|
||||
category_field,
|
||||
subcategory_field,
|
||||
tags_field,
|
||||
):
|
||||
if not n_clicks or not index_name or not embedding_field or not text_field:
|
||||
return no_update, no_update, no_update, no_update, no_update
|
||||
|
||||
try:
|
||||
# Validate and set query size
|
||||
if not query_size or query_size < 1:
|
||||
query_size = AppSettings.OPENSEARCH_DEFAULT_SIZE
|
||||
elif query_size > 1000:
|
||||
query_size = 1000 # Cap at reasonable maximum
|
||||
|
||||
# Create field mapping
|
||||
field_mapping = FieldMapper.create_mapping_from_dict(
|
||||
{
|
||||
"embedding": embedding_field,
|
||||
"text": text_field,
|
||||
"id": id_field,
|
||||
"category": category_field,
|
||||
"subcategory": subcategory_field,
|
||||
"tags": tags_field,
|
||||
}
|
||||
)
|
||||
|
||||
# Fetch data from OpenSearch
|
||||
success, raw_documents, message = opensearch_client.fetch_data(
|
||||
index_name, size=query_size
|
||||
)
|
||||
|
||||
if not success:
|
||||
return (
|
||||
no_update,
|
||||
"",
|
||||
False,
|
||||
f"❌ Failed to fetch {section_type}: {message}",
|
||||
True,
|
||||
)
|
||||
|
||||
# Process the data
|
||||
processed_data = self.processor.process_opensearch_data(
|
||||
raw_documents, field_mapping
|
||||
)
|
||||
|
||||
if processed_data.error:
|
||||
return (
|
||||
{"error": processed_data.error},
|
||||
"",
|
||||
False,
|
||||
f"❌ {section_type.title()} processing error: {processed_data.error}",
|
||||
True,
|
||||
)
|
||||
|
||||
success_message = f"✅ Successfully loaded {len(processed_data.documents)} {section_type} from OpenSearch"
|
||||
|
||||
# Format for appropriate target (data vs prompts)
|
||||
if section_type == "data":
|
||||
return (
|
||||
{
|
||||
"documents": [
|
||||
self._document_to_dict(doc)
|
||||
for doc in processed_data.documents
|
||||
],
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
},
|
||||
success_message,
|
||||
True,
|
||||
"",
|
||||
False,
|
||||
)
|
||||
else: # prompts
|
||||
return (
|
||||
{
|
||||
"prompts": [
|
||||
self._document_to_dict(doc)
|
||||
for doc in processed_data.documents
|
||||
],
|
||||
"embeddings": processed_data.embeddings.tolist(),
|
||||
},
|
||||
success_message,
|
||||
True,
|
||||
"",
|
||||
False,
|
||||
)
|
||||
|
||||
except Exception as e:
|
||||
return (no_update, "", False, f"❌ Unexpected error: {str(e)}", True)
|
||||
|
||||
# Sync callbacks to update hidden dropdowns from UI dropdowns
|
||||
@callback(
|
||||
Output(f"{section_type}-embedding-field-dropdown", "value"),
|
||||
Input(f"{section_type}-embedding-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_embedding_dropdown(value):
|
||||
return value
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-text-field-dropdown", "value"),
|
||||
Input(f"{section_type}-text-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_text_dropdown(value):
|
||||
return value
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-id-field-dropdown", "value"),
|
||||
Input(f"{section_type}-id-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_id_dropdown(value):
|
||||
return value
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-category-field-dropdown", "value"),
|
||||
Input(f"{section_type}-category-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_category_dropdown(value):
|
||||
return value
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-subcategory-field-dropdown", "value"),
|
||||
Input(f"{section_type}-subcategory-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_subcategory_dropdown(value):
|
||||
return value
|
||||
|
||||
@callback(
|
||||
Output(f"{section_type}-tags-field-dropdown", "value"),
|
||||
Input(f"{section_type}-tags-field-dropdown-ui", "value"),
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def sync_tags_dropdown(value):
|
||||
return value
|
||||
|
||||
def _register_collapse_callbacks(self):
|
||||
"""Register callbacks for collapsible sections."""
|
||||
|
||||
# Data section collapse callback
|
||||
@callback(
|
||||
[
|
||||
Output("data-collapse", "is_open"),
|
||||
Output("data-collapse-icon", "className"),
|
||||
],
|
||||
[Input("data-collapse-toggle", "n_clicks")],
|
||||
[State("data-collapse", "is_open")],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def toggle_data_collapse(n_clicks, is_open):
|
||||
if n_clicks:
|
||||
new_state = not is_open
|
||||
icon_class = (
|
||||
"fas fa-chevron-down me-2"
|
||||
if new_state
|
||||
else "fas fa-chevron-right me-2"
|
||||
)
|
||||
return new_state, icon_class
|
||||
return is_open, "fas fa-chevron-down me-2"
|
||||
|
||||
# Prompts section collapse callback
|
||||
@callback(
|
||||
[
|
||||
Output("prompts-collapse", "is_open"),
|
||||
Output("prompts-collapse-icon", "className"),
|
||||
],
|
||||
[Input("prompts-collapse-toggle", "n_clicks")],
|
||||
[State("prompts-collapse", "is_open")],
|
||||
prevent_initial_call=True,
|
||||
)
|
||||
def toggle_prompts_collapse(n_clicks, is_open):
|
||||
if n_clicks:
|
||||
new_state = not is_open
|
||||
icon_class = (
|
||||
"fas fa-chevron-down me-2"
|
||||
if new_state
|
||||
else "fas fa-chevron-right me-2"
|
||||
)
|
||||
return new_state, icon_class
|
||||
return is_open, "fas fa-chevron-down me-2"
|
||||
|
||||
@staticmethod
|
||||
def _document_to_dict(doc):
|
||||
return {
|
||||
@@ -118,3 +514,10 @@ class DataProcessingCallbacks:
|
||||
f"❌ Error processing file{file_part}: {error}. "
|
||||
"Please check that your file is valid NDJSON with required 'text' and 'embedding' fields."
|
||||
)
|
||||
|
||||
@staticmethod
|
||||
def _create_status_alert(message: str, color: str):
|
||||
"""Create a status alert component."""
|
||||
import dash_bootstrap_components as dbc
|
||||
|
||||
return dbc.Alert(message, color=color, className="mb-2")
|
||||
|
519
src/embeddingbuddy/ui/components/datasource.py
Normal file
519
src/embeddingbuddy/ui/components/datasource.py
Normal file
@@ -0,0 +1,519 @@
|
||||
from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .upload import UploadComponent
|
||||
|
||||
|
||||
class DataSourceComponent:
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
|
||||
def create_tabbed_interface(self):
|
||||
"""Create tabbed interface for different data sources."""
|
||||
return dbc.Card(
|
||||
[
|
||||
dbc.CardHeader(
|
||||
[
|
||||
dbc.Tabs(
|
||||
[
|
||||
dbc.Tab(label="File Upload", tab_id="file-tab"),
|
||||
dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
|
||||
],
|
||||
id="data-source-tabs",
|
||||
active_tab="file-tab",
|
||||
)
|
||||
]
|
||||
),
|
||||
dbc.CardBody([html.Div(id="tab-content")]),
|
||||
]
|
||||
)
|
||||
|
||||
def create_file_upload_tab(self):
|
||||
"""Create file upload tab content."""
|
||||
return html.Div(
|
||||
[
|
||||
self.upload_component.create_error_alert(),
|
||||
self.upload_component.create_data_upload(),
|
||||
self.upload_component.create_prompts_upload(),
|
||||
self.upload_component.create_reset_button(),
|
||||
]
|
||||
)
|
||||
|
||||
def create_opensearch_tab(self):
|
||||
"""Create OpenSearch tab content with separate Data and Prompts sections."""
|
||||
return html.Div(
|
||||
[
|
||||
# Data Section
|
||||
dbc.Card(
|
||||
[
|
||||
dbc.CardHeader(
|
||||
[
|
||||
dbc.Button(
|
||||
[
|
||||
html.I(
|
||||
className="fas fa-chevron-down me-2",
|
||||
id="data-collapse-icon",
|
||||
),
|
||||
"📄 Documents/Data",
|
||||
],
|
||||
id="data-collapse-toggle",
|
||||
color="link",
|
||||
className="text-start p-0 w-100 text-decoration-none",
|
||||
style={
|
||||
"border": "none",
|
||||
"font-size": "1.25rem",
|
||||
"font-weight": "500",
|
||||
},
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Collapse(
|
||||
[dbc.CardBody([self._create_opensearch_section("data")])],
|
||||
id="data-collapse",
|
||||
is_open=True,
|
||||
),
|
||||
],
|
||||
className="mb-4",
|
||||
),
|
||||
# Prompts Section
|
||||
dbc.Card(
|
||||
[
|
||||
dbc.CardHeader(
|
||||
[
|
||||
dbc.Button(
|
||||
[
|
||||
html.I(
|
||||
className="fas fa-chevron-down me-2",
|
||||
id="prompts-collapse-icon",
|
||||
),
|
||||
"💬 Prompts",
|
||||
],
|
||||
id="prompts-collapse-toggle",
|
||||
color="link",
|
||||
className="text-start p-0 w-100 text-decoration-none",
|
||||
style={
|
||||
"border": "none",
|
||||
"font-size": "1.25rem",
|
||||
"font-weight": "500",
|
||||
},
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Collapse(
|
||||
[
|
||||
dbc.CardBody(
|
||||
[self._create_opensearch_section("prompts")]
|
||||
)
|
||||
],
|
||||
id="prompts-collapse",
|
||||
is_open=True,
|
||||
),
|
||||
],
|
||||
className="mb-4",
|
||||
),
|
||||
# Hidden dropdowns to prevent callback errors (for both sections)
|
||||
html.Div(
|
||||
[
|
||||
# Data dropdowns (hidden sync targets)
|
||||
dcc.Dropdown(
|
||||
id="data-embedding-field-dropdown",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-text-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-id-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-category-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-subcategory-field-dropdown",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-tags-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
# Data UI dropdowns (hidden placeholders)
|
||||
dcc.Dropdown(
|
||||
id="data-embedding-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-text-field-dropdown-ui", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-id-field-dropdown-ui", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-category-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-subcategory-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="data-tags-field-dropdown-ui", style={"display": "none"}
|
||||
),
|
||||
# Prompts dropdowns (hidden sync targets)
|
||||
dcc.Dropdown(
|
||||
id="prompts-embedding-field-dropdown",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-text-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-id-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-category-field-dropdown",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-subcategory-field-dropdown",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-tags-field-dropdown", style={"display": "none"}
|
||||
),
|
||||
# Prompts UI dropdowns (hidden placeholders)
|
||||
dcc.Dropdown(
|
||||
id="prompts-embedding-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-text-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-id-field-dropdown-ui", style={"display": "none"}
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-category-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-subcategory-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id="prompts-tags-field-dropdown-ui",
|
||||
style={"display": "none"},
|
||||
),
|
||||
],
|
||||
style={"display": "none"},
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def _create_opensearch_section(self, section_type):
|
||||
"""Create a complete OpenSearch section for either 'data' or 'prompts'."""
|
||||
section_id = section_type # 'data' or 'prompts'
|
||||
|
||||
return html.Div(
|
||||
[
|
||||
# Connection section
|
||||
html.H6("Connection", className="mb-2"),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("OpenSearch URL:"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-url",
|
||||
type="text",
|
||||
placeholder="https://opensearch.example.com:9200",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=12,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Index Name:"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-index",
|
||||
type="text",
|
||||
placeholder="my-embeddings-index",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Query Size:"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-query-size",
|
||||
type="number",
|
||||
value=100,
|
||||
min=1,
|
||||
max=1000,
|
||||
placeholder="100",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Button(
|
||||
"Test Connection",
|
||||
id=f"{section_id}-test-connection-btn",
|
||||
color="primary",
|
||||
className="mb-3",
|
||||
),
|
||||
],
|
||||
width=12,
|
||||
),
|
||||
]
|
||||
),
|
||||
# Authentication section (collapsible)
|
||||
dbc.Collapse(
|
||||
[
|
||||
html.Hr(),
|
||||
html.H6("Authentication (Optional)", className="mb-2"),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Username:"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-username",
|
||||
type="text",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Password:"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-password",
|
||||
type="password",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Label("OR"),
|
||||
dbc.Input(
|
||||
id=f"{section_id}-opensearch-api-key",
|
||||
type="text",
|
||||
placeholder="API Key",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
id=f"{section_id}-auth-collapse",
|
||||
is_open=False,
|
||||
),
|
||||
dbc.Button(
|
||||
"Show Authentication",
|
||||
id=f"{section_id}-auth-toggle",
|
||||
color="link",
|
||||
size="sm",
|
||||
className="p-0 mb-3",
|
||||
),
|
||||
# Connection status
|
||||
html.Div(id=f"{section_id}-connection-status", className="mb-3"),
|
||||
# Field mapping section (hidden initially)
|
||||
html.Div(
|
||||
id=f"{section_id}-field-mapping-section", style={"display": "none"}
|
||||
),
|
||||
# Load data button (hidden initially)
|
||||
html.Div(
|
||||
[
|
||||
dbc.Button(
|
||||
f"Load {section_type.title()}",
|
||||
id=f"{section_id}-load-opensearch-data-btn",
|
||||
color="success",
|
||||
className="mb-2",
|
||||
disabled=True,
|
||||
),
|
||||
],
|
||||
id=f"{section_id}-load-data-section",
|
||||
style={"display": "none"},
|
||||
),
|
||||
# OpenSearch status/results
|
||||
html.Div(id=f"{section_id}-opensearch-status", className="mb-3"),
|
||||
]
|
||||
)
|
||||
|
||||
def create_field_mapping_interface(self, field_suggestions, section_type="data"):
|
||||
"""Create field mapping interface based on detected fields."""
|
||||
return html.Div(
|
||||
[
|
||||
html.Hr(),
|
||||
html.H6("Field Mapping", className="mb-2"),
|
||||
html.P(
|
||||
"Map your OpenSearch fields to the required format:",
|
||||
className="text-muted small",
|
||||
),
|
||||
# Required fields
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label(
|
||||
"Embedding Field (required):", className="fw-bold"
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-embedding-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get(
|
||||
"embedding", []
|
||||
)
|
||||
],
|
||||
value=field_suggestions.get("embedding", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select embedding field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label(
|
||||
"Text Field (required):", className="fw-bold"
|
||||
),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-text-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("text", [])
|
||||
],
|
||||
value=field_suggestions.get("text", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select text field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
# Optional fields
|
||||
html.H6("Optional Fields", className="mb-2 mt-3"),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("ID Field:"),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-id-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("id", [])
|
||||
],
|
||||
value=field_suggestions.get("id", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select ID field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Category Field:"),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-category-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get(
|
||||
"category", []
|
||||
)
|
||||
],
|
||||
value=field_suggestions.get("category", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select category field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
dbc.Row(
|
||||
[
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Subcategory Field:"),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-subcategory-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get(
|
||||
"subcategory", []
|
||||
)
|
||||
],
|
||||
value=field_suggestions.get("subcategory", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select subcategory field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
dbc.Col(
|
||||
[
|
||||
dbc.Label("Tags Field:"),
|
||||
dcc.Dropdown(
|
||||
id=f"{section_type}-tags-field-dropdown-ui",
|
||||
options=[
|
||||
{"label": field, "value": field}
|
||||
for field in field_suggestions.get("tags", [])
|
||||
],
|
||||
value=field_suggestions.get("tags", [None])[
|
||||
0
|
||||
], # Default to first suggestion
|
||||
placeholder="Select tags field...",
|
||||
className="mb-2",
|
||||
),
|
||||
],
|
||||
width=6,
|
||||
),
|
||||
]
|
||||
),
|
||||
]
|
||||
)
|
||||
|
||||
def create_error_alert(self):
|
||||
"""Create error alert component for OpenSearch issues."""
|
||||
return dbc.Alert(
|
||||
id="opensearch-error-alert",
|
||||
dismissable=True,
|
||||
is_open=False,
|
||||
color="danger",
|
||||
className="mb-3",
|
||||
)
|
||||
|
||||
def create_success_alert(self):
|
||||
"""Create success alert component for OpenSearch operations."""
|
||||
return dbc.Alert(
|
||||
id="opensearch-success-alert",
|
||||
dismissable=True,
|
||||
is_open=False,
|
||||
color="success",
|
||||
className="mb-3",
|
||||
)
|
@@ -1,21 +1,22 @@
|
||||
from dash import dcc, html
|
||||
import dash_bootstrap_components as dbc
|
||||
from .upload import UploadComponent
|
||||
from .datasource import DataSourceComponent
|
||||
|
||||
|
||||
class SidebarComponent:
|
||||
def __init__(self):
|
||||
self.upload_component = UploadComponent()
|
||||
self.datasource_component = DataSourceComponent()
|
||||
|
||||
def create_layout(self):
|
||||
return dbc.Col(
|
||||
[
|
||||
html.H5("Upload Data", className="mb-3"),
|
||||
self.upload_component.create_error_alert(),
|
||||
self.upload_component.create_data_upload(),
|
||||
self.upload_component.create_prompts_upload(),
|
||||
self.upload_component.create_reset_button(),
|
||||
html.H5("Visualization Controls", className="mb-3"),
|
||||
html.H5("Data Sources", className="mb-3"),
|
||||
self.datasource_component.create_error_alert(),
|
||||
self.datasource_component.create_success_alert(),
|
||||
self.datasource_component.create_tabbed_interface(),
|
||||
html.H5("Visualization Controls", className="mb-3 mt-4"),
|
||||
]
|
||||
+ self._create_method_dropdown()
|
||||
+ self._create_color_dropdown()
|
||||
|
155
tests/test_data_processor_opensearch.py
Normal file
155
tests/test_data_processor_opensearch.py
Normal file
@@ -0,0 +1,155 @@
|
||||
from unittest.mock import patch
|
||||
from src.embeddingbuddy.data.processor import DataProcessor
|
||||
from src.embeddingbuddy.models.field_mapper import FieldMapping
|
||||
|
||||
|
||||
class TestDataProcessorOpenSearch:
|
||||
def test_process_opensearch_data_success(self):
|
||||
processor = DataProcessor()
|
||||
|
||||
# Mock raw OpenSearch documents
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
"content": "Test document 1",
|
||||
"doc_id": "doc1",
|
||||
"type": "news",
|
||||
},
|
||||
{
|
||||
"vector": [0.4, 0.5, 0.6],
|
||||
"content": "Test document 2",
|
||||
"doc_id": "doc2",
|
||||
"type": "blog",
|
||||
},
|
||||
]
|
||||
|
||||
# Create field mapping
|
||||
field_mapping = FieldMapping(
|
||||
embedding_field="vector",
|
||||
text_field="content",
|
||||
id_field="doc_id",
|
||||
category_field="type",
|
||||
)
|
||||
|
||||
# Process the data
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
# Assertions
|
||||
assert processed_data.error is None
|
||||
assert len(processed_data.documents) == 2
|
||||
assert processed_data.embeddings.shape == (2, 3)
|
||||
|
||||
# Check first document
|
||||
doc1 = processed_data.documents[0]
|
||||
assert doc1.text == "Test document 1"
|
||||
assert doc1.embedding == [0.1, 0.2, 0.3]
|
||||
assert doc1.id == "doc1"
|
||||
assert doc1.category == "news"
|
||||
|
||||
# Check second document
|
||||
doc2 = processed_data.documents[1]
|
||||
assert doc2.text == "Test document 2"
|
||||
assert doc2.embedding == [0.4, 0.5, 0.6]
|
||||
assert doc2.id == "doc2"
|
||||
assert doc2.category == "blog"
|
||||
|
||||
def test_process_opensearch_data_with_tags(self):
|
||||
processor = DataProcessor()
|
||||
|
||||
# Mock raw OpenSearch documents with tags
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
"content": "Test document with tags",
|
||||
"keywords": ["tag1", "tag2"],
|
||||
}
|
||||
]
|
||||
|
||||
# Create field mapping
|
||||
field_mapping = FieldMapping(
|
||||
embedding_field="vector", text_field="content", tags_field="keywords"
|
||||
)
|
||||
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
assert processed_data.error is None
|
||||
assert len(processed_data.documents) == 1
|
||||
doc = processed_data.documents[0]
|
||||
assert doc.tags == ["tag1", "tag2"]
|
||||
|
||||
def test_process_opensearch_data_invalid_documents(self):
|
||||
processor = DataProcessor()
|
||||
|
||||
# Mock raw documents with missing required fields
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
# Missing text field
|
||||
}
|
||||
]
|
||||
|
||||
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
# Should return error since no valid documents
|
||||
assert processed_data.error is not None
|
||||
assert "No valid documents" in processed_data.error
|
||||
assert len(processed_data.documents) == 0
|
||||
|
||||
def test_process_opensearch_data_partial_success(self):
|
||||
processor = DataProcessor()
|
||||
|
||||
# Mix of valid and invalid documents
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
"content": "Valid document",
|
||||
},
|
||||
{
|
||||
"vector": [0.4, 0.5, 0.6],
|
||||
# Missing content field - should be skipped
|
||||
},
|
||||
{
|
||||
"vector": [0.7, 0.8, 0.9],
|
||||
"content": "Another valid document",
|
||||
},
|
||||
]
|
||||
|
||||
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
# Should process valid documents only
|
||||
assert processed_data.error is None
|
||||
assert len(processed_data.documents) == 2
|
||||
assert processed_data.documents[0].text == "Valid document"
|
||||
assert processed_data.documents[1].text == "Another valid document"
|
||||
|
||||
@patch("src.embeddingbuddy.models.field_mapper.FieldMapper.transform_documents")
|
||||
def test_process_opensearch_data_transformation_error(self, mock_transform):
|
||||
processor = DataProcessor()
|
||||
|
||||
# Mock transformation error
|
||||
mock_transform.side_effect = Exception("Transformation failed")
|
||||
|
||||
raw_documents = [{"vector": [0.1], "content": "test"}]
|
||||
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
assert processed_data.error is not None
|
||||
assert "Transformation failed" in processed_data.error
|
||||
assert len(processed_data.documents) == 0
|
||||
|
||||
def test_process_opensearch_data_empty_input(self):
|
||||
processor = DataProcessor()
|
||||
|
||||
raw_documents = []
|
||||
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||
|
||||
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
|
||||
|
||||
assert processed_data.error is not None
|
||||
assert "No valid documents" in processed_data.error
|
||||
assert len(processed_data.documents) == 0
|
310
tests/test_opensearch.py
Normal file
310
tests/test_opensearch.py
Normal file
@@ -0,0 +1,310 @@
|
||||
from unittest.mock import Mock, patch
|
||||
from src.embeddingbuddy.data.sources.opensearch import OpenSearchClient
|
||||
from src.embeddingbuddy.models.field_mapper import FieldMapper, FieldMapping
|
||||
|
||||
|
||||
class TestOpenSearchClient:
|
||||
def test_init(self):
|
||||
client = OpenSearchClient()
|
||||
assert client.client is None
|
||||
assert client.connection_info is None
|
||||
|
||||
@patch("src.embeddingbuddy.data.sources.opensearch.OpenSearch")
|
||||
def test_connect_success(self, mock_opensearch):
|
||||
# Mock the OpenSearch client
|
||||
mock_client_instance = Mock()
|
||||
mock_client_instance.info.return_value = {
|
||||
"cluster_name": "test-cluster",
|
||||
"version": {"number": "2.0.0"},
|
||||
}
|
||||
mock_opensearch.return_value = mock_client_instance
|
||||
|
||||
client = OpenSearchClient()
|
||||
success, message = client.connect("https://localhost:9200")
|
||||
|
||||
assert success is True
|
||||
assert "test-cluster" in message
|
||||
assert client.client is not None
|
||||
assert client.connection_info["cluster_name"] == "test-cluster"
|
||||
|
||||
@patch("src.embeddingbuddy.data.sources.opensearch.OpenSearch")
|
||||
def test_connect_failure(self, mock_opensearch):
|
||||
# Mock connection failure
|
||||
mock_opensearch.side_effect = Exception("Connection failed")
|
||||
|
||||
client = OpenSearchClient()
|
||||
success, message = client.connect("https://localhost:9200")
|
||||
|
||||
assert success is False
|
||||
assert "Connection failed" in message
|
||||
assert client.client is None
|
||||
|
||||
def test_analyze_fields(self):
|
||||
client = OpenSearchClient()
|
||||
client.client = Mock()
|
||||
|
||||
# Mock mapping response
|
||||
mock_mapping = {
|
||||
"test-index": {
|
||||
"mappings": {
|
||||
"properties": {
|
||||
"embedding": {"type": "dense_vector", "dimension": 768},
|
||||
"text": {"type": "text"},
|
||||
"category": {"type": "keyword"},
|
||||
"id": {"type": "keyword"},
|
||||
"count": {"type": "integer"},
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
client.client.indices.get_mapping.return_value = mock_mapping
|
||||
|
||||
success, analysis, message = client.analyze_fields("test-index")
|
||||
|
||||
assert success is True
|
||||
assert len(analysis["vector_fields"]) == 1
|
||||
assert analysis["vector_fields"][0]["name"] == "embedding"
|
||||
assert analysis["vector_fields"][0]["dimension"] == 768
|
||||
assert "text" in analysis["text_fields"]
|
||||
assert "category" in analysis["keyword_fields"]
|
||||
assert "count" in analysis["numeric_fields"]
|
||||
|
||||
def test_fetch_sample_data(self):
|
||||
client = OpenSearchClient()
|
||||
client.client = Mock()
|
||||
|
||||
# Mock search response
|
||||
mock_response = {
|
||||
"hits": {
|
||||
"hits": [
|
||||
{"_source": {"text": "doc1", "embedding": [0.1, 0.2]}},
|
||||
{"_source": {"text": "doc2", "embedding": [0.3, 0.4]}},
|
||||
]
|
||||
}
|
||||
}
|
||||
client.client.search.return_value = mock_response
|
||||
|
||||
success, documents, message = client.fetch_sample_data("test-index", size=2)
|
||||
|
||||
assert success is True
|
||||
assert len(documents) == 2
|
||||
assert documents[0]["text"] == "doc1"
|
||||
assert documents[1]["text"] == "doc2"
|
||||
|
||||
|
||||
class TestFieldMapper:
|
||||
def test_suggest_mappings(self):
|
||||
field_analysis = {
|
||||
"vector_fields": [{"name": "embedding", "dimension": 768}],
|
||||
"text_fields": ["content", "description"],
|
||||
"keyword_fields": ["doc_id", "category", "type", "tags"],
|
||||
"numeric_fields": ["count"],
|
||||
"all_fields": [
|
||||
"embedding",
|
||||
"content",
|
||||
"description",
|
||||
"doc_id",
|
||||
"category",
|
||||
"type",
|
||||
"tags",
|
||||
"count",
|
||||
],
|
||||
}
|
||||
|
||||
suggestions = FieldMapper.suggest_mappings(field_analysis)
|
||||
|
||||
# Check that all dropdowns contain all fields
|
||||
all_fields = [
|
||||
"embedding",
|
||||
"content",
|
||||
"description",
|
||||
"doc_id",
|
||||
"category",
|
||||
"type",
|
||||
"tags",
|
||||
"count",
|
||||
]
|
||||
for field_type in [
|
||||
"embedding",
|
||||
"text",
|
||||
"id",
|
||||
"category",
|
||||
"subcategory",
|
||||
"tags",
|
||||
]:
|
||||
for field in all_fields:
|
||||
assert field in suggestions[field_type], (
|
||||
f"Field '{field}' missing from {field_type} suggestions"
|
||||
)
|
||||
|
||||
# Check that best candidates are first
|
||||
assert (
|
||||
suggestions["embedding"][0] == "embedding"
|
||||
) # vector field should be first
|
||||
assert suggestions["text"][0] in [
|
||||
"content",
|
||||
"description",
|
||||
] # text fields should be first
|
||||
assert suggestions["id"][0] == "doc_id" # ID-like field should be first
|
||||
assert suggestions["category"][0] in [
|
||||
"category",
|
||||
"type",
|
||||
] # category-like field should be first
|
||||
assert suggestions["tags"][0] == "tags" # tags field should be first
|
||||
|
||||
def test_suggest_mappings_name_based_embedding(self):
|
||||
"""Test that fields named 'embedding' are prioritized even without vector type."""
|
||||
field_analysis = {
|
||||
"vector_fields": [], # No explicit vector fields detected
|
||||
"text_fields": ["content", "description"],
|
||||
"keyword_fields": ["doc_id", "category", "type", "tags"],
|
||||
"numeric_fields": ["count"],
|
||||
"all_fields": [
|
||||
"content",
|
||||
"description",
|
||||
"doc_id",
|
||||
"category",
|
||||
"embedding",
|
||||
"type",
|
||||
"tags",
|
||||
"count",
|
||||
],
|
||||
}
|
||||
|
||||
suggestions = FieldMapper.suggest_mappings(field_analysis)
|
||||
|
||||
# Check that 'embedding' field is prioritized despite not being detected as vector type
|
||||
assert suggestions["embedding"][0] == "embedding", (
|
||||
"Field named 'embedding' should be first priority"
|
||||
)
|
||||
|
||||
# Check that all fields are still available
|
||||
all_fields = [
|
||||
"content",
|
||||
"description",
|
||||
"doc_id",
|
||||
"category",
|
||||
"embedding",
|
||||
"type",
|
||||
"tags",
|
||||
"count",
|
||||
]
|
||||
for field_type in [
|
||||
"embedding",
|
||||
"text",
|
||||
"id",
|
||||
"category",
|
||||
"subcategory",
|
||||
"tags",
|
||||
]:
|
||||
for field in all_fields:
|
||||
assert field in suggestions[field_type], (
|
||||
f"Field '{field}' missing from {field_type} suggestions"
|
||||
)
|
||||
|
||||
def test_validate_mapping_success(self):
|
||||
mapping = FieldMapping(
|
||||
embedding_field="embedding", text_field="text", id_field="doc_id"
|
||||
)
|
||||
available_fields = ["embedding", "text", "doc_id", "category"]
|
||||
|
||||
errors = FieldMapper.validate_mapping(mapping, available_fields)
|
||||
|
||||
assert len(errors) == 0
|
||||
|
||||
def test_validate_mapping_missing_required(self):
|
||||
mapping = FieldMapping(embedding_field="missing_field", text_field="text")
|
||||
available_fields = ["text", "category"]
|
||||
|
||||
errors = FieldMapper.validate_mapping(mapping, available_fields)
|
||||
|
||||
assert len(errors) == 1
|
||||
assert "missing_field" in errors[0]
|
||||
assert "not found" in errors[0]
|
||||
|
||||
def test_validate_mapping_missing_optional(self):
|
||||
mapping = FieldMapping(
|
||||
embedding_field="embedding",
|
||||
text_field="text",
|
||||
category_field="missing_category",
|
||||
)
|
||||
available_fields = ["embedding", "text"]
|
||||
|
||||
errors = FieldMapper.validate_mapping(mapping, available_fields)
|
||||
|
||||
assert len(errors) == 1
|
||||
assert "missing_category" in errors[0]
|
||||
|
||||
def test_transform_documents(self):
|
||||
mapping = FieldMapping(
|
||||
embedding_field="vector",
|
||||
text_field="content",
|
||||
id_field="doc_id",
|
||||
category_field="type",
|
||||
)
|
||||
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
"content": "Test document 1",
|
||||
"doc_id": "doc1",
|
||||
"type": "news",
|
||||
},
|
||||
{
|
||||
"vector": [0.4, 0.5, 0.6],
|
||||
"content": "Test document 2",
|
||||
"doc_id": "doc2",
|
||||
"type": "blog",
|
||||
},
|
||||
]
|
||||
|
||||
transformed = FieldMapper.transform_documents(raw_documents, mapping)
|
||||
|
||||
assert len(transformed) == 2
|
||||
assert transformed[0]["embedding"] == [0.1, 0.2, 0.3]
|
||||
assert transformed[0]["text"] == "Test document 1"
|
||||
assert transformed[0]["id"] == "doc1"
|
||||
assert transformed[0]["category"] == "news"
|
||||
|
||||
def test_transform_documents_missing_required(self):
|
||||
mapping = FieldMapping(embedding_field="vector", text_field="content")
|
||||
|
||||
raw_documents = [
|
||||
{
|
||||
"vector": [0.1, 0.2, 0.3],
|
||||
# Missing content field
|
||||
}
|
||||
]
|
||||
|
||||
transformed = FieldMapper.transform_documents(raw_documents, mapping)
|
||||
|
||||
assert len(transformed) == 0 # Document should be skipped
|
||||
|
||||
def test_create_mapping_from_dict(self):
|
||||
mapping_dict = {
|
||||
"embedding": "vector_field",
|
||||
"text": "text_field",
|
||||
"id": "doc_id",
|
||||
"category": "cat_field",
|
||||
"subcategory": "subcat_field",
|
||||
"tags": "tags_field",
|
||||
}
|
||||
|
||||
mapping = FieldMapper.create_mapping_from_dict(mapping_dict)
|
||||
|
||||
assert mapping.embedding_field == "vector_field"
|
||||
assert mapping.text_field == "text_field"
|
||||
assert mapping.id_field == "doc_id"
|
||||
assert mapping.category_field == "cat_field"
|
||||
assert mapping.subcategory_field == "subcat_field"
|
||||
assert mapping.tags_field == "tags_field"
|
||||
|
||||
def test_create_mapping_from_dict_minimal(self):
|
||||
mapping_dict = {"embedding": "vector_field", "text": "text_field"}
|
||||
|
||||
mapping = FieldMapper.create_mapping_from_dict(mapping_dict)
|
||||
|
||||
assert mapping.embedding_field == "vector_field"
|
||||
assert mapping.text_field == "text_field"
|
||||
assert mapping.id_field is None
|
||||
assert mapping.category_field is None
|
28
uv.lock
generated
28
uv.lock
generated
@@ -412,7 +412,7 @@ wheels = [
|
||||
|
||||
[[package]]
|
||||
name = "embeddingbuddy"
|
||||
version = "0.2.0"
|
||||
version = "0.3.0"
|
||||
source = { editable = "." }
|
||||
dependencies = [
|
||||
{ name = "dash" },
|
||||
@@ -420,6 +420,7 @@ dependencies = [
|
||||
{ name = "mypy" },
|
||||
{ name = "numba" },
|
||||
{ name = "numpy" },
|
||||
{ name = "opensearch-py" },
|
||||
{ name = "opentsne" },
|
||||
{ name = "pandas" },
|
||||
{ name = "plotly" },
|
||||
@@ -471,6 +472,7 @@ requires-dist = [
|
||||
{ name = "mypy", marker = "extra == 'lint'", specifier = ">=1.5.0" },
|
||||
{ name = "numba", specifier = ">=0.56.4" },
|
||||
{ name = "numpy", specifier = ">=1.24.4" },
|
||||
{ name = "opensearch-py", specifier = ">=3.0.0" },
|
||||
{ name = "opentsne", specifier = ">=1.0.0" },
|
||||
{ name = "pandas", specifier = ">=2.1.4" },
|
||||
{ name = "pip-audit", marker = "extra == 'security'", specifier = ">=2.6.0" },
|
||||
@@ -484,6 +486,14 @@ requires-dist = [
|
||||
]
|
||||
provides-extras = ["test", "lint", "security", "dev", "all"]
|
||||
|
||||
[[package]]
|
||||
name = "events"
|
||||
version = "0.5"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/25/ed/e47dec0626edd468c84c04d97769e7ab4ea6457b7f54dcb3f72b17fcd876/Events-0.5-py3-none-any.whl", hash = "sha256:a7286af378ba3e46640ac9825156c93bdba7502174dd696090fdfcd4d80a1abd", size = 6758, upload-time = "2023-07-31T08:23:13.645Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "filelock"
|
||||
version = "3.16.1"
|
||||
@@ -913,6 +923,22 @@ wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/67/0e/35082d13c09c02c011cf21570543d202ad929d961c02a147493cb0c2bdf5/numpy-2.2.6-cp313-cp313t-win_amd64.whl", hash = "sha256:6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06", size = 12771374, upload-time = "2025-05-17T21:43:35.479Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "opensearch-py"
|
||||
version = "3.0.0"
|
||||
source = { registry = "https://pypi.org/simple" }
|
||||
dependencies = [
|
||||
{ name = "certifi" },
|
||||
{ name = "events" },
|
||||
{ name = "python-dateutil" },
|
||||
{ name = "requests" },
|
||||
{ name = "urllib3" },
|
||||
]
|
||||
sdist = { url = "https://files.pythonhosted.org/packages/b8/58/ecec7f855aae7bcfb08f570088c6cb993f68c361a0727abab35dbf021acb/opensearch_py-3.0.0.tar.gz", hash = "sha256:ebb38f303f8a3f794db816196315bcddad880be0dc75094e3334bc271db2ed39", size = 248890, upload-time = "2025-06-17T05:39:48.453Z" }
|
||||
wheels = [
|
||||
{ url = "https://files.pythonhosted.org/packages/71/e0/69fd114c607b0323d3f864ab4a5ecb87d76ec5a172d2e36a739c8baebea1/opensearch_py-3.0.0-py3-none-any.whl", hash = "sha256:842bf5d56a4a0d8290eda9bb921c50f3080e5dc4e5fefb9c9648289da3f6a8bb", size = 371491, upload-time = "2025-06-17T05:39:46.539Z" },
|
||||
]
|
||||
|
||||
[[package]]
|
||||
name = "opentsne"
|
||||
version = "1.0.2"
|
||||
|
Reference in New Issue
Block a user