4 Commits

Author SHA1 Message Date
1b6845774b fix formatting and bump version to v0.3.0
All checks were successful
Security Scan / dependency-check (pull_request) Successful in 44s
Test Suite / lint (pull_request) Successful in 34s
Test Suite / build (pull_request) Successful in 38s
Security Scan / security (pull_request) Successful in 49s
Test Suite / test (3.11) (pull_request) Successful in 1m32s
2025-08-14 19:02:17 -07:00
09e3c86f0a opensearch load improvements
Some checks failed
Security Scan / dependency-check (pull_request) Successful in 44s
Test Suite / lint (pull_request) Failing after 32s
Security Scan / security (pull_request) Successful in 45s
Test Suite / test (3.11) (pull_request) Successful in 1m31s
Test Suite / build (pull_request) Has been skipped
2025-08-14 14:30:52 -07:00
9cf2f0e6fa this will load data from Opensearch.
it doesn't have prompts as well
2025-08-14 13:49:46 -07:00
a2adc8b958 Merge pull request 'fixed refactored code and validated inputs' (#2) from validate-inputs into main
Some checks failed
Security Scan / dependency-check (push) Successful in 34s
Security Scan / security (push) Successful in 40s
Test Suite / lint (push) Successful in 27s
Test Suite / test (3.11) (push) Successful in 1m30s
Release / test (push) Successful in 59s
Release / build-and-release (push) Failing after 36s
Test Suite / build (push) Successful in 46s
Fixed the refactored version, removed app.py, added error feedback on bad input files.

Reviewed-on: #2
2025-08-14 08:11:28 -07:00
16 changed files with 2130 additions and 9 deletions

View File

@@ -0,0 +1,157 @@
# Elasticsearch/OpenSearch Sample Data
This directory contains sample data files in Elasticsearch bulk index format for testing the OpenSearch integration in EmbeddingBuddy.
## Files
### Original NDJSON Files
- `sample_data.ndjson` - Original sample documents in EmbeddingBuddy format
- `sample_prompts.ndjson` - Original sample prompts in EmbeddingBuddy format
### Elasticsearch Bulk Files
- `sample_data_es_bulk.ndjson` - Documents in ES bulk format (index: "embeddings")
- `sample_prompts_es_bulk.ndjson` - Prompts in ES bulk format (index: "prompts")
## Usage
### 1. Index the data using curl
```bash
# Index main documents
curl -X POST "localhost:9200/_bulk" \
-H "Content-Type: application/x-ndjson" \
--data-binary @sample_data_es_bulk.ndjson
# Index prompts
curl -X POST "localhost:9200/_bulk" \
-H "Content-Type: application/x-ndjson" \
--data-binary @sample_prompts_es_bulk.ndjson
```
### 2. Create proper mappings (recommended)
First create the index with proper dense_vector mapping:
```bash
# Create embeddings index with dense_vector mapping
curl -X PUT "localhost:9200/embeddings" \
-H "Content-Type: application/json" \
-d '{
"settings": {
"index.knn": true
},
"mappings": {
"properties": {
"id": {"type": "keyword"},
"embedding": {
"type": "knn_vector",
"dimension": 8,
"method": {
"engine": "lucene",
"space_type": "cosinesimil",
"name": "hnsw",
"parameters": {}
}
},
"text": {"type": "text"},
"category": {"type": "keyword"},
"subcategory": {"type": "keyword"},
"tags": {"type": "keyword"}
}
}
}'
# Create dense vector index with alternative field names
curl -X PUT "localhost:9200/prompts" \
-H "Content-Type: application/json" \
-d '{
"settings": {
"index.knn": true
},
"mappings": {
"properties": {
"id": {"type": "keyword"},
"embedding": {
"type": "knn_vector",
"dimension": 8,
"method": {
"engine": "lucene",
"space_type": "cosinesimil",
"name": "hnsw",
"parameters": {}
}
},
"text": {"type": "text"},
"category": {"type": "keyword"},
"subcategory": {"type": "keyword"},
"tags": {"type": "keyword"}
}
}
}'
```
Then index the data using the bulk files above.
### 3. Test in EmbeddingBuddy
#### For "embeddings" index
- **OpenSearch URL**: `http://localhost:9200`
- **Index Name**: `embeddings`
- **Field Mapping**:
- Embedding Field: `embedding`
- Text Field: `text`
- ID Field: `id`
- Category Field: `category`
- Subcategory Field: `subcategory`
- Tags Field: `tags`
#### For "embeddings-dense" index (alternative field names)
- **OpenSearch URL**: `http://localhost:9200`
- **Index Name**: `embeddings-dense`
- **Field Mapping**:
- Embedding Field: `vector`
- Text Field: `content`
- ID Field: `doc_id`
- Category Field: `type`
- Subcategory Field: `subtopic`
- Tags Field: `keywords`
## Data Structure
### Original Format (from NDJSON files)
```json
{
"id": "doc_001",
"embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3],
"text": "Machine learning algorithms are transforming healthcare...",
"category": "technology",
"subcategory": "healthcare",
"tags": ["ai", "medicine", "prediction"]
}
```
### ES Bulk Format
```json
{"index": {"_index": "embeddings", "_id": "doc_001"}}
{"id": "doc_001", "embedding": [...], "text": "...", "category": "...", ...}
```
### Alternative Field Names (dense vector format)
```json
{"index": {"_index": "embeddings-dense", "_id": "doc_001"}}
{"doc_id": "doc_001", "vector": [...], "content": "...", "type": "...", ...}
```
## Notes
- All embedding vectors are 8-dimensional for these sample files
- The alternative format demonstrates how EmbeddingBuddy's field mapping handles different field names
- For production use, you may want larger embedding dimensions (e.g., 384, 768, 1536)
- The `dense_vector` field type in Elasticsearch/OpenSearch enables vector similarity search

View File

@@ -0,0 +1,40 @@
{"index": {"_index": "embeddings", "_id": "doc_001"}}
{"id": "doc_001", "embedding": [0.2, -0.1, 0.8, 0.3, -0.5, 0.7, 0.1, -0.3], "text": "Machine learning algorithms are transforming healthcare by enabling predictive analytics and personalized medicine.", "category": "technology", "subcategory": "healthcare", "tags": ["ai", "medicine", "prediction"]}
{"index": {"_index": "embeddings", "_id": "doc_002"}}
{"id": "doc_002", "embedding": [0.1, 0.4, -0.2, 0.6, 0.3, -0.4, 0.8, 0.2], "text": "Climate change poses significant challenges to global food security and agricultural sustainability.", "category": "environment", "subcategory": "agriculture", "tags": ["climate", "food", "sustainability"]}
{"index": {"_index": "embeddings", "_id": "doc_003"}}
{"id": "doc_003", "embedding": [-0.3, 0.7, 0.1, -0.2, 0.9, 0.4, -0.1, 0.5], "text": "The rise of electric vehicles is reshaping the automotive industry and urban transportation systems.", "category": "technology", "subcategory": "automotive", "tags": ["electric", "transport", "urban"]}
{"index": {"_index": "embeddings", "_id": "doc_004"}}
{"id": "doc_004", "embedding": [0.5, -0.6, 0.3, 0.8, -0.2, 0.1, 0.7, -0.4], "text": "Renewable energy sources like solar and wind are becoming increasingly cost-competitive with fossil fuels.", "category": "environment", "subcategory": "energy", "tags": ["renewable", "solar", "wind"]}
{"index": {"_index": "embeddings", "_id": "doc_005"}}
{"id": "doc_005", "embedding": [0.8, 0.2, -0.5, 0.1, 0.6, -0.3, 0.4, 0.9], "text": "Financial markets are experiencing volatility due to geopolitical tensions and inflation concerns.", "category": "finance", "subcategory": "markets", "tags": ["volatility", "inflation", "geopolitics"]}
{"index": {"_index": "embeddings", "_id": "doc_006"}}
{"id": "doc_006", "embedding": [-0.1, 0.5, 0.7, -0.4, 0.2, 0.8, -0.6, 0.3], "text": "Quantum computing research is advancing rapidly with potential applications in cryptography and drug discovery.", "category": "technology", "subcategory": "research", "tags": ["quantum", "cryptography", "research"]}
{"index": {"_index": "embeddings", "_id": "doc_007"}}
{"id": "doc_007", "embedding": [0.4, -0.3, 0.6, 0.7, -0.8, 0.2, 0.5, -0.1], "text": "Ocean pollution from plastic waste is threatening marine ecosystems and biodiversity worldwide.", "category": "environment", "subcategory": "marine", "tags": ["pollution", "plastic", "marine"]}
{"index": {"_index": "embeddings", "_id": "doc_008"}}
{"id": "doc_008", "embedding": [0.3, 0.8, -0.2, 0.5, 0.1, -0.7, 0.6, 0.4], "text": "Artificial intelligence is revolutionizing customer service through chatbots and automated support systems.", "category": "technology", "subcategory": "customer_service", "tags": ["ai", "chatbots", "automation"]}
{"index": {"_index": "embeddings", "_id": "doc_009"}}
{"id": "doc_009", "embedding": [-0.5, 0.3, 0.9, -0.1, 0.7, 0.4, -0.2, 0.8], "text": "Global supply chains are being redesigned for resilience after pandemic-related disruptions.", "category": "business", "subcategory": "logistics", "tags": ["supply_chain", "pandemic", "resilience"]}
{"index": {"_index": "embeddings", "_id": "doc_010"}}
{"id": "doc_010", "embedding": [0.7, -0.4, 0.2, 0.9, -0.3, 0.6, 0.1, -0.8], "text": "Space exploration missions are expanding our understanding of the solar system and potential for life.", "category": "science", "subcategory": "space", "tags": ["space", "exploration", "life"]}
{"index": {"_index": "embeddings", "_id": "doc_011"}}
{"id": "doc_011", "embedding": [-0.2, 0.6, 0.4, -0.7, 0.8, 0.3, -0.5, 0.1], "text": "Cryptocurrency adoption is growing among institutional investors despite regulatory uncertainties.", "category": "finance", "subcategory": "crypto", "tags": ["cryptocurrency", "institutional", "regulation"]}
{"index": {"_index": "embeddings", "_id": "doc_012"}}
{"id": "doc_012", "embedding": [0.6, 0.1, -0.8, 0.4, 0.5, -0.2, 0.9, -0.3], "text": "Remote work technologies are transforming traditional office environments and work-life balance.", "category": "technology", "subcategory": "workplace", "tags": ["remote", "work", "balance"]}
{"index": {"_index": "embeddings", "_id": "doc_013"}}
{"id": "doc_013", "embedding": [0.1, -0.7, 0.5, 0.8, -0.4, 0.3, 0.2, 0.6], "text": "Gene therapy breakthroughs are offering new hope for treating previously incurable genetic diseases.", "category": "science", "subcategory": "medicine", "tags": ["gene_therapy", "genetics", "medicine"]}
{"index": {"_index": "embeddings", "_id": "doc_014"}}
{"id": "doc_014", "embedding": [-0.4, 0.2, 0.7, -0.1, 0.9, -0.6, 0.3, 0.5], "text": "Urban planning is evolving to create more sustainable and livable cities for growing populations.", "category": "environment", "subcategory": "urban", "tags": ["urban_planning", "sustainability", "cities"]}
{"index": {"_index": "embeddings", "_id": "doc_015"}}
{"id": "doc_015", "embedding": [0.9, -0.1, 0.3, 0.6, -0.5, 0.8, -0.2, 0.4], "text": "Social media platforms are implementing new policies to combat misinformation and protect user privacy.", "category": "technology", "subcategory": "social_media", "tags": ["social_media", "misinformation", "privacy"]}
{"index": {"_index": "embeddings", "_id": "doc_016"}}
{"id": "doc_016", "embedding": [-0.3, 0.8, -0.1, 0.4, 0.7, -0.5, 0.6, -0.9], "text": "Educational technology is personalizing learning experiences and improving student outcomes.", "category": "education", "subcategory": "technology", "tags": ["education", "personalization", "technology"]}
{"index": {"_index": "embeddings", "_id": "doc_017"}}
{"id": "doc_017", "embedding": [0.5, 0.3, -0.6, 0.2, 0.8, 0.1, -0.4, 0.7], "text": "Biodiversity conservation efforts are critical for maintaining ecosystem balance and preventing species extinction.", "category": "environment", "subcategory": "conservation", "tags": ["biodiversity", "conservation", "extinction"]}
{"index": {"_index": "embeddings", "_id": "doc_018"}}
{"id": "doc_018", "embedding": [0.2, -0.8, 0.4, 0.7, -0.1, 0.5, 0.9, -0.3], "text": "Healthcare systems are adopting telemedicine to improve access and reduce costs for patients.", "category": "technology", "subcategory": "healthcare", "tags": ["telemedicine", "healthcare", "access"]}
{"index": {"_index": "embeddings", "_id": "doc_019"}}
{"id": "doc_019", "embedding": [-0.7, 0.4, 0.8, -0.2, 0.3, 0.6, -0.1, 0.9], "text": "Autonomous vehicles are being tested extensively with promises of safer and more efficient transportation.", "category": "technology", "subcategory": "automotive", "tags": ["autonomous", "safety", "efficiency"]}
{"index": {"_index": "embeddings", "_id": "doc_020"}}
{"id": "doc_020", "embedding": [0.4, 0.7, -0.3, 0.9, -0.6, 0.2, 0.5, -0.1], "text": "Mental health awareness is increasing with new approaches to therapy and workplace wellness programs.", "category": "health", "subcategory": "mental", "tags": ["mental_health", "therapy", "wellness"]}

View File

@@ -0,0 +1,20 @@
{"index": {"_index": "prompts", "_id": "prompt_001"}}
{"id": "prompt_001", "embedding": [0.15, -0.28, 0.65, 0.42, -0.11, 0.33, 0.78, -0.52], "text": "Find articles about machine learning applications", "category": "search", "subcategory": "technology", "tags": ["AI", "research"]}
{"index": {"_index": "prompts", "_id": "prompt_002"}}
{"id": "prompt_002", "embedding": [0.72, 0.18, -0.35, 0.51, 0.09, -0.44, 0.27, 0.63], "text": "Show me product reviews for smartphones", "category": "search", "subcategory": "product", "tags": ["mobile", "reviews"]}
{"index": {"_index": "prompts", "_id": "prompt_003"}}
{"id": "prompt_003", "embedding": [-0.21, 0.59, 0.34, -0.67, 0.45, 0.12, -0.38, 0.76], "text": "What are the latest political developments?", "category": "search", "subcategory": "news", "tags": ["politics", "current events"]}
{"index": {"_index": "prompts", "_id": "prompt_004"}}
{"id": "prompt_004", "embedding": [0.48, -0.15, 0.72, 0.31, -0.58, 0.24, 0.67, -0.39], "text": "Summarize recent tech industry trends", "category": "analysis", "subcategory": "technology", "tags": ["tech", "trends", "summary"]}
{"index": {"_index": "prompts", "_id": "prompt_005"}}
{"id": "prompt_005", "embedding": [-0.33, 0.47, -0.62, 0.28, 0.71, -0.18, 0.54, 0.35], "text": "Compare different smartphone models", "category": "analysis", "subcategory": "product", "tags": ["comparison", "mobile", "evaluation"]}
{"index": {"_index": "prompts", "_id": "prompt_006"}}
{"id": "prompt_006", "embedding": [0.64, 0.21, 0.39, -0.45, 0.13, 0.58, -0.27, 0.74], "text": "Analyze voter sentiment on recent policies", "category": "analysis", "subcategory": "politics", "tags": ["sentiment", "politics", "analysis"]}
{"index": {"_index": "prompts", "_id": "prompt_007"}}
{"id": "prompt_007", "embedding": [0.29, -0.43, 0.56, 0.68, -0.22, 0.37, 0.14, -0.61], "text": "Generate a summary of machine learning research", "category": "generation", "subcategory": "technology", "tags": ["AI", "research", "summary"]}
{"index": {"_index": "prompts", "_id": "prompt_008"}}
{"id": "prompt_008", "embedding": [-0.17, 0.52, -0.48, 0.36, 0.74, -0.29, 0.61, 0.18], "text": "Create a product recommendation report", "category": "generation", "subcategory": "product", "tags": ["recommendation", "report", "analysis"]}
{"index": {"_index": "prompts", "_id": "prompt_009"}}
{"id": "prompt_009", "embedding": [0.55, 0.08, 0.41, -0.37, 0.26, 0.69, -0.14, 0.58], "text": "Write a news brief on election updates", "category": "generation", "subcategory": "news", "tags": ["election", "news", "brief"]}
{"index": {"_index": "prompts", "_id": "prompt_010"}}
{"id": "prompt_010", "embedding": [0.23, -0.59, 0.47, 0.61, -0.35, 0.18, 0.72, -0.26], "text": "Explain how neural networks work", "category": "explanation", "subcategory": "technology", "tags": ["AI", "education", "neural networks"]}

View File

@@ -1,6 +1,6 @@
[project]
name = "embeddingbuddy"
version = "0.2.0"
version = "0.3.0"
description = "A Python Dash application for interactive exploration and visualization of embedding vectors through dimensionality reduction techniques."
readme = "README.md"
requires-python = ">=3.11"
@@ -15,6 +15,7 @@ dependencies = [
"numba>=0.56.4",
"openTSNE>=1.0.0",
"mypy>=1.17.1",
"opensearch-py>=3.0.0",
]
[project.optional-dependencies]

View File

@@ -10,6 +10,9 @@ from .ui.callbacks.interactions import InteractionCallbacks
def create_app():
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
# Allow callbacks to components that are dynamically created in tabs
app.config.suppress_callback_exceptions = True
layout_manager = AppLayout()
app.layout = layout_manager.create_layout()

View File

@@ -73,6 +73,12 @@ class AppSettings:
HOST = os.getenv("EMBEDDINGBUDDY_HOST", "127.0.0.1")
PORT = int(os.getenv("EMBEDDINGBUDDY_PORT", "8050"))
# OpenSearch Configuration
OPENSEARCH_DEFAULT_SIZE = 100
OPENSEARCH_SAMPLE_SIZE = 5
OPENSEARCH_CONNECTION_TIMEOUT = 30
OPENSEARCH_VERIFY_CERTS = True
# Bootstrap Theme
EXTERNAL_STYLESHEETS = [
"https://cdn.jsdelivr.net/npm/bootstrap@5.1.3/dist/css/bootstrap.min.css"

View File

@@ -1,6 +1,7 @@
import numpy as np
from typing import List, Optional, Tuple
from ..models.schemas import Document, ProcessedData
from ..models.field_mapper import FieldMapper
from .parser import NDJSONParser
@@ -26,6 +27,42 @@ class DataProcessor:
except Exception as e:
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
def process_opensearch_data(
self, raw_documents: List[dict], field_mapping
) -> ProcessedData:
"""Process raw OpenSearch documents using field mapping."""
try:
# Transform documents using field mapping
transformed_docs = FieldMapper.transform_documents(
raw_documents, field_mapping
)
# Parse transformed documents
documents = []
for doc_dict in transformed_docs:
try:
# Ensure required fields are present with defaults if needed
if "id" not in doc_dict or not doc_dict["id"]:
doc_dict["id"] = f"doc_{len(documents)}"
doc = Document(**doc_dict)
documents.append(doc)
except Exception:
continue # Skip invalid documents
if not documents:
return ProcessedData(
documents=[],
embeddings=np.array([]),
error="No valid documents after transformation",
)
embeddings = self._extract_embeddings(documents)
return ProcessedData(documents=documents, embeddings=embeddings)
except Exception as e:
return ProcessedData(documents=[], embeddings=np.array([]), error=str(e))
def _extract_embeddings(self, documents: List[Document]) -> np.ndarray:
if not documents:
return np.array([])

View File

@@ -0,0 +1,189 @@
from typing import Dict, List, Optional, Any, Tuple
import logging
from opensearchpy import OpenSearch
from opensearchpy.exceptions import OpenSearchException
logger = logging.getLogger(__name__)
class OpenSearchClient:
def __init__(self):
self.client: Optional[OpenSearch] = None
self.connection_info: Optional[Dict[str, Any]] = None
def connect(
self,
url: str,
username: Optional[str] = None,
password: Optional[str] = None,
api_key: Optional[str] = None,
verify_certs: bool = True,
) -> Tuple[bool, str]:
"""
Connect to OpenSearch instance.
Returns:
Tuple of (success: bool, message: str)
"""
try:
# Parse URL to extract host and port
if url.startswith("http://") or url.startswith("https://"):
host = url
else:
host = f"https://{url}"
# Build auth configuration
auth_config = {}
if username and password:
auth_config["http_auth"] = (username, password)
elif api_key:
auth_config["api_key"] = api_key
# Create client
self.client = OpenSearch([host], verify_certs=verify_certs, **auth_config)
# Test connection
info = self.client.info()
self.connection_info = {
"url": host,
"cluster_name": info.get("cluster_name", "Unknown"),
"version": info.get("version", {}).get("number", "Unknown"),
}
return (
True,
f"Connected to {info.get('cluster_name', 'OpenSearch cluster')}",
)
except OpenSearchException as e:
logger.error(f"OpenSearch connection error: {e}")
return False, f"Connection failed: {str(e)}"
except Exception as e:
logger.error(f"Unexpected error connecting to OpenSearch: {e}")
return False, f"Unexpected error: {str(e)}"
def get_index_mapping(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
"""
Get the mapping for a specific index.
Returns:
Tuple of (success: bool, mapping: Dict or None, message: str)
"""
if not self.client:
return False, None, "Not connected to OpenSearch"
try:
mapping = self.client.indices.get_mapping(index=index_name)
return True, mapping, "Mapping retrieved successfully"
except OpenSearchException as e:
logger.error(f"Error getting mapping for index {index_name}: {e}")
return False, None, f"Failed to get mapping: {str(e)}"
def analyze_fields(self, index_name: str) -> Tuple[bool, Optional[Dict], str]:
"""
Analyze index fields to detect potential embedding and text fields.
Returns:
Tuple of (success: bool, analysis: Dict or None, message: str)
"""
success, mapping, message = self.get_index_mapping(index_name)
if not success:
return False, None, message
try:
# Extract field information from mapping
index_mapping = mapping[index_name]["mappings"]["properties"]
analysis = {
"vector_fields": [],
"text_fields": [],
"keyword_fields": [],
"numeric_fields": [],
"all_fields": [],
}
for field_name, field_info in index_mapping.items():
field_type = field_info.get("type", "unknown")
analysis["all_fields"].append(field_name)
if field_type == "dense_vector":
analysis["vector_fields"].append(
{
"name": field_name,
"dimension": field_info.get("dimension", "unknown"),
}
)
elif field_type == "text":
analysis["text_fields"].append(field_name)
elif field_type == "keyword":
analysis["keyword_fields"].append(field_name)
elif field_type in ["integer", "long", "float", "double"]:
analysis["numeric_fields"].append(field_name)
return True, analysis, "Field analysis completed"
except Exception as e:
logger.error(f"Error analyzing fields: {e}")
return False, None, f"Field analysis failed: {str(e)}"
def fetch_sample_data(
self, index_name: str, size: int = 5
) -> Tuple[bool, List[Dict], str]:
"""
Fetch sample documents from the index.
Returns:
Tuple of (success: bool, documents: List[Dict], message: str)
"""
if not self.client:
return False, [], "Not connected to OpenSearch"
try:
response = self.client.search(
index=index_name, body={"query": {"match_all": {}}, "size": size}
)
documents = [hit["_source"] for hit in response["hits"]["hits"]]
return True, documents, f"Retrieved {len(documents)} sample documents"
except OpenSearchException as e:
logger.error(f"Error fetching sample data: {e}")
return False, [], f"Failed to fetch sample data: {str(e)}"
def fetch_data(
self, index_name: str, size: int = 100
) -> Tuple[bool, List[Dict], str]:
"""
Fetch documents from the index.
Returns:
Tuple of (success: bool, documents: List[Dict], message: str)
"""
if not self.client:
return False, [], "Not connected to OpenSearch"
try:
response = self.client.search(
index=index_name, body={"query": {"match_all": {}}, "size": size}
)
documents = [hit["_source"] for hit in response["hits"]["hits"]]
total_hits = response["hits"]["total"]["value"]
message = f"Retrieved {len(documents)} documents from {total_hits} total"
return True, documents, message
except OpenSearchException as e:
logger.error(f"Error fetching data: {e}")
return False, [], f"Failed to fetch data: {str(e)}"
def disconnect(self):
"""Disconnect from OpenSearch."""
if self.client:
self.client = None
self.connection_info = None
def is_connected(self) -> bool:
"""Check if connected to OpenSearch."""
return self.client is not None

View File

@@ -0,0 +1,254 @@
from dataclasses import dataclass
from typing import Dict, List, Optional, Any
import logging
logger = logging.getLogger(__name__)
@dataclass
class FieldMapping:
"""Configuration for mapping OpenSearch fields to standard format."""
embedding_field: str
text_field: str
id_field: Optional[str] = None
category_field: Optional[str] = None
subcategory_field: Optional[str] = None
tags_field: Optional[str] = None
class FieldMapper:
"""Handles field mapping and data transformation from OpenSearch to standard format."""
@staticmethod
def suggest_mappings(field_analysis: Dict) -> Dict[str, List[str]]:
"""
Suggest field mappings based on field analysis.
Each dropdown will show ALL available fields, but ordered by relevance
with the most likely candidates first.
Args:
field_analysis: Analysis results from OpenSearchClient.analyze_fields
Returns:
Dictionary with suggested fields for each mapping (ordered by relevance)
"""
all_fields = field_analysis.get("all_fields", [])
vector_fields = [vf["name"] for vf in field_analysis.get("vector_fields", [])]
text_fields = field_analysis.get("text_fields", [])
keyword_fields = field_analysis.get("keyword_fields", [])
# Helper function to create ordered suggestions
def create_ordered_suggestions(primary_candidates, all_available_fields):
# Start with primary candidates, then add all other fields
ordered = []
# Add primary candidates first
for field in primary_candidates:
if field in all_available_fields and field not in ordered:
ordered.append(field)
# Add remaining fields
for field in all_available_fields:
if field not in ordered:
ordered.append(field)
return ordered
suggestions = {}
# Embedding field suggestions (vector fields first, then name-based candidates, then all fields)
embedding_candidates = vector_fields.copy()
# Add fields that likely contain embeddings based on name
embedding_name_candidates = [
f
for f in all_fields
if any(
keyword in f.lower()
for keyword in ["embedding", "embeddings", "vector", "vectors", "embed"]
)
]
# Add name-based candidates that aren't already in vector_fields
for candidate in embedding_name_candidates:
if candidate not in embedding_candidates:
embedding_candidates.append(candidate)
suggestions["embedding"] = create_ordered_suggestions(
embedding_candidates, all_fields
)
# Text field suggestions (text fields first, then all fields)
text_candidates = text_fields.copy()
suggestions["text"] = create_ordered_suggestions(text_candidates, all_fields)
# ID field suggestions (ID-like fields first, then all fields)
id_candidates = [
f
for f in keyword_fields
if any(keyword in f.lower() for keyword in ["id", "_id", "doc", "document"])
]
id_candidates.append("_id") # _id is always available
suggestions["id"] = create_ordered_suggestions(id_candidates, all_fields)
# Category field suggestions (category-like fields first, then all fields)
category_candidates = [
f
for f in keyword_fields
if any(
keyword in f.lower()
for keyword in ["category", "class", "type", "label"]
)
]
suggestions["category"] = create_ordered_suggestions(
category_candidates, all_fields
)
# Subcategory field suggestions (subcategory-like fields first, then all fields)
subcategory_candidates = [
f
for f in keyword_fields
if any(
keyword in f.lower()
for keyword in ["subcategory", "subclass", "subtype", "subtopic"]
)
]
suggestions["subcategory"] = create_ordered_suggestions(
subcategory_candidates, all_fields
)
# Tags field suggestions (tag-like fields first, then all fields)
tags_candidates = [
f
for f in keyword_fields
if any(
keyword in f.lower()
for keyword in ["tag", "tags", "keyword", "keywords"]
)
]
suggestions["tags"] = create_ordered_suggestions(tags_candidates, all_fields)
return suggestions
@staticmethod
def validate_mapping(
mapping: FieldMapping, available_fields: List[str]
) -> List[str]:
"""
Validate that the field mapping is correct.
Returns:
List of validation errors (empty if valid)
"""
errors = []
# Required fields validation
if not mapping.embedding_field:
errors.append("Embedding field is required")
elif mapping.embedding_field not in available_fields:
errors.append(
f"Embedding field '{mapping.embedding_field}' not found in index"
)
if not mapping.text_field:
errors.append("Text field is required")
elif mapping.text_field not in available_fields:
errors.append(f"Text field '{mapping.text_field}' not found in index")
# Optional fields validation
optional_fields = {
"id_field": mapping.id_field,
"category_field": mapping.category_field,
"subcategory_field": mapping.subcategory_field,
"tags_field": mapping.tags_field,
}
for field_name, field_value in optional_fields.items():
if field_value and field_value not in available_fields:
errors.append(
f"Field '{field_value}' for {field_name} not found in index"
)
return errors
@staticmethod
def transform_documents(
documents: List[Dict[str, Any]], mapping: FieldMapping
) -> List[Dict[str, Any]]:
"""
Transform OpenSearch documents to standard format using field mapping.
Args:
documents: Raw documents from OpenSearch
mapping: Field mapping configuration
Returns:
List of transformed documents in standard format
"""
transformed = []
for doc in documents:
try:
# Build standard format document
standard_doc = {}
# Required fields
if mapping.embedding_field in doc:
standard_doc["embedding"] = doc[mapping.embedding_field]
else:
logger.warning(
f"Missing embedding field '{mapping.embedding_field}' in document"
)
continue
if mapping.text_field in doc:
standard_doc["text"] = str(doc[mapping.text_field])
else:
logger.warning(
f"Missing text field '{mapping.text_field}' in document"
)
continue
# Optional fields
if mapping.id_field and mapping.id_field in doc:
standard_doc["id"] = str(doc[mapping.id_field])
if mapping.category_field and mapping.category_field in doc:
standard_doc["category"] = str(doc[mapping.category_field])
if mapping.subcategory_field and mapping.subcategory_field in doc:
standard_doc["subcategory"] = str(doc[mapping.subcategory_field])
if mapping.tags_field and mapping.tags_field in doc:
tags = doc[mapping.tags_field]
# Handle both string and list tags
if isinstance(tags, list):
standard_doc["tags"] = [str(tag) for tag in tags]
else:
standard_doc["tags"] = [str(tags)]
transformed.append(standard_doc)
except Exception as e:
logger.error(f"Error transforming document: {e}")
continue
logger.info(f"Transformed {len(transformed)} documents out of {len(documents)}")
return transformed
@staticmethod
def create_mapping_from_dict(mapping_dict: Dict[str, str]) -> FieldMapping:
"""
Create a FieldMapping from a dictionary.
Args:
mapping_dict: Dictionary with field mappings
Returns:
FieldMapping instance
"""
return FieldMapping(
embedding_field=mapping_dict.get("embedding", ""),
text_field=mapping_dict.get("text", ""),
id_field=mapping_dict.get("id") or None,
category_field=mapping_dict.get("category") or None,
subcategory_field=mapping_dict.get("subcategory") or None,
tags_field=mapping_dict.get("tags") or None,
)

View File

@@ -1,10 +1,15 @@
from dash import callback, Input, Output, State
from dash import callback, Input, Output, State, no_update
from ...data.processor import DataProcessor
from ...data.sources.opensearch import OpenSearchClient
from ...models.field_mapper import FieldMapper
from ...config.settings import AppSettings
class DataProcessingCallbacks:
def __init__(self):
self.processor = DataProcessor()
self.opensearch_client_data = OpenSearchClient() # For data/documents
self.opensearch_client_prompts = OpenSearchClient() # For prompts
self._register_callbacks()
def _register_callbacks(self):
@@ -67,6 +72,397 @@ class DataProcessingCallbacks:
"embeddings": processed_data.embeddings.tolist(),
}
# OpenSearch callbacks
@callback(
[
Output("tab-content", "children"),
],
[Input("data-source-tabs", "active_tab")],
prevent_initial_call=False,
)
def render_tab_content(active_tab):
from ...ui.components.datasource import DataSourceComponent
datasource = DataSourceComponent()
if active_tab == "opensearch-tab":
return [datasource.create_opensearch_tab()]
else:
return [datasource.create_file_upload_tab()]
# Register callbacks for both data and prompts sections
self._register_opensearch_callbacks("data", self.opensearch_client_data)
self._register_opensearch_callbacks("prompts", self.opensearch_client_prompts)
# Register collapsible section callbacks
self._register_collapse_callbacks()
def _register_opensearch_callbacks(self, section_type, opensearch_client):
"""Register callbacks for a specific section (data or prompts)."""
@callback(
Output(f"{section_type}-auth-collapse", "is_open"),
[Input(f"{section_type}-auth-toggle", "n_clicks")],
[State(f"{section_type}-auth-collapse", "is_open")],
prevent_initial_call=True,
)
def toggle_auth(n_clicks, is_open):
if n_clicks:
return not is_open
return is_open
@callback(
Output(f"{section_type}-auth-toggle", "children"),
[Input(f"{section_type}-auth-collapse", "is_open")],
prevent_initial_call=False,
)
def update_auth_button_text(is_open):
return "Hide Authentication" if is_open else "Show Authentication"
@callback(
[
Output(f"{section_type}-connection-status", "children"),
Output(f"{section_type}-field-mapping-section", "children"),
Output(f"{section_type}-field-mapping-section", "style"),
Output(f"{section_type}-load-data-section", "style"),
Output(f"{section_type}-load-opensearch-data-btn", "disabled"),
Output(f"{section_type}-embedding-field-dropdown", "options"),
Output(f"{section_type}-text-field-dropdown", "options"),
Output(f"{section_type}-id-field-dropdown", "options"),
Output(f"{section_type}-category-field-dropdown", "options"),
Output(f"{section_type}-subcategory-field-dropdown", "options"),
Output(f"{section_type}-tags-field-dropdown", "options"),
],
[Input(f"{section_type}-test-connection-btn", "n_clicks")],
[
State(f"{section_type}-opensearch-url", "value"),
State(f"{section_type}-opensearch-index", "value"),
State(f"{section_type}-opensearch-username", "value"),
State(f"{section_type}-opensearch-password", "value"),
State(f"{section_type}-opensearch-api-key", "value"),
],
prevent_initial_call=True,
)
def test_opensearch_connection(
n_clicks, url, index_name, username, password, api_key
):
if not n_clicks or not url or not index_name:
return (
no_update,
no_update,
no_update,
no_update,
no_update,
no_update,
no_update,
no_update,
no_update,
no_update,
no_update,
)
# Test connection
success, message = opensearch_client.connect(
url=url,
username=username,
password=password,
api_key=api_key,
verify_certs=AppSettings.OPENSEARCH_VERIFY_CERTS,
)
if not success:
return (
self._create_status_alert(f"{message}", "danger"),
[],
{"display": "none"},
{"display": "none"},
True,
[], # empty options for hidden dropdowns
[],
[],
[],
[],
[],
)
# Analyze fields
success, field_analysis, analysis_message = (
opensearch_client.analyze_fields(index_name)
)
if not success:
return (
self._create_status_alert(f"{analysis_message}", "danger"),
[],
{"display": "none"},
{"display": "none"},
True,
[], # empty options for hidden dropdowns
[],
[],
[],
[],
[],
)
# Generate field suggestions
field_suggestions = FieldMapper.suggest_mappings(field_analysis)
from ...ui.components.datasource import DataSourceComponent
datasource = DataSourceComponent()
field_mapping_ui = datasource.create_field_mapping_interface(
field_suggestions, section_type
)
return (
self._create_status_alert(f"{message}", "success"),
field_mapping_ui,
{"display": "block"},
{"display": "block"},
False,
[
{"label": field, "value": field}
for field in field_suggestions.get("embedding", [])
],
[
{"label": field, "value": field}
for field in field_suggestions.get("text", [])
],
[
{"label": field, "value": field}
for field in field_suggestions.get("id", [])
],
[
{"label": field, "value": field}
for field in field_suggestions.get("category", [])
],
[
{"label": field, "value": field}
for field in field_suggestions.get("subcategory", [])
],
[
{"label": field, "value": field}
for field in field_suggestions.get("tags", [])
],
)
# Determine output target based on section type
output_target = (
"processed-data" if section_type == "data" else "processed-prompts"
)
@callback(
[
Output(output_target, "data", allow_duplicate=True),
Output("opensearch-success-alert", "children", allow_duplicate=True),
Output("opensearch-success-alert", "is_open", allow_duplicate=True),
Output("opensearch-error-alert", "children", allow_duplicate=True),
Output("opensearch-error-alert", "is_open", allow_duplicate=True),
],
[Input(f"{section_type}-load-opensearch-data-btn", "n_clicks")],
[
State(f"{section_type}-opensearch-index", "value"),
State(f"{section_type}-opensearch-query-size", "value"),
State(f"{section_type}-embedding-field-dropdown-ui", "value"),
State(f"{section_type}-text-field-dropdown-ui", "value"),
State(f"{section_type}-id-field-dropdown-ui", "value"),
State(f"{section_type}-category-field-dropdown-ui", "value"),
State(f"{section_type}-subcategory-field-dropdown-ui", "value"),
State(f"{section_type}-tags-field-dropdown-ui", "value"),
],
prevent_initial_call=True,
)
def load_opensearch_data(
n_clicks,
index_name,
query_size,
embedding_field,
text_field,
id_field,
category_field,
subcategory_field,
tags_field,
):
if not n_clicks or not index_name or not embedding_field or not text_field:
return no_update, no_update, no_update, no_update, no_update
try:
# Validate and set query size
if not query_size or query_size < 1:
query_size = AppSettings.OPENSEARCH_DEFAULT_SIZE
elif query_size > 1000:
query_size = 1000 # Cap at reasonable maximum
# Create field mapping
field_mapping = FieldMapper.create_mapping_from_dict(
{
"embedding": embedding_field,
"text": text_field,
"id": id_field,
"category": category_field,
"subcategory": subcategory_field,
"tags": tags_field,
}
)
# Fetch data from OpenSearch
success, raw_documents, message = opensearch_client.fetch_data(
index_name, size=query_size
)
if not success:
return (
no_update,
"",
False,
f"❌ Failed to fetch {section_type}: {message}",
True,
)
# Process the data
processed_data = self.processor.process_opensearch_data(
raw_documents, field_mapping
)
if processed_data.error:
return (
{"error": processed_data.error},
"",
False,
f"{section_type.title()} processing error: {processed_data.error}",
True,
)
success_message = f"✅ Successfully loaded {len(processed_data.documents)} {section_type} from OpenSearch"
# Format for appropriate target (data vs prompts)
if section_type == "data":
return (
{
"documents": [
self._document_to_dict(doc)
for doc in processed_data.documents
],
"embeddings": processed_data.embeddings.tolist(),
},
success_message,
True,
"",
False,
)
else: # prompts
return (
{
"prompts": [
self._document_to_dict(doc)
for doc in processed_data.documents
],
"embeddings": processed_data.embeddings.tolist(),
},
success_message,
True,
"",
False,
)
except Exception as e:
return (no_update, "", False, f"❌ Unexpected error: {str(e)}", True)
# Sync callbacks to update hidden dropdowns from UI dropdowns
@callback(
Output(f"{section_type}-embedding-field-dropdown", "value"),
Input(f"{section_type}-embedding-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_embedding_dropdown(value):
return value
@callback(
Output(f"{section_type}-text-field-dropdown", "value"),
Input(f"{section_type}-text-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_text_dropdown(value):
return value
@callback(
Output(f"{section_type}-id-field-dropdown", "value"),
Input(f"{section_type}-id-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_id_dropdown(value):
return value
@callback(
Output(f"{section_type}-category-field-dropdown", "value"),
Input(f"{section_type}-category-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_category_dropdown(value):
return value
@callback(
Output(f"{section_type}-subcategory-field-dropdown", "value"),
Input(f"{section_type}-subcategory-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_subcategory_dropdown(value):
return value
@callback(
Output(f"{section_type}-tags-field-dropdown", "value"),
Input(f"{section_type}-tags-field-dropdown-ui", "value"),
prevent_initial_call=True,
)
def sync_tags_dropdown(value):
return value
def _register_collapse_callbacks(self):
"""Register callbacks for collapsible sections."""
# Data section collapse callback
@callback(
[
Output("data-collapse", "is_open"),
Output("data-collapse-icon", "className"),
],
[Input("data-collapse-toggle", "n_clicks")],
[State("data-collapse", "is_open")],
prevent_initial_call=True,
)
def toggle_data_collapse(n_clicks, is_open):
if n_clicks:
new_state = not is_open
icon_class = (
"fas fa-chevron-down me-2"
if new_state
else "fas fa-chevron-right me-2"
)
return new_state, icon_class
return is_open, "fas fa-chevron-down me-2"
# Prompts section collapse callback
@callback(
[
Output("prompts-collapse", "is_open"),
Output("prompts-collapse-icon", "className"),
],
[Input("prompts-collapse-toggle", "n_clicks")],
[State("prompts-collapse", "is_open")],
prevent_initial_call=True,
)
def toggle_prompts_collapse(n_clicks, is_open):
if n_clicks:
new_state = not is_open
icon_class = (
"fas fa-chevron-down me-2"
if new_state
else "fas fa-chevron-right me-2"
)
return new_state, icon_class
return is_open, "fas fa-chevron-down me-2"
@staticmethod
def _document_to_dict(doc):
return {
@@ -118,3 +514,10 @@ class DataProcessingCallbacks:
f"❌ Error processing file{file_part}: {error}. "
"Please check that your file is valid NDJSON with required 'text' and 'embedding' fields."
)
@staticmethod
def _create_status_alert(message: str, color: str):
"""Create a status alert component."""
import dash_bootstrap_components as dbc
return dbc.Alert(message, color=color, className="mb-2")

View File

@@ -0,0 +1,519 @@
from dash import dcc, html
import dash_bootstrap_components as dbc
from .upload import UploadComponent
class DataSourceComponent:
def __init__(self):
self.upload_component = UploadComponent()
def create_tabbed_interface(self):
"""Create tabbed interface for different data sources."""
return dbc.Card(
[
dbc.CardHeader(
[
dbc.Tabs(
[
dbc.Tab(label="File Upload", tab_id="file-tab"),
dbc.Tab(label="OpenSearch", tab_id="opensearch-tab"),
],
id="data-source-tabs",
active_tab="file-tab",
)
]
),
dbc.CardBody([html.Div(id="tab-content")]),
]
)
def create_file_upload_tab(self):
"""Create file upload tab content."""
return html.Div(
[
self.upload_component.create_error_alert(),
self.upload_component.create_data_upload(),
self.upload_component.create_prompts_upload(),
self.upload_component.create_reset_button(),
]
)
def create_opensearch_tab(self):
"""Create OpenSearch tab content with separate Data and Prompts sections."""
return html.Div(
[
# Data Section
dbc.Card(
[
dbc.CardHeader(
[
dbc.Button(
[
html.I(
className="fas fa-chevron-down me-2",
id="data-collapse-icon",
),
"📄 Documents/Data",
],
id="data-collapse-toggle",
color="link",
className="text-start p-0 w-100 text-decoration-none",
style={
"border": "none",
"font-size": "1.25rem",
"font-weight": "500",
},
),
]
),
dbc.Collapse(
[dbc.CardBody([self._create_opensearch_section("data")])],
id="data-collapse",
is_open=True,
),
],
className="mb-4",
),
# Prompts Section
dbc.Card(
[
dbc.CardHeader(
[
dbc.Button(
[
html.I(
className="fas fa-chevron-down me-2",
id="prompts-collapse-icon",
),
"💬 Prompts",
],
id="prompts-collapse-toggle",
color="link",
className="text-start p-0 w-100 text-decoration-none",
style={
"border": "none",
"font-size": "1.25rem",
"font-weight": "500",
},
),
]
),
dbc.Collapse(
[
dbc.CardBody(
[self._create_opensearch_section("prompts")]
)
],
id="prompts-collapse",
is_open=True,
),
],
className="mb-4",
),
# Hidden dropdowns to prevent callback errors (for both sections)
html.Div(
[
# Data dropdowns (hidden sync targets)
dcc.Dropdown(
id="data-embedding-field-dropdown",
style={"display": "none"},
),
dcc.Dropdown(
id="data-text-field-dropdown", style={"display": "none"}
),
dcc.Dropdown(
id="data-id-field-dropdown", style={"display": "none"}
),
dcc.Dropdown(
id="data-category-field-dropdown", style={"display": "none"}
),
dcc.Dropdown(
id="data-subcategory-field-dropdown",
style={"display": "none"},
),
dcc.Dropdown(
id="data-tags-field-dropdown", style={"display": "none"}
),
# Data UI dropdowns (hidden placeholders)
dcc.Dropdown(
id="data-embedding-field-dropdown-ui",
style={"display": "none"},
),
dcc.Dropdown(
id="data-text-field-dropdown-ui", style={"display": "none"}
),
dcc.Dropdown(
id="data-id-field-dropdown-ui", style={"display": "none"}
),
dcc.Dropdown(
id="data-category-field-dropdown-ui",
style={"display": "none"},
),
dcc.Dropdown(
id="data-subcategory-field-dropdown-ui",
style={"display": "none"},
),
dcc.Dropdown(
id="data-tags-field-dropdown-ui", style={"display": "none"}
),
# Prompts dropdowns (hidden sync targets)
dcc.Dropdown(
id="prompts-embedding-field-dropdown",
style={"display": "none"},
),
dcc.Dropdown(
id="prompts-text-field-dropdown", style={"display": "none"}
),
dcc.Dropdown(
id="prompts-id-field-dropdown", style={"display": "none"}
),
dcc.Dropdown(
id="prompts-category-field-dropdown",
style={"display": "none"},
),
dcc.Dropdown(
id="prompts-subcategory-field-dropdown",
style={"display": "none"},
),
dcc.Dropdown(
id="prompts-tags-field-dropdown", style={"display": "none"}
),
# Prompts UI dropdowns (hidden placeholders)
dcc.Dropdown(
id="prompts-embedding-field-dropdown-ui",
style={"display": "none"},
),
dcc.Dropdown(
id="prompts-text-field-dropdown-ui",
style={"display": "none"},
),
dcc.Dropdown(
id="prompts-id-field-dropdown-ui", style={"display": "none"}
),
dcc.Dropdown(
id="prompts-category-field-dropdown-ui",
style={"display": "none"},
),
dcc.Dropdown(
id="prompts-subcategory-field-dropdown-ui",
style={"display": "none"},
),
dcc.Dropdown(
id="prompts-tags-field-dropdown-ui",
style={"display": "none"},
),
],
style={"display": "none"},
),
]
)
def _create_opensearch_section(self, section_type):
"""Create a complete OpenSearch section for either 'data' or 'prompts'."""
section_id = section_type # 'data' or 'prompts'
return html.Div(
[
# Connection section
html.H6("Connection", className="mb-2"),
dbc.Row(
[
dbc.Col(
[
dbc.Label("OpenSearch URL:"),
dbc.Input(
id=f"{section_id}-opensearch-url",
type="text",
placeholder="https://opensearch.example.com:9200",
className="mb-2",
),
],
width=12,
),
]
),
dbc.Row(
[
dbc.Col(
[
dbc.Label("Index Name:"),
dbc.Input(
id=f"{section_id}-opensearch-index",
type="text",
placeholder="my-embeddings-index",
className="mb-2",
),
],
width=6,
),
dbc.Col(
[
dbc.Label("Query Size:"),
dbc.Input(
id=f"{section_id}-opensearch-query-size",
type="number",
value=100,
min=1,
max=1000,
placeholder="100",
className="mb-2",
),
],
width=6,
),
]
),
dbc.Row(
[
dbc.Col(
[
dbc.Button(
"Test Connection",
id=f"{section_id}-test-connection-btn",
color="primary",
className="mb-3",
),
],
width=12,
),
]
),
# Authentication section (collapsible)
dbc.Collapse(
[
html.Hr(),
html.H6("Authentication (Optional)", className="mb-2"),
dbc.Row(
[
dbc.Col(
[
dbc.Label("Username:"),
dbc.Input(
id=f"{section_id}-opensearch-username",
type="text",
className="mb-2",
),
],
width=6,
),
dbc.Col(
[
dbc.Label("Password:"),
dbc.Input(
id=f"{section_id}-opensearch-password",
type="password",
className="mb-2",
),
],
width=6,
),
]
),
dbc.Label("OR"),
dbc.Input(
id=f"{section_id}-opensearch-api-key",
type="text",
placeholder="API Key",
className="mb-2",
),
],
id=f"{section_id}-auth-collapse",
is_open=False,
),
dbc.Button(
"Show Authentication",
id=f"{section_id}-auth-toggle",
color="link",
size="sm",
className="p-0 mb-3",
),
# Connection status
html.Div(id=f"{section_id}-connection-status", className="mb-3"),
# Field mapping section (hidden initially)
html.Div(
id=f"{section_id}-field-mapping-section", style={"display": "none"}
),
# Load data button (hidden initially)
html.Div(
[
dbc.Button(
f"Load {section_type.title()}",
id=f"{section_id}-load-opensearch-data-btn",
color="success",
className="mb-2",
disabled=True,
),
],
id=f"{section_id}-load-data-section",
style={"display": "none"},
),
# OpenSearch status/results
html.Div(id=f"{section_id}-opensearch-status", className="mb-3"),
]
)
def create_field_mapping_interface(self, field_suggestions, section_type="data"):
"""Create field mapping interface based on detected fields."""
return html.Div(
[
html.Hr(),
html.H6("Field Mapping", className="mb-2"),
html.P(
"Map your OpenSearch fields to the required format:",
className="text-muted small",
),
# Required fields
dbc.Row(
[
dbc.Col(
[
dbc.Label(
"Embedding Field (required):", className="fw-bold"
),
dcc.Dropdown(
id=f"{section_type}-embedding-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get(
"embedding", []
)
],
value=field_suggestions.get("embedding", [None])[
0
], # Default to first suggestion
placeholder="Select embedding field...",
className="mb-2",
),
],
width=6,
),
dbc.Col(
[
dbc.Label(
"Text Field (required):", className="fw-bold"
),
dcc.Dropdown(
id=f"{section_type}-text-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get("text", [])
],
value=field_suggestions.get("text", [None])[
0
], # Default to first suggestion
placeholder="Select text field...",
className="mb-2",
),
],
width=6,
),
]
),
# Optional fields
html.H6("Optional Fields", className="mb-2 mt-3"),
dbc.Row(
[
dbc.Col(
[
dbc.Label("ID Field:"),
dcc.Dropdown(
id=f"{section_type}-id-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get("id", [])
],
value=field_suggestions.get("id", [None])[
0
], # Default to first suggestion
placeholder="Select ID field...",
className="mb-2",
),
],
width=6,
),
dbc.Col(
[
dbc.Label("Category Field:"),
dcc.Dropdown(
id=f"{section_type}-category-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get(
"category", []
)
],
value=field_suggestions.get("category", [None])[
0
], # Default to first suggestion
placeholder="Select category field...",
className="mb-2",
),
],
width=6,
),
]
),
dbc.Row(
[
dbc.Col(
[
dbc.Label("Subcategory Field:"),
dcc.Dropdown(
id=f"{section_type}-subcategory-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get(
"subcategory", []
)
],
value=field_suggestions.get("subcategory", [None])[
0
], # Default to first suggestion
placeholder="Select subcategory field...",
className="mb-2",
),
],
width=6,
),
dbc.Col(
[
dbc.Label("Tags Field:"),
dcc.Dropdown(
id=f"{section_type}-tags-field-dropdown-ui",
options=[
{"label": field, "value": field}
for field in field_suggestions.get("tags", [])
],
value=field_suggestions.get("tags", [None])[
0
], # Default to first suggestion
placeholder="Select tags field...",
className="mb-2",
),
],
width=6,
),
]
),
]
)
def create_error_alert(self):
"""Create error alert component for OpenSearch issues."""
return dbc.Alert(
id="opensearch-error-alert",
dismissable=True,
is_open=False,
color="danger",
className="mb-3",
)
def create_success_alert(self):
"""Create success alert component for OpenSearch operations."""
return dbc.Alert(
id="opensearch-success-alert",
dismissable=True,
is_open=False,
color="success",
className="mb-3",
)

View File

@@ -1,21 +1,22 @@
from dash import dcc, html
import dash_bootstrap_components as dbc
from .upload import UploadComponent
from .datasource import DataSourceComponent
class SidebarComponent:
def __init__(self):
self.upload_component = UploadComponent()
self.datasource_component = DataSourceComponent()
def create_layout(self):
return dbc.Col(
[
html.H5("Upload Data", className="mb-3"),
self.upload_component.create_error_alert(),
self.upload_component.create_data_upload(),
self.upload_component.create_prompts_upload(),
self.upload_component.create_reset_button(),
html.H5("Visualization Controls", className="mb-3"),
html.H5("Data Sources", className="mb-3"),
self.datasource_component.create_error_alert(),
self.datasource_component.create_success_alert(),
self.datasource_component.create_tabbed_interface(),
html.H5("Visualization Controls", className="mb-3 mt-4"),
]
+ self._create_method_dropdown()
+ self._create_color_dropdown()

View File

@@ -0,0 +1,155 @@
from unittest.mock import patch
from src.embeddingbuddy.data.processor import DataProcessor
from src.embeddingbuddy.models.field_mapper import FieldMapping
class TestDataProcessorOpenSearch:
def test_process_opensearch_data_success(self):
processor = DataProcessor()
# Mock raw OpenSearch documents
raw_documents = [
{
"vector": [0.1, 0.2, 0.3],
"content": "Test document 1",
"doc_id": "doc1",
"type": "news",
},
{
"vector": [0.4, 0.5, 0.6],
"content": "Test document 2",
"doc_id": "doc2",
"type": "blog",
},
]
# Create field mapping
field_mapping = FieldMapping(
embedding_field="vector",
text_field="content",
id_field="doc_id",
category_field="type",
)
# Process the data
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
# Assertions
assert processed_data.error is None
assert len(processed_data.documents) == 2
assert processed_data.embeddings.shape == (2, 3)
# Check first document
doc1 = processed_data.documents[0]
assert doc1.text == "Test document 1"
assert doc1.embedding == [0.1, 0.2, 0.3]
assert doc1.id == "doc1"
assert doc1.category == "news"
# Check second document
doc2 = processed_data.documents[1]
assert doc2.text == "Test document 2"
assert doc2.embedding == [0.4, 0.5, 0.6]
assert doc2.id == "doc2"
assert doc2.category == "blog"
def test_process_opensearch_data_with_tags(self):
processor = DataProcessor()
# Mock raw OpenSearch documents with tags
raw_documents = [
{
"vector": [0.1, 0.2, 0.3],
"content": "Test document with tags",
"keywords": ["tag1", "tag2"],
}
]
# Create field mapping
field_mapping = FieldMapping(
embedding_field="vector", text_field="content", tags_field="keywords"
)
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
assert processed_data.error is None
assert len(processed_data.documents) == 1
doc = processed_data.documents[0]
assert doc.tags == ["tag1", "tag2"]
def test_process_opensearch_data_invalid_documents(self):
processor = DataProcessor()
# Mock raw documents with missing required fields
raw_documents = [
{
"vector": [0.1, 0.2, 0.3],
# Missing text field
}
]
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
# Should return error since no valid documents
assert processed_data.error is not None
assert "No valid documents" in processed_data.error
assert len(processed_data.documents) == 0
def test_process_opensearch_data_partial_success(self):
processor = DataProcessor()
# Mix of valid and invalid documents
raw_documents = [
{
"vector": [0.1, 0.2, 0.3],
"content": "Valid document",
},
{
"vector": [0.4, 0.5, 0.6],
# Missing content field - should be skipped
},
{
"vector": [0.7, 0.8, 0.9],
"content": "Another valid document",
},
]
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
# Should process valid documents only
assert processed_data.error is None
assert len(processed_data.documents) == 2
assert processed_data.documents[0].text == "Valid document"
assert processed_data.documents[1].text == "Another valid document"
@patch("src.embeddingbuddy.models.field_mapper.FieldMapper.transform_documents")
def test_process_opensearch_data_transformation_error(self, mock_transform):
processor = DataProcessor()
# Mock transformation error
mock_transform.side_effect = Exception("Transformation failed")
raw_documents = [{"vector": [0.1], "content": "test"}]
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
assert processed_data.error is not None
assert "Transformation failed" in processed_data.error
assert len(processed_data.documents) == 0
def test_process_opensearch_data_empty_input(self):
processor = DataProcessor()
raw_documents = []
field_mapping = FieldMapping(embedding_field="vector", text_field="content")
processed_data = processor.process_opensearch_data(raw_documents, field_mapping)
assert processed_data.error is not None
assert "No valid documents" in processed_data.error
assert len(processed_data.documents) == 0

310
tests/test_opensearch.py Normal file
View File

@@ -0,0 +1,310 @@
from unittest.mock import Mock, patch
from src.embeddingbuddy.data.sources.opensearch import OpenSearchClient
from src.embeddingbuddy.models.field_mapper import FieldMapper, FieldMapping
class TestOpenSearchClient:
def test_init(self):
client = OpenSearchClient()
assert client.client is None
assert client.connection_info is None
@patch("src.embeddingbuddy.data.sources.opensearch.OpenSearch")
def test_connect_success(self, mock_opensearch):
# Mock the OpenSearch client
mock_client_instance = Mock()
mock_client_instance.info.return_value = {
"cluster_name": "test-cluster",
"version": {"number": "2.0.0"},
}
mock_opensearch.return_value = mock_client_instance
client = OpenSearchClient()
success, message = client.connect("https://localhost:9200")
assert success is True
assert "test-cluster" in message
assert client.client is not None
assert client.connection_info["cluster_name"] == "test-cluster"
@patch("src.embeddingbuddy.data.sources.opensearch.OpenSearch")
def test_connect_failure(self, mock_opensearch):
# Mock connection failure
mock_opensearch.side_effect = Exception("Connection failed")
client = OpenSearchClient()
success, message = client.connect("https://localhost:9200")
assert success is False
assert "Connection failed" in message
assert client.client is None
def test_analyze_fields(self):
client = OpenSearchClient()
client.client = Mock()
# Mock mapping response
mock_mapping = {
"test-index": {
"mappings": {
"properties": {
"embedding": {"type": "dense_vector", "dimension": 768},
"text": {"type": "text"},
"category": {"type": "keyword"},
"id": {"type": "keyword"},
"count": {"type": "integer"},
}
}
}
}
client.client.indices.get_mapping.return_value = mock_mapping
success, analysis, message = client.analyze_fields("test-index")
assert success is True
assert len(analysis["vector_fields"]) == 1
assert analysis["vector_fields"][0]["name"] == "embedding"
assert analysis["vector_fields"][0]["dimension"] == 768
assert "text" in analysis["text_fields"]
assert "category" in analysis["keyword_fields"]
assert "count" in analysis["numeric_fields"]
def test_fetch_sample_data(self):
client = OpenSearchClient()
client.client = Mock()
# Mock search response
mock_response = {
"hits": {
"hits": [
{"_source": {"text": "doc1", "embedding": [0.1, 0.2]}},
{"_source": {"text": "doc2", "embedding": [0.3, 0.4]}},
]
}
}
client.client.search.return_value = mock_response
success, documents, message = client.fetch_sample_data("test-index", size=2)
assert success is True
assert len(documents) == 2
assert documents[0]["text"] == "doc1"
assert documents[1]["text"] == "doc2"
class TestFieldMapper:
def test_suggest_mappings(self):
field_analysis = {
"vector_fields": [{"name": "embedding", "dimension": 768}],
"text_fields": ["content", "description"],
"keyword_fields": ["doc_id", "category", "type", "tags"],
"numeric_fields": ["count"],
"all_fields": [
"embedding",
"content",
"description",
"doc_id",
"category",
"type",
"tags",
"count",
],
}
suggestions = FieldMapper.suggest_mappings(field_analysis)
# Check that all dropdowns contain all fields
all_fields = [
"embedding",
"content",
"description",
"doc_id",
"category",
"type",
"tags",
"count",
]
for field_type in [
"embedding",
"text",
"id",
"category",
"subcategory",
"tags",
]:
for field in all_fields:
assert field in suggestions[field_type], (
f"Field '{field}' missing from {field_type} suggestions"
)
# Check that best candidates are first
assert (
suggestions["embedding"][0] == "embedding"
) # vector field should be first
assert suggestions["text"][0] in [
"content",
"description",
] # text fields should be first
assert suggestions["id"][0] == "doc_id" # ID-like field should be first
assert suggestions["category"][0] in [
"category",
"type",
] # category-like field should be first
assert suggestions["tags"][0] == "tags" # tags field should be first
def test_suggest_mappings_name_based_embedding(self):
"""Test that fields named 'embedding' are prioritized even without vector type."""
field_analysis = {
"vector_fields": [], # No explicit vector fields detected
"text_fields": ["content", "description"],
"keyword_fields": ["doc_id", "category", "type", "tags"],
"numeric_fields": ["count"],
"all_fields": [
"content",
"description",
"doc_id",
"category",
"embedding",
"type",
"tags",
"count",
],
}
suggestions = FieldMapper.suggest_mappings(field_analysis)
# Check that 'embedding' field is prioritized despite not being detected as vector type
assert suggestions["embedding"][0] == "embedding", (
"Field named 'embedding' should be first priority"
)
# Check that all fields are still available
all_fields = [
"content",
"description",
"doc_id",
"category",
"embedding",
"type",
"tags",
"count",
]
for field_type in [
"embedding",
"text",
"id",
"category",
"subcategory",
"tags",
]:
for field in all_fields:
assert field in suggestions[field_type], (
f"Field '{field}' missing from {field_type} suggestions"
)
def test_validate_mapping_success(self):
mapping = FieldMapping(
embedding_field="embedding", text_field="text", id_field="doc_id"
)
available_fields = ["embedding", "text", "doc_id", "category"]
errors = FieldMapper.validate_mapping(mapping, available_fields)
assert len(errors) == 0
def test_validate_mapping_missing_required(self):
mapping = FieldMapping(embedding_field="missing_field", text_field="text")
available_fields = ["text", "category"]
errors = FieldMapper.validate_mapping(mapping, available_fields)
assert len(errors) == 1
assert "missing_field" in errors[0]
assert "not found" in errors[0]
def test_validate_mapping_missing_optional(self):
mapping = FieldMapping(
embedding_field="embedding",
text_field="text",
category_field="missing_category",
)
available_fields = ["embedding", "text"]
errors = FieldMapper.validate_mapping(mapping, available_fields)
assert len(errors) == 1
assert "missing_category" in errors[0]
def test_transform_documents(self):
mapping = FieldMapping(
embedding_field="vector",
text_field="content",
id_field="doc_id",
category_field="type",
)
raw_documents = [
{
"vector": [0.1, 0.2, 0.3],
"content": "Test document 1",
"doc_id": "doc1",
"type": "news",
},
{
"vector": [0.4, 0.5, 0.6],
"content": "Test document 2",
"doc_id": "doc2",
"type": "blog",
},
]
transformed = FieldMapper.transform_documents(raw_documents, mapping)
assert len(transformed) == 2
assert transformed[0]["embedding"] == [0.1, 0.2, 0.3]
assert transformed[0]["text"] == "Test document 1"
assert transformed[0]["id"] == "doc1"
assert transformed[0]["category"] == "news"
def test_transform_documents_missing_required(self):
mapping = FieldMapping(embedding_field="vector", text_field="content")
raw_documents = [
{
"vector": [0.1, 0.2, 0.3],
# Missing content field
}
]
transformed = FieldMapper.transform_documents(raw_documents, mapping)
assert len(transformed) == 0 # Document should be skipped
def test_create_mapping_from_dict(self):
mapping_dict = {
"embedding": "vector_field",
"text": "text_field",
"id": "doc_id",
"category": "cat_field",
"subcategory": "subcat_field",
"tags": "tags_field",
}
mapping = FieldMapper.create_mapping_from_dict(mapping_dict)
assert mapping.embedding_field == "vector_field"
assert mapping.text_field == "text_field"
assert mapping.id_field == "doc_id"
assert mapping.category_field == "cat_field"
assert mapping.subcategory_field == "subcat_field"
assert mapping.tags_field == "tags_field"
def test_create_mapping_from_dict_minimal(self):
mapping_dict = {"embedding": "vector_field", "text": "text_field"}
mapping = FieldMapper.create_mapping_from_dict(mapping_dict)
assert mapping.embedding_field == "vector_field"
assert mapping.text_field == "text_field"
assert mapping.id_field is None
assert mapping.category_field is None

28
uv.lock generated
View File

@@ -412,7 +412,7 @@ wheels = [
[[package]]
name = "embeddingbuddy"
version = "0.2.0"
version = "0.3.0"
source = { editable = "." }
dependencies = [
{ name = "dash" },
@@ -420,6 +420,7 @@ dependencies = [
{ name = "mypy" },
{ name = "numba" },
{ name = "numpy" },
{ name = "opensearch-py" },
{ name = "opentsne" },
{ name = "pandas" },
{ name = "plotly" },
@@ -471,6 +472,7 @@ requires-dist = [
{ name = "mypy", marker = "extra == 'lint'", specifier = ">=1.5.0" },
{ name = "numba", specifier = ">=0.56.4" },
{ name = "numpy", specifier = ">=1.24.4" },
{ name = "opensearch-py", specifier = ">=3.0.0" },
{ name = "opentsne", specifier = ">=1.0.0" },
{ name = "pandas", specifier = ">=2.1.4" },
{ name = "pip-audit", marker = "extra == 'security'", specifier = ">=2.6.0" },
@@ -484,6 +486,14 @@ requires-dist = [
]
provides-extras = ["test", "lint", "security", "dev", "all"]
[[package]]
name = "events"
version = "0.5"
source = { registry = "https://pypi.org/simple" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/25/ed/e47dec0626edd468c84c04d97769e7ab4ea6457b7f54dcb3f72b17fcd876/Events-0.5-py3-none-any.whl", hash = "sha256:a7286af378ba3e46640ac9825156c93bdba7502174dd696090fdfcd4d80a1abd", size = 6758, upload-time = "2023-07-31T08:23:13.645Z" },
]
[[package]]
name = "filelock"
version = "3.16.1"
@@ -913,6 +923,22 @@ wheels = [
{ url = "https://files.pythonhosted.org/packages/67/0e/35082d13c09c02c011cf21570543d202ad929d961c02a147493cb0c2bdf5/numpy-2.2.6-cp313-cp313t-win_amd64.whl", hash = "sha256:6031dd6dfecc0cf9f668681a37648373bddd6421fff6c66ec1624eed0180ee06", size = 12771374, upload-time = "2025-05-17T21:43:35.479Z" },
]
[[package]]
name = "opensearch-py"
version = "3.0.0"
source = { registry = "https://pypi.org/simple" }
dependencies = [
{ name = "certifi" },
{ name = "events" },
{ name = "python-dateutil" },
{ name = "requests" },
{ name = "urllib3" },
]
sdist = { url = "https://files.pythonhosted.org/packages/b8/58/ecec7f855aae7bcfb08f570088c6cb993f68c361a0727abab35dbf021acb/opensearch_py-3.0.0.tar.gz", hash = "sha256:ebb38f303f8a3f794db816196315bcddad880be0dc75094e3334bc271db2ed39", size = 248890, upload-time = "2025-06-17T05:39:48.453Z" }
wheels = [
{ url = "https://files.pythonhosted.org/packages/71/e0/69fd114c607b0323d3f864ab4a5ecb87d76ec5a172d2e36a739c8baebea1/opensearch_py-3.0.0-py3-none-any.whl", hash = "sha256:842bf5d56a4a0d8290eda9bb921c50f3080e5dc4e5fefb9c9648289da3f6a8bb", size = 371491, upload-time = "2025-06-17T05:39:46.539Z" },
]
[[package]]
name = "opentsne"
version = "1.0.2"